Abstract

The ability to manipulate the valence state conversion of rare-earth ions is crucial for their applications in color displays, optoelectronic devices, laser sources, and optical memory. The conventional femtosecond laser pulse has been shown to be a well-established tool for realizing the valence state conversion of rare-earth ions, although the valence state conversion efficiency is relatively low. Here, we first propose a femtosecond laser pulse shaping technique for improving the valence state conversion efficiency of rare-earth ions. Our experimental results demonstrate that the photoreduction efficiency from Sm3+ to Sm2+ in Sm3+-doped sodium aluminoborate glass using a π phase step modulation can be comparable to that using a transform-limited femtosecond laser field, while the peak laser intensity is decreased by about 63%, which is very beneficial for improving the valence state conversion efficiency under the laser-induced damage threshold of the glass sample. Furthermore, we also theoretically develop a (2+1) resonance-mediated three-photon absorption model to explain the modulation of the photoreduction efficiency from Sm3+ to Sm2+ under the π-shaped femtosecond laser field.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Upconversion luminescence from aluminoborate glasses doped with Tb3+, Eu3+ and Dy3+ under the excitation of 2.6-μm femtosecond laser pulses

M. H. Yuan, H. H. Fan, Q. F. Dai, S. Lan, X. Wan, and S. L. Tie
Opt. Express 23(17) 21909-21918 (2015)

Infrared femtosecond laser pulse–induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass

Jianrong Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao
Opt. Lett. 24(11) 786-788 (1999)

Sm3+ photoreduction in BaCl2 nanophases precipitated fluoroaluminate glasses under femtosecond laser irradiation

Qing Jiao, Zhiguo Song, Zhengwen Yang, Xue Yu, and Jianbei Qiu
Opt. Lett. 36(16) 3091-3093 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos and P. M. Rentxepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [Crossref]
  2. K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80, 2263–2265 (2002).
    [Crossref]
  3. G. Baldacchini, M. Cremona, G. d’Auria, R. M. Montereali, and V. Kalinov, “Radiative and nonradiative processes in the optical cycle of the F3+ center in LiF,” Phys. Rev. B 54, 17508–17514 (1996).
    [Crossref]
  4. H. Gu, L. Qi, and L. Wan, “Broadly tunable yellow-green laser using color centers in a LiF crystal at room temperature,” Appl. Phys. Lett. 52, 1845–1846 (1988).
    [Crossref]
  5. J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74, 10–12 (1999).
    [Crossref]
  6. J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass,” Solid State Commun. 113, 341–344 (1999).
    [Crossref]
  7. Q. Jiao, Z. Song, Z. Yang, X. Yu, and J. Qiu, “Sm3+ photoreduction in BaCl2 nanophases precipitated fluoroaluminate glasses under femtosecond laser irradiation,” Opt. Lett. 36, 3091–3093 (2011).
    [Crossref]
  8. R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569–574 (1991).
    [Crossref]
  9. M. C. Wiegand, W. Sievers, J. K. N. Lindner, T. Tröster, and S. Schweizer, “Photoluminescence properties of Sm2+-doped BaBr2 under hydrostatic pressure,” J. Lumin. 131, 2400–2403 (2011).
    [Crossref]
  10. W. Chen and M. Su, “Stimulated luminescence and photo-gated hole burning in BaFCl0.8Br0.2:Sm2+, Sm3+ phosphors,” J. Phys. Chem. Solids 60, 371–378 (1999).
    [Crossref]
  11. S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
    [Crossref]
  12. A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
    [Crossref]
  13. D. Wei, B. Yuan, Y. Huang, T. Tsubio, and H. J. Seo, “Influence of crystallization on the conversion of Sm3+ → Sm2+ in SrO-Bi2O3–K2O-B2O3 glass-ceramics,” J. Am. Ceram. Soc. 96, 2167–2171 (2013).
    [Crossref]
  14. J. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71, 759–761 (1997).
    [Crossref]
  15. J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse-induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24, 786–788 (1999).
    [Crossref]
  16. K. S. Lim, S. Lee, M. T. Trinh, S. H. Kim, M. Lee, D. S. Hamilton, and G. N. Gibson, “Femtosecond laser-induced reduction in Eu-doped sodium borate glasses,” J. Lumin. 122, 14–16 (2007).
    [Crossref]
  17. M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4: Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4: Eu,” J. Lumin. 127, 735–740 (2007).
    [Crossref]
  18. E. Malchukova and B. Boizot, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses under ionizing radiation,” Mater. Res. Bull. 45, 1299–1303 (2010).
    [Crossref]
  19. J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
    [Crossref]
  20. K. Biswas, A. D. Sontakke, R. Sen, and K. Annapuma, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22, 745–752 (2012).
    [Crossref]
  21. J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79, 3567–3569 (2001).
    [Crossref]
  22. S. Lee, M. T. Trinh, J. R. Nam, K. S. Lim, M. Lee, and E. Kim, “Laser-induced defect centers and valence state change of Mn ions in sodium borate glasses,” J. Lumin. 122, 142–145 (2007).
    [Crossref]
  23. D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
    [Crossref]
  24. Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
    [Crossref]
  25. S. Zhang, H. Zhang, T. Jia, Z. Wang, and Z. Sun, “Coherent phase control of (2+1) resonantly enhanced multiphoton ionization photoelectron spectroscopy,” J. Phys. B 43, 135401 (2010).
    [Crossref]

2017 (1)

Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
[Crossref]

2013 (1)

D. Wei, B. Yuan, Y. Huang, T. Tsubio, and H. J. Seo, “Influence of crystallization on the conversion of Sm3+ → Sm2+ in SrO-Bi2O3–K2O-B2O3 glass-ceramics,” J. Am. Ceram. Soc. 96, 2167–2171 (2013).
[Crossref]

2012 (1)

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapuma, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22, 745–752 (2012).
[Crossref]

2011 (2)

M. C. Wiegand, W. Sievers, J. K. N. Lindner, T. Tröster, and S. Schweizer, “Photoluminescence properties of Sm2+-doped BaBr2 under hydrostatic pressure,” J. Lumin. 131, 2400–2403 (2011).
[Crossref]

Q. Jiao, Z. Song, Z. Yang, X. Yu, and J. Qiu, “Sm3+ photoreduction in BaCl2 nanophases precipitated fluoroaluminate glasses under femtosecond laser irradiation,” Opt. Lett. 36, 3091–3093 (2011).
[Crossref]

2010 (3)

E. Malchukova and B. Boizot, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses under ionizing radiation,” Mater. Res. Bull. 45, 1299–1303 (2010).
[Crossref]

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

S. Zhang, H. Zhang, T. Jia, Z. Wang, and Z. Sun, “Coherent phase control of (2+1) resonantly enhanced multiphoton ionization photoelectron spectroscopy,” J. Phys. B 43, 135401 (2010).
[Crossref]

2009 (1)

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
[Crossref]

2007 (3)

S. Lee, M. T. Trinh, J. R. Nam, K. S. Lim, M. Lee, and E. Kim, “Laser-induced defect centers and valence state change of Mn ions in sodium borate glasses,” J. Lumin. 122, 142–145 (2007).
[Crossref]

K. S. Lim, S. Lee, M. T. Trinh, S. H. Kim, M. Lee, D. S. Hamilton, and G. N. Gibson, “Femtosecond laser-induced reduction in Eu-doped sodium borate glasses,” J. Lumin. 122, 14–16 (2007).
[Crossref]

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4: Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4: Eu,” J. Lumin. 127, 735–740 (2007).
[Crossref]

2004 (1)

S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
[Crossref]

2003 (1)

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
[Crossref]

2002 (1)

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80, 2263–2265 (2002).
[Crossref]

2001 (1)

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79, 3567–3569 (2001).
[Crossref]

1999 (4)

W. Chen and M. Su, “Stimulated luminescence and photo-gated hole burning in BaFCl0.8Br0.2:Sm2+, Sm3+ phosphors,” J. Phys. Chem. Solids 60, 371–378 (1999).
[Crossref]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74, 10–12 (1999).
[Crossref]

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass,” Solid State Commun. 113, 341–344 (1999).
[Crossref]

J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse-induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24, 786–788 (1999).
[Crossref]

1997 (1)

J. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71, 759–761 (1997).
[Crossref]

1996 (1)

G. Baldacchini, M. Cremona, G. d’Auria, R. M. Montereali, and V. Kalinov, “Radiative and nonradiative processes in the optical cycle of the F3+ center in LiF,” Phys. Rev. B 54, 17508–17514 (1996).
[Crossref]

1991 (1)

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569–574 (1991).
[Crossref]

1989 (1)

D. A. Parthenopoulos and P. M. Rentxepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[Crossref]

1988 (1)

H. Gu, L. Qi, and L. Wan, “Broadly tunable yellow-green laser using color centers in a LiF crystal at room temperature,” Appl. Phys. Lett. 52, 1845–1846 (1988).
[Crossref]

Andrade, A. A.

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

Annapuma, K.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapuma, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22, 745–752 (2012).
[Crossref]

Baesso, M. L.

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

Baldacchini, G.

G. Baldacchini, M. Cremona, G. d’Auria, R. M. Montereali, and V. Kalinov, “Radiative and nonradiative processes in the optical cycle of the F3+ center in LiF,” Phys. Rev. B 54, 17508–17514 (1996).
[Crossref]

Belev, G.

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
[Crossref]

Bento, A. C.

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

Bill, H.

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569–574 (1991).
[Crossref]

Biswas, K.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapuma, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22, 745–752 (2012).
[Crossref]

Boizot, B.

E. Malchukova and B. Boizot, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses under ionizing radiation,” Mater. Res. Bull. 45, 1299–1303 (2010).
[Crossref]

Chen, W.

W. Chen and M. Su, “Stimulated luminescence and photo-gated hole burning in BaFCl0.8Br0.2:Sm2+, Sm3+ phosphors,” J. Phys. Chem. Solids 60, 371–378 (1999).
[Crossref]

Cheng, W.

Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
[Crossref]

Cho, E.

S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
[Crossref]

Cho, H.

S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
[Crossref]

Chung, Y.

S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
[Crossref]

Cremona, M.

G. Baldacchini, M. Cremona, G. d’Auria, R. M. Montereali, and V. Kalinov, “Radiative and nonradiative processes in the optical cycle of the F3+ center in LiF,” Phys. Rev. B 54, 17508–17514 (1996).
[Crossref]

d’Auria, G.

G. Baldacchini, M. Cremona, G. d’Auria, R. M. Montereali, and V. Kalinov, “Radiative and nonradiative processes in the optical cycle of the F3+ center in LiF,” Phys. Rev. B 54, 17508–17514 (1996).
[Crossref]

daSilva, L. M.

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

Edgar, A.

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
[Crossref]

Feng, D.

Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
[Crossref]

Filadelpho, M. C.

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

Fujiwara, S.

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80, 2263–2265 (2002).
[Crossref]

Gandra, F. C. G.

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

Gibson, G. N.

K. S. Lim, S. Lee, M. T. Trinh, S. H. Kim, M. Lee, D. S. Hamilton, and G. N. Gibson, “Femtosecond laser-induced reduction in Eu-doped sodium borate glasses,” J. Lumin. 122, 14–16 (2007).
[Crossref]

Goswami, D.

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
[Crossref]

Gu, H.

H. Gu, L. Qi, and L. Wan, “Broadly tunable yellow-green laser using color centers in a LiF crystal at room temperature,” Appl. Phys. Lett. 52, 1845–1846 (1988).
[Crossref]

Hamilton, D. S.

K. S. Lim, S. Lee, M. T. Trinh, S. H. Kim, M. Lee, D. S. Hamilton, and G. N. Gibson, “Femtosecond laser-induced reduction in Eu-doped sodium borate glasses,” J. Lumin. 122, 14–16 (2007).
[Crossref]

Hirao, K.

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80, 2263–2265 (2002).
[Crossref]

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79, 3567–3569 (2001).
[Crossref]

J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse-induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24, 786–788 (1999).
[Crossref]

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass,” Solid State Commun. 113, 341–344 (1999).
[Crossref]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74, 10–12 (1999).
[Crossref]

J. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71, 759–761 (1997).
[Crossref]

Hong, G.

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4: Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4: Eu,” J. Lumin. 127, 735–740 (2007).
[Crossref]

Huang, Y.

D. Wei, B. Yuan, Y. Huang, T. Tsubio, and H. J. Seo, “Influence of crystallization on the conversion of Sm3+ → Sm2+ in SrO-Bi2O3–K2O-B2O3 glass-ceramics,” J. Am. Ceram. Soc. 96, 2167–2171 (2013).
[Crossref]

Iwabuchi, Y.

J. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71, 759–761 (1997).
[Crossref]

Jaaniso, R.

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569–574 (1991).
[Crossref]

Jang, K.

S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
[Crossref]

Jia, T.

Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
[Crossref]

S. Zhang, H. Zhang, T. Jia, Z. Wang, and Z. Sun, “Coherent phase control of (2+1) resonantly enhanced multiphoton ionization photoelectron spectroscopy,” J. Phys. B 43, 135401 (2010).
[Crossref]

Jiao, Q.

Kalinov, V.

G. Baldacchini, M. Cremona, G. d’Auria, R. M. Montereali, and V. Kalinov, “Radiative and nonradiative processes in the optical cycle of the F3+ center in LiF,” Phys. Rev. B 54, 17508–17514 (1996).
[Crossref]

Kasap, S. O.

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
[Crossref]

Kim, C.

S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
[Crossref]

Kim, E.

S. Lee, M. T. Trinh, J. R. Nam, K. S. Lim, M. Lee, and E. Kim, “Laser-induced defect centers and valence state change of Mn ions in sodium borate glasses,” J. Lumin. 122, 142–145 (2007).
[Crossref]

Kim, S.

S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
[Crossref]

Kim, S. H.

K. S. Lim, S. Lee, M. T. Trinh, S. H. Kim, M. Lee, D. S. Hamilton, and G. N. Gibson, “Femtosecond laser-induced reduction in Eu-doped sodium borate glasses,” J. Lumin. 122, 14–16 (2007).
[Crossref]

Kojima, K.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79, 3567–3569 (2001).
[Crossref]

J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse-induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24, 786–788 (1999).
[Crossref]

Kondo, Y.

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass,” Solid State Commun. 113, 341–344 (1999).
[Crossref]

Koughia, C.

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
[Crossref]

Lee, M.

K. S. Lim, S. Lee, M. T. Trinh, S. H. Kim, M. Lee, D. S. Hamilton, and G. N. Gibson, “Femtosecond laser-induced reduction in Eu-doped sodium borate glasses,” J. Lumin. 122, 14–16 (2007).
[Crossref]

S. Lee, M. T. Trinh, J. R. Nam, K. S. Lim, M. Lee, and E. Kim, “Laser-induced defect centers and valence state change of Mn ions in sodium borate glasses,” J. Lumin. 122, 142–145 (2007).
[Crossref]

Lee, S.

S. Lee, M. T. Trinh, J. R. Nam, K. S. Lim, M. Lee, and E. Kim, “Laser-induced defect centers and valence state change of Mn ions in sodium borate glasses,” J. Lumin. 122, 142–145 (2007).
[Crossref]

K. S. Lim, S. Lee, M. T. Trinh, S. H. Kim, M. Lee, D. S. Hamilton, and G. N. Gibson, “Femtosecond laser-induced reduction in Eu-doped sodium borate glasses,” J. Lumin. 122, 14–16 (2007).
[Crossref]

Lee, Y.

S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
[Crossref]

Lim, K. S.

K. S. Lim, S. Lee, M. T. Trinh, S. H. Kim, M. Lee, D. S. Hamilton, and G. N. Gibson, “Femtosecond laser-induced reduction in Eu-doped sodium borate glasses,” J. Lumin. 122, 14–16 (2007).
[Crossref]

S. Lee, M. T. Trinh, J. R. Nam, K. S. Lim, M. Lee, and E. Kim, “Laser-induced defect centers and valence state change of Mn ions in sodium borate glasses,” J. Lumin. 122, 142–145 (2007).
[Crossref]

Lindner, J. K. N.

M. C. Wiegand, W. Sievers, J. K. N. Lindner, T. Tröster, and S. Schweizer, “Photoluminescence properties of Sm2+-doped BaBr2 under hydrostatic pressure,” J. Lumin. 131, 2400–2403 (2011).
[Crossref]

Malchukova, E.

E. Malchukova and B. Boizot, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses under ionizing radiation,” Mater. Res. Bull. 45, 1299–1303 (2010).
[Crossref]

Medina, A. N.

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

Mitsuyu, T.

J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse-induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24, 786–788 (1999).
[Crossref]

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass,” Solid State Commun. 113, 341–344 (1999).
[Crossref]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74, 10–12 (1999).
[Crossref]

Miura, K.

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80, 2263–2265 (2002).
[Crossref]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74, 10–12 (1999).
[Crossref]

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass,” Solid State Commun. 113, 341–344 (1999).
[Crossref]

J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse-induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24, 786–788 (1999).
[Crossref]

Montereali, R. M.

G. Baldacchini, M. Cremona, G. d’Auria, R. M. Montereali, and V. Kalinov, “Radiative and nonradiative processes in the optical cycle of the F3+ center in LiF,” Phys. Rev. B 54, 17508–17514 (1996).
[Crossref]

Nakaya, T.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79, 3567–3569 (2001).
[Crossref]

Nam, J. R.

S. Lee, M. T. Trinh, J. R. Nam, K. S. Lim, M. Lee, and E. Kim, “Laser-induced defect centers and valence state change of Mn ions in sodium borate glasses,” J. Lumin. 122, 142–145 (2007).
[Crossref]

Nouchi, K.

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass,” Solid State Commun. 113, 341–344 (1999).
[Crossref]

Nunes, L. A. O.

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

Ogura, F.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79, 3567–3569 (2001).
[Crossref]

Okada, G.

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
[Crossref]

Park, S.

S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
[Crossref]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentxepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[Crossref]

Peng, M.

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4: Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4: Eu,” J. Lumin. 127, 735–740 (2007).
[Crossref]

Qi, L.

H. Gu, L. Qi, and L. Wan, “Broadly tunable yellow-green laser using color centers in a LiF crystal at room temperature,” Appl. Phys. Lett. 52, 1845–1846 (1988).
[Crossref]

Qin, W.

S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
[Crossref]

Qiu, J.

Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
[Crossref]

Q. Jiao, Z. Song, Z. Yang, X. Yu, and J. Qiu, “Sm3+ photoreduction in BaCl2 nanophases precipitated fluoroaluminate glasses under femtosecond laser irradiation,” Opt. Lett. 36, 3091–3093 (2011).
[Crossref]

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80, 2263–2265 (2002).
[Crossref]

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79, 3567–3569 (2001).
[Crossref]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74, 10–12 (1999).
[Crossref]

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass,” Solid State Commun. 113, 341–344 (1999).
[Crossref]

J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse-induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24, 786–788 (1999).
[Crossref]

J. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71, 759–761 (1997).
[Crossref]

Rentxepis, P. M.

D. A. Parthenopoulos and P. M. Rentxepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[Crossref]

Rohling, J. H.

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

Ryan, M.

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
[Crossref]

Sakaguchi, S.

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80, 2263–2265 (2002).
[Crossref]

Sampaio, J. A.

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

Schweizer, S.

M. C. Wiegand, W. Sievers, J. K. N. Lindner, T. Tröster, and S. Schweizer, “Photoluminescence properties of Sm2+-doped BaBr2 under hydrostatic pressure,” J. Lumin. 131, 2400–2403 (2011).
[Crossref]

Sen, R.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapuma, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22, 745–752 (2012).
[Crossref]

Seo, H. J.

D. Wei, B. Yuan, Y. Huang, T. Tsubio, and H. J. Seo, “Influence of crystallization on the conversion of Sm3+ → Sm2+ in SrO-Bi2O3–K2O-B2O3 glass-ceramics,” J. Am. Ceram. Soc. 96, 2167–2171 (2013).
[Crossref]

Shimizugawa, Y.

J. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71, 759–761 (1997).
[Crossref]

Si, J.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79, 3567–3569 (2001).
[Crossref]

Sievers, W.

M. C. Wiegand, W. Sievers, J. K. N. Lindner, T. Tröster, and S. Schweizer, “Photoluminescence properties of Sm2+-doped BaBr2 under hydrostatic pressure,” J. Lumin. 131, 2400–2403 (2011).
[Crossref]

Song, Z.

Sontakke, A. D.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapuma, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22, 745–752 (2012).
[Crossref]

Su, M.

W. Chen and M. Su, “Stimulated luminescence and photo-gated hole burning in BaFCl0.8Br0.2:Sm2+, Sm3+ phosphors,” J. Phys. Chem. Solids 60, 371–378 (1999).
[Crossref]

Sun, Z.

Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
[Crossref]

S. Zhang, H. Zhang, T. Jia, Z. Wang, and Z. Sun, “Coherent phase control of (2+1) resonantly enhanced multiphoton ionization photoelectron spectroscopy,” J. Phys. B 43, 135401 (2010).
[Crossref]

Suzuki, T.

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass,” Solid State Commun. 113, 341–344 (1999).
[Crossref]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74, 10–12 (1999).
[Crossref]

Tonchev, D.

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
[Crossref]

Trinh, M. T.

S. Lee, M. T. Trinh, J. R. Nam, K. S. Lim, M. Lee, and E. Kim, “Laser-induced defect centers and valence state change of Mn ions in sodium borate glasses,” J. Lumin. 122, 142–145 (2007).
[Crossref]

K. S. Lim, S. Lee, M. T. Trinh, S. H. Kim, M. Lee, D. S. Hamilton, and G. N. Gibson, “Femtosecond laser-induced reduction in Eu-doped sodium borate glasses,” J. Lumin. 122, 14–16 (2007).
[Crossref]

Tröster, T.

M. C. Wiegand, W. Sievers, J. K. N. Lindner, T. Tröster, and S. Schweizer, “Photoluminescence properties of Sm2+-doped BaBr2 under hydrostatic pressure,” J. Lumin. 131, 2400–2403 (2011).
[Crossref]

Tsubio, T.

D. Wei, B. Yuan, Y. Huang, T. Tsubio, and H. J. Seo, “Influence of crystallization on the conversion of Sm3+ → Sm2+ in SrO-Bi2O3–K2O-B2O3 glass-ceramics,” J. Am. Ceram. Soc. 96, 2167–2171 (2013).
[Crossref]

Varoy, C. R.

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
[Crossref]

von Seggern, H.

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
[Crossref]

Wan, L.

H. Gu, L. Qi, and L. Wan, “Broadly tunable yellow-green laser using color centers in a LiF crystal at room temperature,” Appl. Phys. Lett. 52, 1845–1846 (1988).
[Crossref]

Wang, Z.

S. Zhang, H. Zhang, T. Jia, Z. Wang, and Z. Sun, “Coherent phase control of (2+1) resonantly enhanced multiphoton ionization photoelectron spectroscopy,” J. Phys. B 43, 135401 (2010).
[Crossref]

Wei, D.

D. Wei, B. Yuan, Y. Huang, T. Tsubio, and H. J. Seo, “Influence of crystallization on the conversion of Sm3+ → Sm2+ in SrO-Bi2O3–K2O-B2O3 glass-ceramics,” J. Am. Ceram. Soc. 96, 2167–2171 (2013).
[Crossref]

Wiegand, M. C.

M. C. Wiegand, W. Sievers, J. K. N. Lindner, T. Tröster, and S. Schweizer, “Photoluminescence properties of Sm2+-doped BaBr2 under hydrostatic pressure,” J. Lumin. 131, 2400–2403 (2011).
[Crossref]

Xu, C.

Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
[Crossref]

Yang, Z.

Yao, Y.

Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
[Crossref]

Yu, X.

Yuan, B.

D. Wei, B. Yuan, Y. Huang, T. Tsubio, and H. J. Seo, “Influence of crystallization on the conversion of Sm3+ → Sm2+ in SrO-Bi2O3–K2O-B2O3 glass-ceramics,” J. Am. Ceram. Soc. 96, 2167–2171 (2013).
[Crossref]

Zhang, H.

S. Zhang, H. Zhang, T. Jia, Z. Wang, and Z. Sun, “Coherent phase control of (2+1) resonantly enhanced multiphoton ionization photoelectron spectroscopy,” J. Phys. B 43, 135401 (2010).
[Crossref]

Zhang, S.

Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
[Crossref]

S. Zhang, H. Zhang, T. Jia, Z. Wang, and Z. Sun, “Coherent phase control of (2+1) resonantly enhanced multiphoton ionization photoelectron spectroscopy,” J. Phys. B 43, 135401 (2010).
[Crossref]

Zheng, Y.

Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
[Crossref]

Zhu, C.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79, 3567–3569 (2001).
[Crossref]

Appl. Phys. Lett. (5)

K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80, 2263–2265 (2002).
[Crossref]

H. Gu, L. Qi, and L. Wan, “Broadly tunable yellow-green laser using color centers in a LiF crystal at room temperature,” Appl. Phys. Lett. 52, 1845–1846 (1988).
[Crossref]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74, 10–12 (1999).
[Crossref]

J. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71, 759–761 (1997).
[Crossref]

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79, 3567–3569 (2001).
[Crossref]

Europhys. Lett. (1)

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569–574 (1991).
[Crossref]

J. Am. Ceram. Soc. (1)

D. Wei, B. Yuan, Y. Huang, T. Tsubio, and H. J. Seo, “Influence of crystallization on the conversion of Sm3+ → Sm2+ in SrO-Bi2O3–K2O-B2O3 glass-ceramics,” J. Am. Ceram. Soc. 96, 2167–2171 (2013).
[Crossref]

J. Fluoresc. (1)

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapuma, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22, 745–752 (2012).
[Crossref]

J. Lumin. (4)

S. Lee, M. T. Trinh, J. R. Nam, K. S. Lim, M. Lee, and E. Kim, “Laser-induced defect centers and valence state change of Mn ions in sodium borate glasses,” J. Lumin. 122, 142–145 (2007).
[Crossref]

K. S. Lim, S. Lee, M. T. Trinh, S. H. Kim, M. Lee, D. S. Hamilton, and G. N. Gibson, “Femtosecond laser-induced reduction in Eu-doped sodium borate glasses,” J. Lumin. 122, 14–16 (2007).
[Crossref]

M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4: Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4: Eu,” J. Lumin. 127, 735–740 (2007).
[Crossref]

M. C. Wiegand, W. Sievers, J. K. N. Lindner, T. Tröster, and S. Schweizer, “Photoluminescence properties of Sm2+-doped BaBr2 under hydrostatic pressure,” J. Lumin. 131, 2400–2403 (2011).
[Crossref]

J. Phys. B (1)

S. Zhang, H. Zhang, T. Jia, Z. Wang, and Z. Sun, “Coherent phase control of (2+1) resonantly enhanced multiphoton ionization photoelectron spectroscopy,” J. Phys. B 43, 135401 (2010).
[Crossref]

J. Phys. Chem. Solids (1)

W. Chen and M. Su, “Stimulated luminescence and photo-gated hole burning in BaFCl0.8Br0.2:Sm2+, Sm3+ phosphors,” J. Phys. Chem. Solids 60, 371–378 (1999).
[Crossref]

J. Phys. Condens. Matter (2)

S. Park, Y. Chung, W. Qin, H. Cho, E. Cho, K. Jang, S. Kim, Y. Lee, and C. Kim, “The influence of metal aluminium on the reduction of the Sm3+ doped in aluminosilicate glass films,” J. Phys. Condens. Matter 16, 2543–2550 (2004).
[Crossref]

J. A. Sampaio, M. C. Filadelpho, A. A. Andrade, J. H. Rohling, A. N. Medina, A. C. Bento, L. M. daSilva, F. C. G. Gandra, L. A. O. Nunes, and M. L. Baesso, “Study on the observation of Eu2+ and Eu3+ valence states in low silica calcium aluminosilicate glasses,” J. Phys. Condens. Matter 22, 055601 (2010).
[Crossref]

Mater. Res. Bull. (1)

E. Malchukova and B. Boizot, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses under ionizing radiation,” Mater. Res. Bull. 45, 1299–1303 (2010).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 31, 1459–1466 (2009).
[Crossref]

Phys. Rep. (1)

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
[Crossref]

Phys. Rev. B (1)

G. Baldacchini, M. Cremona, G. d’Auria, R. M. Montereali, and V. Kalinov, “Radiative and nonradiative processes in the optical cycle of the F3+ center in LiF,” Phys. Rev. B 54, 17508–17514 (1996).
[Crossref]

RSC Adv. (1)

Y. Zheng, W. Cheng, Y. Yao, C. Xu, D. Feng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, “Observation of up-conversion luminescence polarization control in Sm3+-doped glass under an intermediate femtosecond laser field,” RSC Adv. 7, 13444–13450 (2017).
[Crossref]

Science (1)

D. A. Parthenopoulos and P. M. Rentxepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[Crossref]

Solid State Commun. (1)

J. Qiu, K. Miura, K. Nouchi, T. Suzuki, Y. Kondo, T. Mitsuyu, and K. Hirao, “Valence manipulation by lasers of samarium ion in micrometer-scale dimensions inside transparent glass,” Solid State Commun. 113, 341–344 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental arrangement for valence state manipulation in Sm3+-doped sodium aluminoborate glass using a femtosecond laser pulse shaping method. C1 and C2 stand for two cylindrical mirrors, M1 and M2 are two circular mirrors, G1 and G2 are two gratings, and L1 and L2 are two focusing lenses. Here, a continuous wave (CW) laser with a wavelength of 532 nm is used to detect the valence state change of Sm3+ ions. The inset shows a picture of the glass sample after the femtosecond laser irradiation.
Fig. 2.
Fig. 2. (a) Femtosecond laser spectrum using π phase step modulation (dark cyan dashed line) and (b) the shaped femtosecond laser pulse shapes with π phase step positions of 796 (orange line), 800 (pink line), and 804 nm (dark cyan line), together with the transform-limited (TL) laser pulse (gray line).
Fig. 3.
Fig. 3. (a) Luminescence spectra before (dark cyan line) and after (orange line) the shaped femtosecond laser irradiation and (b) the difference between the two luminescence spectra.
Fig. 4.
Fig. 4. (a) Absorption spectra of the glass sample before and after the femtosecond laser irradiation and (b) the difference between the two absorption spectra.
Fig. 5.
Fig. 5. Luminescence intensities at a wavelength of (a) 686 and (b) 600 nm with an increasing laser shot number for π phase step positions of 750 (black squares), 790 (red circles), 796 (cyan left-pointing triangles), 800 (green upward-pointing triangles), 804 (magenta right-pointing triangles), and 810 nm (blue downward-pointing triangles). Here, the experimental data in (a) and (b) are fitted by the exponential and sigmoidal functions, respectively.
Fig. 6.
Fig. 6. Luminescence intensities at a wavelength of 686 nm with an increasing laser shot number for π phase step positions of 750 (black squares) and 800 nm (red circles) under the same peak laser intensity of 1.3×1013  W/cm2.
Fig. 7.
Fig. 7. (a) Schematic of electron–hole generation in the glass sample by a (2+1) resonance-mediated three-photon absorption in Sm3+ ions, (b) the theoretical calculation of three-photon transition probability by π phase step modulation, together with the corresponding luminescence intensity modulation shown in Fig. 5(a) (circles).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P(2+1)+dωfA(ωf)|A(2+1)(on-res)+A(2+1)(near-res)|2,
A(2+1)(on-res)iπ+dωiA(ωi)A(2)(ωi)E(ωfωi)
A(2+1)(near-res)+dΔ1ΔA(2)(ωiΔ)E(ωfωi+Δ),
A(2)(Ω)=+dωE(ω)E(Ωω),

Metrics