Abstract

A high-power all-fiber supercontinuum (SC) laser source based on germania-core fiber (GCF) was presented. The lesser absorption loss of GCF than silica fiber beyond 2.0 μm makes GCF more suitable for extending the SC spectrum to the long wavelength side. In this work, the GCF-based SC laser had a maximum power of 30.1 W, together with a 10 dB spectral bandwidth of >1000  nm spanning from 1.95 to 3.0 μm. To the best of our knowledge, this is the highest output power level ever reported for a GCF-based SC laser as well as a 2–3 μm SC laser.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser

Linyong Yang, Bin Zhang, Ke Yin, Jinmei Yao, Guangchen Liu, and Jing Hou
Opt. Express 24(12) 12600-12606 (2016)

Spectrally flat supercontinuum generation in a holmium-doped ZBLAN fiber with record power ratio beyond 3  μm

Linyong Yang, Bin Zhang, Ke Yin, Tianyi Wu, Yijun Zhao, and Jing Hou
Photon. Res. 6(5) 417-421 (2018)

High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system

Weiqiang Yang, Bin Zhang, Ke Yin, Xuanfeng Zhou, and Jing Hou
Opt. Express 21(17) 19732-19742 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, and J. Hou, “Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers,” Opt. Lett. 41, 946–949 (2016).
    [Crossref]
  2. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
    [Crossref]
  3. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
    [Crossref]
  4. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb–Se fiber,” Opt. Lett. 41, 3201–3204 (2016).
    [Crossref]
  5. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
    [Crossref]
  6. K. Yin, B. Zhang, W. Yang, H. Chen, and J. Hou, “Over an octave cascaded Raman scattering in short highly germanium-doped silica fiber,” Opt. Express 21, 15987–15997 (2013).
    [Crossref]
  7. E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. Sel. Top. Quantum Electron 20, 643–650 (2014).
    [Crossref]
  8. V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2  μm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12, 065101 (2015).
    [Crossref]
  9. E. Anashkina, A. Andrianov, M. Y. Koptev, V. Mashinsky, S. Muravyev, and A. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6–2.5  μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20, 27102–27107 (2012).
    [Crossref]
  10. X. Dong, L. Wang, X. Li, P. P. Shum, H. Su, and Q. Wang, “Raman lasers with germania-core and silica-cladding fibers,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2015), paper NM3A.2.
  11. V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum sources in 1.7–3.2  μm range,” Proc. SPIE 8961, 89611C (2014).
    [Crossref]
  12. M. Zhang, E. Kelleher, T. Runcorn, V. Mashinsky, O. Medvedkov, E. Dianov, D. Popa, S. Milana, T. Hasan, and Z. Sun, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013).
    [Crossref]
  13. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20, 2279–2281 (1995).
    [Crossref]
  14. L. Yang, B. Zhang, K. Yin, J. Yao, G. Liu, and J. Hou, “0.6–3.2  μm supercontinuum generation in a step-index germania-core fiber using a 4.4  kW peak-power pump laser,” Opt. Express 24, 12600–12606 (2016).
    [Crossref]
  15. K. Yin, B. Zhang, J. Yao, L. Yang, G. Liu, and J. Hou, “1.9–3.6  μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio,” Opt. Lett. 41, 5067–5070 (2016).
    [Crossref]
  16. D. Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, “Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Opt. Express 24, 26667–26677 (2016).
    [Crossref]
  17. J. Lægsgaard and H. Tu, “How long wavelengths can one extract from silica-core fibers?” Opt. Lett. 38, 4518–4521 (2013).
    [Crossref]

2016 (5)

2015 (2)

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2  μm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12, 065101 (2015).
[Crossref]

2014 (3)

V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum sources in 1.7–3.2  μm range,” Proc. SPIE 8961, 89611C (2014).
[Crossref]

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. Sel. Top. Quantum Electron 20, 643–650 (2014).
[Crossref]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
[Crossref]

2013 (3)

2012 (1)

1995 (1)

1993 (1)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Anashkina, E.

Anashkina, E. A.

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. Sel. Top. Quantum Electron 20, 643–650 (2014).
[Crossref]

Andrianov, A.

Andrianov, A. V.

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. Sel. Top. Quantum Electron 20, 643–650 (2014).
[Crossref]

Bang, O.

Bednyakova, A. E.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2  μm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12, 065101 (2015).
[Crossref]

Chen, F.

Chen, H.

Chen, S.

Choi, D.-Y.

Dai, S.

Dianov, E.

Dong, X.

X. Dong, L. Wang, X. Li, P. P. Shum, H. Su, and Q. Wang, “Raman lasers with germania-core and silica-cladding fibers,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2015), paper NM3A.2.

Dvoyrin, V. V.

V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum sources in 1.7–3.2  μm range,” Proc. SPIE 8961, 89611C (2014).
[Crossref]

Fedoruk, M. P.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2  μm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12, 065101 (2015).
[Crossref]

Gai, X.

Guo, W.

Hasan, T.

Ho, D.

Hou, J.

Huang, Y.

Izumitani, T.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Jain, D.

Kamynin, V. A.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2  μm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12, 065101 (2015).
[Crossref]

Kato, T.

Kelleher, E.

Kim, A.

Kim, A. V.

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. Sel. Top. Quantum Electron 20, 643–650 (2014).
[Crossref]

Koptev, M. Y.

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. Sel. Top. Quantum Electron 20, 643–650 (2014).
[Crossref]

E. Anashkina, A. Andrianov, M. Y. Koptev, V. Mashinsky, S. Muravyev, and A. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6–2.5  μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20, 27102–27107 (2012).
[Crossref]

Kurkov, A. S.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2  μm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12, 065101 (2015).
[Crossref]

Lægsgaard, J.

Li, X.

X. Dong, L. Wang, X. Li, P. P. Shum, H. Su, and Q. Wang, “Raman lasers with germania-core and silica-cladding fibers,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2015), paper NM3A.2.

Liu, G.

Liu, Z.

Luo, B.

Luther-Davies, B.

Madden, S.

Mashinsky, V.

Medvedkov, O.

Milana, S.

Moselund, P. M.

Muravyev, S.

Muravyev, S. V.

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. Sel. Top. Quantum Electron 20, 643–650 (2014).
[Crossref]

Nishchev, K. N.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2  μm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12, 065101 (2015).
[Crossref]

Nishimura, M.

Ou, H.

Popa, D.

Qi, S.

Runcorn, T.

Shum, P. P.

X. Dong, L. Wang, X. Li, P. P. Shum, H. Su, and Q. Wang, “Raman lasers with germania-core and silica-cladding fibers,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2015), paper NM3A.2.

Sidharthan, R.

Sorokina, I. T.

V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum sources in 1.7–3.2  μm range,” Proc. SPIE 8961, 89611C (2014).
[Crossref]

Su, H.

X. Dong, L. Wang, X. Li, P. P. Shum, H. Su, and Q. Wang, “Raman lasers with germania-core and silica-cladding fibers,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2015), paper NM3A.2.

Suetsugu, Y.

Sun, Z.

Tu, H.

Volkov, I. A.

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2  μm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12, 065101 (2015).
[Crossref]

Wang, L.

X. Dong, L. Wang, X. Li, P. P. Shum, H. Su, and Q. Wang, “Raman lasers with germania-core and silica-cladding fibers,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2015), paper NM3A.2.

Wang, Q.

X. Dong, L. Wang, X. Li, P. P. Shum, H. Su, and Q. Wang, “Raman lasers with germania-core and silica-cladding fibers,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2015), paper NM3A.2.

Wang, R.

Wang, X.

Xu, H.

Xue, G.

Yang, L.

Yang, W.

Yang, Z.

Yao, J.

Yin, K.

Yoo, S.

Yu, Y.

Zhai, C.

Zhang, B.

Zhang, M.

Zhang, P.

Zou, X.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Towards mid-infrared supercontinuum generation with germano-silicate fibers,” IEEE J. Sel. Top. Quantum Electron 20, 643–650 (2014).
[Crossref]

J. Non-Cryst. Solids (1)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Laser Phys. Lett. (1)

V. A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2  μm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett. 12, 065101 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

J. Lægsgaard and H. Tu, “How long wavelengths can one extract from silica-core fibers?” Opt. Lett. 38, 4518–4521 (2013).
[Crossref]

K. Yin, B. Zhang, J. Yao, L. Yang, G. Liu, and J. Hou, “1.9–3.6  μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio,” Opt. Lett. 41, 5067–5070 (2016).
[Crossref]

T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20, 2279–2281 (1995).
[Crossref]

K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, and J. Hou, “Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers,” Opt. Lett. 41, 946–949 (2016).
[Crossref]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb–Se fiber,” Opt. Lett. 41, 3201–3204 (2016).
[Crossref]

Proc. SPIE (1)

V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum sources in 1.7–3.2  μm range,” Proc. SPIE 8961, 89611C (2014).
[Crossref]

Other (1)

X. Dong, L. Wang, X. Li, P. P. Shum, H. Su, and Q. Wang, “Raman lasers with germania-core and silica-cladding fibers,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2015), paper NM3A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup. DCF, dispersion compensated fiber; TDFL, thulium-doped fiber laser; TDFA, thulium-doped fiber amplifier; SMF, single-mode fiber; GCF, germania core fiber.
Fig. 2.
Fig. 2. Characteristics of seed pulses. (a) Measured spectra of mode-locked output and after DCF. (b) Autocorrelation trace. (c) Temporal profile after DCF.
Fig. 3.
Fig. 3. Dispersion and loss profiles of GCF and silica. Inset shows cross profile of GCF. ZDW, zero dispersion wavelength.
Fig. 4.
Fig. 4. Spectral comparison at different positions.
Fig. 5.
Fig. 5. Spectral evolutions of SC laser measured after GCF.
Fig. 6.
Fig. 6. Power evolution of SC laser at different positions with respect to pump power of TDFA2.

Tables (1)

Tables Icon

Table 1. Summary of Representative Germania-Fiber-Based SC Works

Metrics