Abstract

We propose a design for efficient end-fire coupling of surface plasmon polaritons in a metal-insulator-metal (MIM) waveguide with an optical fiber as part of a simple photoplastic connector. The design was analyzed and optimized using the three-dimensional finite-difference time-domain method. The calculated excitation efficiency coefficient of the waveguide is 83.7% (0.77  dB) at a wavelength of 405 nm. This design enables simple connection of an optical fiber to a MIM waveguide and highly efficient local excitation of the waveguide. Moreover, the length of the metallic elements of the waveguide, and thus the dissipative losses, can be reduced. The proposed design may be useful in plasmonic-type waveguide applications such as near-field investigation of live cells and other objects with super-resolution.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Efficient end-fire coupling of surface plasmons in a metal waveguide

Caitlin Fisher, Lindsay C. Botten, Christopher G. Poulton, Ross C. McPhedran, and C. Martijn de Sterke
J. Opt. Soc. Am. B 32(3) 412-425 (2015)

Mode converter in metal-insulator-metal plasmonic waveguide designed by transformation optics

Xiang-Tian Kong, Zu-Bin Li, and Jian-Guo Tian
Opt. Express 21(8) 9437-9446 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
    [Crossref]
  2. J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
    [Crossref]
  3. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17, 14001–14014 (2009).
    [Crossref]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  5. A. V. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
    [Crossref]
  6. C. S. Kim, I. Vurgaftman, R. A. Flynn, M. Kim, J. R. Lindle, W. W. Bewley, K. Bussmann, J. R. Meyer, and J. P. Long, “An integrated surface-plasmon source,” Opt. Express 18, 10609–10615 (2010).
    [Crossref]
  7. E. Kinzel and X. Xu, “High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures,” Opt. Express 18, 10609–10615 (2010).
    [Crossref]
  8. K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
    [Crossref]
  9. P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
    [Crossref]
  10. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
    [Crossref]
  11. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
    [Crossref]
  12. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
    [Crossref]
  13. D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
    [Crossref]
  14. H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
    [Crossref]
  15. C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
    [Crossref]
  16. C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
    [Crossref]
  17. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications,” Appl. Opt. 53, 6554–6568 (2014).
    [Crossref]
  18. J. Xu, L. Huang, M. Jiang, J. Ye, P. Ma, J. Leng, J. Wu, H. Zhang, and P. Zhou, “Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output,” Photon. Res. 5, 350–354 (2017).
    [Crossref]
  19. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  20. G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
    [Crossref]
  21. A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
    [Crossref]
  22. G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
    [Crossref]
  23. J.-R. Qian and W.-P. Huang, “LP modes and ideal modes on optical fibers,” J. Lightwave Technol. 4, 626–630 (1986).
    [Crossref]
  24. J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
    [Crossref]
  25. A. S. Lapchuk, D. Shin, H.-S. Jeong, C. S. Kyong, and D.-I. Shin, “Mode propagation in optical nanowaveguides with dielectric cores and surrounding metal layers,” Appl. Opt. 44, 7522–7531 (2005).
    [Crossref]
  26. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
    [Crossref]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  28. O. P. Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Proceedings of the International Conference on Optics and Photonics, Chandigarh, India, 30October–1 November, 2009.
  29. K. Y. Kim, ed., Plasmonics–Principles and Applications, 1st ed. (InTech, 2012).
  30. S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding system,” IEEE Trans. Microwave Theory Tech. 33, 967–971 (1985).
    [Crossref]
  31. K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965).
    [Crossref]
  32. Y. M. Morozov and A. S. Lapchuk, “Signal of microstrip scanning near-field optical microscope in far- and near-field zones,” Appl. Opt. 55, 3468–3477 (2016).
    [Crossref]
  33. L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
    [Crossref]
  34. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
    [Crossref]
  35. D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).
  36. A. S. Lapchuk, S. A. Shylo, and I. P. Nevirkovets, “Local plasmon resonance at metal wedge,” J. Opt. Soc. Am. A 25, 1535–1540 (2008).
    [Crossref]
  37. M. R. Disfani, M. S. Abrishamian, and P. Berini, “Electromagnetic fields near plasmonic wedges,” Opt. Lett. 37, 1667–1669 (2012).
    [Crossref]
  38. H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
    [Crossref]
  39. G. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995).
    [Crossref]
  40. J. Luo, Y. Fan, H. Zhou, W. Gu, and W. Xu, “Fabrication of different fine fiber tips for near field scanning optical microscopy by a simple chemical etching technique,” Chin. Opt. Lett. 5, 232–234 (2007).
  41. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8, 386–388 (1983).
    [Crossref]

2017 (3)

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

J. Xu, L. Huang, M. Jiang, J. Ye, P. Ma, J. Leng, J. Wu, H. Zhang, and P. Zhou, “Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output,” Photon. Res. 5, 350–354 (2017).
[Crossref]

2016 (2)

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Y. M. Morozov and A. S. Lapchuk, “Signal of microstrip scanning near-field optical microscope in far- and near-field zones,” Appl. Opt. 55, 3468–3477 (2016).
[Crossref]

2015 (1)

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

2014 (3)

D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
[Crossref]

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications,” Appl. Opt. 53, 6554–6568 (2014).
[Crossref]

2013 (4)

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

2012 (2)

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

M. R. Disfani, M. S. Abrishamian, and P. Berini, “Electromagnetic fields near plasmonic wedges,” Opt. Lett. 37, 1667–1669 (2012).
[Crossref]

2010 (4)

C. S. Kim, I. Vurgaftman, R. A. Flynn, M. Kim, J. R. Lindle, W. W. Bewley, K. Bussmann, J. R. Meyer, and J. P. Long, “An integrated surface-plasmon source,” Opt. Express 18, 10609–10615 (2010).
[Crossref]

E. Kinzel and X. Xu, “High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures,” Opt. Express 18, 10609–10615 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

2009 (3)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17, 14001–14014 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (2)

2005 (1)

2003 (1)

A. V. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

1999 (1)

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

1998 (2)

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
[Crossref]

1995 (1)

1986 (1)

J.-R. Qian and W.-P. Huang, “LP modes and ideal modes on optical fibers,” J. Lightwave Technol. 4, 626–630 (1986).
[Crossref]

1985 (1)

S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding system,” IEEE Trans. Microwave Theory Tech. 33, 967–971 (1985).
[Crossref]

1983 (1)

1965 (1)

K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965).
[Crossref]

Abrishamian, M. S.

Alameh, K.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Anselmetti, D.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

Arbel, D.

Armendariz, K. P.

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Auton, G. H.

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Baumann, S.

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Berini, P.

Bewley, W. W.

Bhat, N.

O. P. Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Proceedings of the International Conference on Optics and Photonics, Chandigarh, India, 30October–1 November, 2009.

Bokor, J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Brugger, J.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Bussmann, K.

Cabrini, S.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Carpio, A.

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Choo, H.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Czajkowsky, D. M.

D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
[Crossref]

Davidson, M.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

de Rooij, N. F.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

Despont, M.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Dimiduk, T. G.

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Disfani, M. R.

Dolores-Calzadilla, V.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Drechsler, U.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

Dunn, R. C.

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Fahrni, N.

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Fan, Y.

Fang, Q.

Fitrakis, E. P.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Flynn, R. A.

Freude, W.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Fu, D.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Genolet, G.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

Ginzburg, P.

Gonschior, C. P.

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Gordon, R.

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Grattan, K. T. V.

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Grigorenko, A. N.

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Gu, W.

Heyse, D.

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Hoessbacher, C.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Holton, M.

Huang, L.

Huang, W.-P.

J.-R. Qian and W.-P. Huang, “LP modes and ideal modes on optical fibers,” J. Lightwave Technol. 4, 626–630 (1986).
[Crossref]

Huckabay, H. A.

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Im, H.

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

Jeong, H.-S.

Jiang, M.

Jones, R. J.

Kano, H.

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
[Crossref]

Kim, C. S.

Kim, M.

Kim, M.-K.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Kinzel, E.

Klein, K.-F.

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Kobyakov, A.

Kohl, M.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Koos, C.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Kravets, V. G.

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Kundys, D.

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Kurokawa, K.

K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965).
[Crossref]

Kyong, C. S.

Lapchuk, A. S.

Leng, J.

Lesuffleur, A.

Leuthold, J.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Li, K.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Lindle, J. R.

Lindquist, N. C.

Lippincott-Schwartz, J.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

Liu, L.

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

Long, J. P.

Lorenz, H.

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Lu, F.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Luo, J.

Ma, P.

Manley, S.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

Mansuripur, M.

Maradudin, A. A.

Martínez-Pastor, J.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Melikyan, A.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Menzel, M.

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

Meyer, J. R.

Mizuguchi, S.

Moloney, J. V.

Morozov, Y. M.

Morrison, G. H.

Muehlbrandt, S.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Nevirkovets, I. P.

Newhart, W. H.

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Norwood, R. A.

Novotny, L.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Oh, S.-H.

Orenstein, M.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Palomba, S.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Parida, O. P.

O. P. Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Proceedings of the International Conference on Optics and Photonics, Chandigarh, India, 30October–1 November, 2009.

Patterson, G.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

Peyghambarian, N.

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).

Qian, J.-R.

J.-R. Qian and W.-P. Huang, “LP modes and ideal modes on optical fibers,” J. Lightwave Technol. 4, 626–630 (1986).
[Crossref]

Quidant, R.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Rapún, M. L.

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Renaud, P.

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Renger, J.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Schuck, P. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Selgas, V.

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Seok, T. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Shao, Z.

D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
[Crossref]

Shi, W.

Shin, D.

Shin, D.-I.

Shylo, S. A.

Smit, M.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Smolyaninov, I.

A. V. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

Song, S.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Staffaroni, M.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Stegeman, G. I.

Suarez, I.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Sun, J.

D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
[Crossref]

Sun, T.

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Talisa, S. H.

S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding system,” IEEE Trans. Microwave Theory Tech. 33, 967–971 (1985).
[Crossref]

Thomas, P. A.

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Tomkos, I.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Valaskovic, G. A.

van Hulst, N.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

Vettiger, P.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Vurgaftman, I.

Wallis, R. F.

Wang, X.

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

Wei, D.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Wildgen, S. M.

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Wu, J.

Wu, M. C.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Xiao, F.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Xu, A.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Xu, J.

Xu, W.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

J. Luo, Y. Fan, H. Zhou, W. Gu, and W. Xu, “Fabrication of different fine fiber tips for near field scanning optical microscopy by a simple chemical etching technique,” Chin. Opt. Lett. 5, 232–234 (2007).

Xu, X.

Xu, Z.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Yablonovitch, E.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Ye, J.

Yu, L.

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

Zakharian, A. R.

Zayats, A. V.

A. V. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

Zhang, H.

Zhou, H.

Zhou, P.

Zhou, Z.

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

Zhu, J.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Zhu, X.

Annu. Rev. Chem. (1)

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

Appl. Opt. (4)

Chin. Opt. Lett. (1)

IEEE Trans. Microwave Theory Tech. (2)

S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding system,” IEEE Trans. Microwave Theory Tech. 33, 967–971 (1985).
[Crossref]

K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965).
[Crossref]

J. Lightwave Technol. (1)

J.-R. Qian and W.-P. Huang, “LP modes and ideal modes on optical fibers,” J. Lightwave Technol. 4, 626–630 (1986).
[Crossref]

J. Opt. A (1)

A. V. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Methods Mol. Biol. (1)

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Nanomed-Nanotechnol. (1)

D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
[Crossref]

Nat. Photonics (3)

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

New J. Phys. (1)

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Opt. Commun. (1)

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

Opt. Eng. (1)

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Photon. News (1)

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Optik (1)

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Photon. Res. (1)

Phys. Rev. B (1)

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
[Crossref]

Phys. Rev. Lett. (1)

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Proc. SPIE (1)

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Rev. Sci. Instrum. (1)

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

Sci. Rep. (1)

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Sens. Actuators A (1)

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

SIAM J. Imaging Sci. (1)

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Other (5)

D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

O. P. Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Proceedings of the International Conference on Optics and Photonics, Chandigarh, India, 30October–1 November, 2009.

K. Y. Kim, ed., Plasmonics–Principles and Applications, 1st ed. (InTech, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Spatial geometry of the photoplastic connector: (a) view from the PH; (b) view from the excitation area.

Fig. 2.
Fig. 2.

Schematic representation of the connector design: (a) view from the excitation area, (b) view from the PH, and (c) longitudinal view. d1 is a diameter of the optical fiber, and thus the inner diameter of the tumbler; d2 is the external diameter of the tumbler, and thus the diameter of the Al screen; a and u are the width and height of the PH, respectively; L1 is the length of the optical fiber; L2 is the length of the tumbler; L3 is the thickness of the Al screen; L4 is the distance between the optical fiber and Al screen, that is, the thickness of the tumbler bottom; L5 is the length of the MIM waveguide; b is the thickness of the MIM waveguide dielectric layer; t is the thickness of the MIM waveguide’s metallic coatings.

Fig. 3.
Fig. 3.

Contour plot and profiles of the absolute value of the electric field of the fundamental propagation LP01 (HE11) mode of a circular dielectric waveguide; white dashed circle corresponds to outer edge of the optical fiber core; red dashed lines correspond to the PH dimension along the x axis; a.u., arbitrary units.

Fig. 4.
Fig. 4.

Electric field amplitude (Ex) profile of the fundamental symmetric plasmon quasi-TM00 mode; b=200  nm, t=50  nm; red dashed lines correspond to the PH dimension along the x axis; black dashed line corresponds to the |E| profile of the fundamental propagation LP01 (HE11) mode of a circular dielectric waveguide along the x axis from Fig. 3.

Fig. 5.
Fig. 5.

Dependence of ceff_1 and power reflection coefficient |R1|2 on the Al screen thickness L3; d1=1000  nm, d2=1200  nm, L1=500  nm, L2=400  nm, L4=100  nm, a=500  nm, u=200  nm.

Fig. 6.
Fig. 6.

Dependence of ceff_1 and |R1|2 on the tumbler bottom thickness L4; d1=1000  nm, d2=1200  nm, L1=500  nm, L2=400  nm, L3=50  nm, a=500  nm, u=200  nm.

Fig. 7.
Fig. 7.

Cross-sectional view of the electric field and energy flux in the structure: (a) x component of the electric field; (b) absolute value of the electric field; (c) z component of the Poynting vector. d1=1000  nm, d2=1200  nm, L1=500  nm, L2=400  nm, L3=50  nm, L4=100  nm, a=500  nm, u=200  nm; a.u., arbitrary units.

Fig. 8.
Fig. 8.

Dependence of ceff_2 on the Al screen thickness L3; d1=1000  nm, d2=1200  nm, L1=500  nm, L2=400  nm, L3=50  nm, L4=100  nm, L5=1000  nm, a=500  nm, u=200  nm, b=200  nm, t=50  nm.

Fig. 9.
Fig. 9.

Cross-sectional view of the electric field and energy flux in the structure with the MIM waveguide: (a) x component of the electric field; (b) absolute value of the electric field; (c) z component of the Poynting vector. d1=1000  nm, d2=1200  nm, L1=500  nm, L2=400  nm, L3=50  nm, L4=100  nm, L5=1000  nm, a=500  nm, u=200  nm, b=200  nm, t=50  nm; a.u., arbitrary units.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

kdϵdth(kdw)={kmϵmth[km(uw)]+kaϵa}·{1+kaϵaϵmkmth[km(uw)]}1,
ceff_1=PP0,
|Γl|=|ZlZ0Zl+Z0|.