Abstract

A band-gap-tailored random laser with a wide tunable range and low threshold through infrared radiation is demonstrated. When fluorescent dyes are doped into the liquid crystal and heavily doped chiral agent system, we demonstrate a wavelength tuning random laser instead of a side-band laser, which is caused by the combined effect of multi-scattering of liquid crystal (LC) and band-gap control. Through rotating the infrared absorbing material on the side of the LC cell, an adjustable range for random lasing of 80 nm by infrared light irradiation was observed.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Reversible phototuning of lasing frequency in dye doped cholesteric liquid crystal and ways to improve it [Invited]

Igor P. Ilchishin, Longin N. Lisetski, and Taras V. Mykytiuk
Opt. Mater. Express 1(8) 1484-1493 (2011)

Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi
Opt. Express 17(6) 4553-4558 (2009)

Lasing in chiral photonic liquid crystals and associated frequency tuning

Andy Y.-G. Fuh, Tsung-Hsien Lin, J.-H. Liu, and F.-C. Wu
Opt. Express 12(9) 1857-1863 (2004)

References

  • View by:
  • |
  • |
  • |

  1. S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum. Electron. 43, 407–410 (2007).
    [Crossref]
  2. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref]
  3. J. H. Lin and Y. L. Hsiao, “Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes,” Opt. Mater. Express 4, 1555–1563 (2014).
    [Crossref]
  4. M. Leonetti, C. Conti, and C. López, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101, 051104 (2012).
    [Crossref]
  5. S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
    [Crossref]
  6. R. G. S. EI-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98, 161106 (2011).
    [Crossref]
  7. L. J. Chen, J. D. Lin, S. Y. Huang, T. S. Mo, and C. R. Lee, “Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals,” Adv. Opt. Mater. 1, 637–643 (2013).
    [Crossref]
  8. L. Ye, Y. Wang, Y. Feng, C. Zhao, and G. Hu, “Study of low-threshold and high-intensity random lasing in dye doped liquid crystals,” J. Laser Appl. 28, 022005 (2016).
    [Crossref]
  9. F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, and Z. Lv, “Polarization and polarization control of random lasers from dye-doped nematic liquid crystals,” Opt. Lett. 38, 1557–1559 (2013).
    [Crossref]
  10. L. Ye, C. Zhao, Y. Feng, B. Gu, Y. Cui, and Y. Lu, “Study on the polarization of random lasers from dye-doped nematic liquid crystals,” Nanoscale Res. Lett. 12, 27 (2017).
    [Crossref]
  11. B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
    [Crossref]
  12. C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20, 23978–23984 (2012).
    [Crossref]
  13. L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys. 23, 085001 (2013).
    [Crossref]
  14. S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
    [Crossref]
  15. K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
    [Crossref]
  16. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
    [Crossref]
  17. Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
    [Crossref]
  18. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
    [Crossref]
  19. M. Kasano, M. Ozaki, K. Yoshino, and W. Haase, “Electrically tunable waveguide laser based on ferroelectric liquid crystal,” Appl. Phys. Lett. 82, 4026–4028 (2003).
    [Crossref]
  20. B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
    [Crossref]
  21. G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
    [Crossref]
  22. P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13, 2358–2363 (2005).
    [Crossref]
  23. Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
    [Crossref]
  24. S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
    [Crossref]
  25. T. H. Lin, Y. J. Chen, C. H. Wu, Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
    [Crossref]
  26. L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
    [Crossref]
  27. S. Y. T. Tzeng, C. N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
    [Crossref]
  28. G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
    [Crossref]
  29. C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
    [Crossref]
  30. Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
    [Crossref]
  31. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
    [Crossref]

2017 (1)

L. Ye, C. Zhao, Y. Feng, B. Gu, Y. Cui, and Y. Lu, “Study on the polarization of random lasers from dye-doped nematic liquid crystals,” Nanoscale Res. Lett. 12, 27 (2017).
[Crossref]

2016 (1)

L. Ye, Y. Wang, Y. Feng, C. Zhao, and G. Hu, “Study of low-threshold and high-intensity random lasing in dye doped liquid crystals,” J. Laser Appl. 28, 022005 (2016).
[Crossref]

2015 (2)

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
[Crossref]

Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

2014 (2)

G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
[Crossref]

J. H. Lin and Y. L. Hsiao, “Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes,” Opt. Mater. Express 4, 1555–1563 (2014).
[Crossref]

2013 (3)

F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, and Z. Lv, “Polarization and polarization control of random lasers from dye-doped nematic liquid crystals,” Opt. Lett. 38, 1557–1559 (2013).
[Crossref]

L. J. Chen, J. D. Lin, S. Y. Huang, T. S. Mo, and C. R. Lee, “Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals,” Adv. Opt. Mater. 1, 637–643 (2013).
[Crossref]

L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys. 23, 085001 (2013).
[Crossref]

2012 (3)

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20, 23978–23984 (2012).
[Crossref]

M. Leonetti, C. Conti, and C. López, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101, 051104 (2012).
[Crossref]

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

2011 (2)

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

R. G. S. EI-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98, 161106 (2011).
[Crossref]

2010 (2)

S. Y. T. Tzeng, C. N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[Crossref]

2009 (1)

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

2008 (2)

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
[Crossref]

2007 (2)

S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum. Electron. 43, 407–410 (2007).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref]

2006 (1)

2005 (3)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13, 2358–2363 (2005).
[Crossref]

T. H. Lin, Y. J. Chen, C. H. Wu, Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

2004 (1)

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

2003 (4)

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
[Crossref]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

M. Kasano, M. Ozaki, K. Yoshino, and W. Haase, “Electrically tunable waveguide laser based on ferroelectric liquid crystal,” Appl. Phys. Lett. 82, 4026–4028 (2003).
[Crossref]

G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

1998 (1)

Barberi, R.

G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Bartolino, R.

G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Bian, H.

Bisoyi, H. K.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
[Crossref]

Blanco, A.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

Bobrovsky, A.

Cavalieri, S.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

Chanishvili, G.

G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Chen, C. N.

S. Y. T. Tzeng, C. N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

Chen, C. W.

Chen, L. J.

L. J. Chen, J. D. Lin, S. Y. Huang, T. S. Mo, and C. R. Lee, “Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals,” Adv. Opt. Mater. 1, 637–643 (2013).
[Crossref]

Chen, Y. J.

T. H. Lin, Y. J. Chen, C. H. Wu, Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Chiappetta, D.

Chilaya, G.

G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Cho, G. S.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Cho, K.

G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
[Crossref]

Choi, E. H.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Cipparrone, G.

G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Coles, H. J.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

Conti, C.

M. Leonetti, C. Conti, and C. López, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101, 051104 (2012).
[Crossref]

Cui, Y.

L. Ye, C. Zhao, Y. Feng, B. Gu, Y. Cui, and Y. Lu, “Study on the polarization of random lasers from dye-doped nematic liquid crystals,” Nanoscale Res. Lett. 12, 27 (2017).
[Crossref]

Deng, L.

L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys. 23, 085001 (2013).
[Crossref]

Dong, H.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
[Crossref]

Doyle, C.

EI-Dardiry, R. G. S.

R. G. S. EI-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98, 161106 (2011).
[Crossref]

Fan, B.

Feng, Y.

L. Ye, C. Zhao, Y. Feng, B. Gu, Y. Cui, and Y. Lu, “Study on the polarization of random lasers from dye-doped nematic liquid crystals,” Nanoscale Res. Lett. 12, 27 (2017).
[Crossref]

L. Ye, Y. Wang, Y. Feng, C. Zhao, and G. Hu, “Study of low-threshold and high-intensity random lasing in dye doped liquid crystals,” J. Laser Appl. 28, 022005 (2016).
[Crossref]

Ford, A. D.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

Friend, R. H.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[Crossref]

Fuh, Y. G.

T. H. Lin, Y. J. Chen, C. H. Wu, Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Fujii, A.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Funamoto, K.

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
[Crossref]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

García, P. D.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

Gardiner, D. J.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Genack, A.

Genack, A. Z.

Gottardo, S.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

Gu, B.

L. Ye, C. Zhao, Y. Feng, B. Gu, Y. Cui, and Y. Lu, “Study on the polarization of random lasers from dye-doped nematic liquid crystals,” Nanoscale Res. Lett. 12, 27 (2017).
[Crossref]

Haase, W.

M. Kasano, M. Ozaki, K. Yoshino, and W. Haase, “Electrically tunable waveguide laser based on ferroelectric liquid crystal,” Appl. Phys. Lett. 82, 4026–4028 (2003).
[Crossref]

Hands, P. J. W.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

He, B.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
[Crossref]

Hsiao, Y. L.

Hu, G.

L. Ye, Y. Wang, Y. Feng, C. Zhao, and G. Hu, “Study of low-threshold and high-intensity random lasing in dye doped liquid crystals,” J. Laser Appl. 28, 022005 (2016).
[Crossref]

Hu, W.

Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Huang, S. Y.

L. J. Chen, J. D. Lin, S. Y. Huang, T. S. Mo, and C. R. Lee, “Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals,” Adv. Opt. Mater. 1, 637–643 (2013).
[Crossref]

Huang, Y.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref]

Inoue, K.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Inoue, Y.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Jang, W.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Jau, H. C.

Kang, B.

G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
[Crossref]

Kang, S. O.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Kasano, M.

M. Kasano, M. Ozaki, K. Yoshino, and W. Haase, “Electrically tunable waveguide laser based on ferroelectric liquid crystal,” Appl. Phys. Lett. 82, 4026–4028 (2003).
[Crossref]

Khoo, I. C.

Kim, M.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Kim, S. W.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Kim, Y.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Kopp, V. I.

Kubo, H.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Lagendijk, A.

R. G. S. EI-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98, 161106 (2011).
[Crossref]

Lee, C. H.

Lee, C. R.

L. J. Chen, J. D. Lin, S. Y. Huang, T. S. Mo, and C. R. Lee, “Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals,” Adv. Opt. Mater. 1, 637–643 (2013).
[Crossref]

Leonetti, M.

M. Leonetti, C. Conti, and C. López, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101, 051104 (2012).
[Crossref]

Li, L.

L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys. 23, 085001 (2013).
[Crossref]

Li, P.

G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
[Crossref]

Li, Q.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
[Crossref]

Li, Y.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
[Crossref]

Liao, Q.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
[Crossref]

Lin, J. D.

L. J. Chen, J. D. Lin, S. Y. Huang, T. S. Mo, and C. R. Lee, “Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals,” Adv. Opt. Mater. 1, 637–643 (2013).
[Crossref]

Lin, J. H.

Lin, T. H.

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20, 23978–23984 (2012).
[Crossref]

T. H. Lin, Y. J. Chen, C. H. Wu, Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Liu, B. W.

Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Liu, J.

S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum. Electron. 43, 407–410 (2007).
[Crossref]

Liu, J. H.

T. H. Lin, Y. J. Chen, C. H. Wu, Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Liu, L.

S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum. Electron. 43, 407–410 (2007).
[Crossref]

Liu, R.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
[Crossref]

López, C.

M. Leonetti, C. Conti, and C. López, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101, 051104 (2012).
[Crossref]

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

Lu, H.

G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
[Crossref]

Lu, Y.

L. Ye, C. Zhao, Y. Feng, B. Gu, Y. Cui, and Y. Lu, “Study on the polarization of random lasers from dye-doped nematic liquid crystals,” Nanoscale Res. Lett. 12, 27 (2017).
[Crossref]

Lv, Z.

Ma, J.

G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
[Crossref]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Mazzulla, A.

G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Milner, V.

Mo, T. S.

L. J. Chen, J. D. Lin, S. Y. Huang, T. S. Mo, and C. R. Lee, “Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals,” Adv. Opt. Mater. 1, 637–643 (2013).
[Crossref]

Morris, S. M.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

Mosk, A. P.

Mowatt, C.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[Crossref]

Oriol, L.

G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Ozaki, M.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
[Crossref]

M. Kasano, M. Ozaki, K. Yoshino, and W. Haase, “Electrically tunable waveguide laser based on ferroelectric liquid crystal,” Appl. Phys. Lett. 82, 4026–4028 (2003).
[Crossref]

Park, B.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Pei, Y.

Petriashvili, R.

G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Pivnenko, M. N.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

Qasim, M. M.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Qiu, L.

G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
[Crossref]

Sanford, R. L.

Sapienza, R.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

Seo, Y. H.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Shen, D.

Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Shibaev, P. V.

Shiozaki, Y.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Song, M. H.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[Crossref]

Song, Q.

S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum. Electron. 43, 407–410 (2007).
[Crossref]

Sun, L. D.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
[Crossref]

Sun, X.

Takezoe, H.

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Tang, L.

G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
[Crossref]

Tzeng, S. Y. T.

S. Y. T. Tzeng, C. N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

Tzeng, Y.

S. Y. T. Tzeng, C. N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

Vellekoop, I. M.

Vithana, H. K. M.

Wang, C. T.

Wang, F.

S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum. Electron. 43, 407–410 (2007).
[Crossref]

Wang, L.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
[Crossref]

Wang, W.

Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Wang, X.

G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
[Crossref]

Wang, Y.

L. Ye, Y. Wang, Y. Feng, C. Zhao, and G. Hu, “Study of low-threshold and high-intensity random lasing in dye doped liquid crystals,” J. Laser Appl. 28, 022005 (2016).
[Crossref]

Wang, Y. F.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
[Crossref]

White, I. H.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Wiersma, D. S.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

Wilkinson, T. D.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[Crossref]

Wu, C. H.

T. H. Lin, Y. J. Chen, C. H. Wu, Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Wu, S. T.

Xiao, S.

S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum. Electron. 43, 407–410 (2007).
[Crossref]

Xu, L.

S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum. Electron. 43, 407–410 (2007).
[Crossref]

Yan, C. H.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
[Crossref]

Yang, P. C.

T. H. Lin, Y. J. Chen, C. H. Wu, Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

Yao, F.

Yaroshchuk, O.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

Ye, L.

L. Ye, C. Zhao, Y. Feng, B. Gu, Y. Cui, and Y. Lu, “Study on the polarization of random lasers from dye-doped nematic liquid crystals,” Nanoscale Res. Lett. 12, 27 (2017).
[Crossref]

L. Ye, Y. Wang, Y. Feng, C. Zhao, and G. Hu, “Study of low-threshold and high-intensity random lasing in dye doped liquid crystals,” J. Laser Appl. 28, 022005 (2016).
[Crossref]

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Yoshida, H.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

Yoshino, K.

M. Kasano, M. Ozaki, K. Yoshino, and W. Haase, “Electrically tunable waveguide laser based on ferroelectric liquid crystal,” Appl. Phys. Lett. 82, 4026–4028 (2003).
[Crossref]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
[Crossref]

Zhang, G.

G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
[Crossref]

Zhang, Y.

Zhao, C.

L. Ye, C. Zhao, Y. Feng, B. Gu, Y. Cui, and Y. Lu, “Study on the polarization of random lasers from dye-doped nematic liquid crystals,” Nanoscale Res. Lett. 12, 27 (2017).
[Crossref]

L. Ye, Y. Wang, Y. Feng, C. Zhao, and G. Hu, “Study of low-threshold and high-intensity random lasing in dye doped liquid crystals,” J. Laser Appl. 28, 022005 (2016).
[Crossref]

Zheng, Z. G.

Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Zhou, L.

Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Zhou, W.

Zhou, Y.

Adv. Mater. (3)

B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kang, “Electrically controllable omnidirectional laser emission from a helical-polymer network composite film,” Adv. Mater. 21, 771–775 (2009).
[Crossref]

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23, 5498–5501 (2011).
[Crossref]

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27, 2065–2069 (2015).
[Crossref]

Adv. Opt. Mater. (1)

L. J. Chen, J. D. Lin, S. Y. Huang, T. S. Mo, and C. R. Lee, “Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals,” Adv. Opt. Mater. 1, 637–643 (2013).
[Crossref]

Appl. Phys. Lett. (7)

M. Leonetti, C. Conti, and C. López, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101, 051104 (2012).
[Crossref]

R. G. S. EI-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98, 161106 (2011).
[Crossref]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

M. Kasano, M. Ozaki, K. Yoshino, and W. Haase, “Electrically tunable waveguide laser based on ferroelectric liquid crystal,” Appl. Phys. Lett. 82, 4026–4028 (2003).
[Crossref]

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

T. H. Lin, Y. J. Chen, C. H. Wu, Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[Crossref]

G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003).
[Crossref]

Chem. Commun. (1)

G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, and L. Qiu, “A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors,” Chem. Commun. 50, 3180–3183 (2014).
[Crossref]

IEEE J. Quantum. Electron. (1)

S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum. Electron. 43, 407–410 (2007).
[Crossref]

J. Appl. Phys. (2)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[Crossref]

J. Laser Appl. (1)

L. Ye, Y. Wang, Y. Feng, C. Zhao, and G. Hu, “Study of low-threshold and high-intensity random lasing in dye doped liquid crystals,” J. Laser Appl. 28, 022005 (2016).
[Crossref]

J. Mater. Chem. C (1)

Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).
[Crossref]

Laser Phys. (1)

L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys. 23, 085001 (2013).
[Crossref]

Liq. Cryst. (1)

S. Y. T. Tzeng, C. N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

Nanoscale Res. Lett. (1)

L. Ye, C. Zhao, Y. Feng, B. Gu, Y. Cui, and Y. Lu, “Study on the polarization of random lasers from dye-doped nematic liquid crystals,” Nanoscale Res. Lett. 12, 27 (2017).
[Crossref]

Nat. Photonics (1)

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. (1)

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic of the band-gap-tailored random laser.
Fig. 2.
Fig. 2. Chemical structures of chiral agent S811, infrared absorbing material PBIBDF-BT, and laser dye PM597.
Fig. 3.
Fig. 3. Experimental setup for the NIR controlling random laser.
Fig. 4.
Fig. 4. (a) DSC curves of CLC-based S811 (30 wt.%) in E7 (70 wt.%) at heating/cooling rate of 1°C per minute; (b) LC textures recorded under crossed polarizers for the sample at 26°C and 30°C.
Fig. 5.
Fig. 5. Transmission spectra of CLC as functions of (a) temperature and (b) irradiation time at 850 nm.
Fig. 6.
Fig. 6. Random lasing emission (a) for smectic A state at 0.35    mJ pump intensity, and (b) for cholesteric state at 3    μJ pump intensity; the relation between the output intensity and the pump intensity for (c) smectic A state and (d) cholesteric state.
Fig. 7.
Fig. 7. Random lasing spectra of LCs at the cholesteric state at different NIR (850-nm) irradiation times.
Fig. 8.
Fig. 8. Random laser wavelength changes with time ( × represents three major laser peaks of the RL with NIR irradiation. * represents three major laser peaks of the RL without NIR light).
Fig. 9.
Fig. 9. (a) Transmission spectra of CLC as a function of irradiation time of 940-nm NIR. (b) Bragg wavelength as a function of NIR irradiation time. (▪ 850-nm NIR irradiation on the sample; prj-6-5-390-i001 940-nm NIR irradiation on the sample.)
Fig. 10.
Fig. 10. Stable random lasing wavelength for (a) different NIR irradiation wavelengths and (b) different concentrations of infrared absorbing material at 850 nm for 30 min.
Fig. 11.
Fig. 11. Stabilized wavelength of RLs changes with varying NIR irradiation power.

Metrics