Abstract

In this paper, a substrate removing technique in a silicon Mach–Zehnder modulator (MZM) is proposed and demonstrated to improve modulation bandwidth. Based on the novel and optimized traveling wave electrodes, the electrode transmission loss is reduced, and the electro-optical group index and 50  Ω impedance matching are improved, simultaneously. A 2 mm long substrate removed silicon MZM with the measured and extrapolated 3 dB electro-optical bandwidth of >50  GHz and 60 GHz at the 8  V bias voltage is designed and fabricated. Open optical eye diagrams of up to 90  GBaud/s NRZ and 56  GBaud/s four-level pulse amplitude modulation (PAM-4) are experimentally obtained without additional optical or digital compensations. Based on this silicon MZM, the performance in a short-reach transmission system is further investigated. Single-lane 112  Gb/s and 128  Gb/s transmissions over different distances of 1 km, 2 km, and 10 km are experimentally achieved based on this high-speed silicon MZM.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator

Alireza Samani, David Patel, Mathieu Chagnon, Eslam El-Fiky, Rui Li, Maxime Jacques, Nicolás Abadía, Venkat Veerasubramanian, and David V. Plant
Opt. Express 25(12) 13252-13262 (2017)

Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission

Rui Li, David Patel, Eslam El-Fiky, Alireza Samani, Zhenping Xing, Yun Wang, and David V. Plant
Opt. Express 26(5) 5395-5407 (2018)

200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications

Eslam El-Fiky, Mohamed Osman, Mohammed Sowailem, Alireza Samani, David Patel, Rui Li, Md. G. Saber, Yun Wang, Nicolas Abadia, Yannick D’Mello, and David V. Plant
Opt. Express 25(24) 30336-30348 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14, 3–9 (2010).
    [Crossref]
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  3. IEEE, “200 Gb/s and 400 Gb/s ethernet task force,” IEEE P802.3bs, 2016, available at http://www.ieee802.org/3/bs/ .
  4. S. Kanazawa, T. Fujisawa, K. Takahata, H. Sanjoh, R. Iga, Y. Ueda, W. Kobayashi, and H. Ishii, “400-Gb/s operation of flip-chip interconnection EADFB laser array module,” in Optical Fiber Communications Conference (2015), paper Tu3I.1.
  5. P. Groumas, V. Katopodis, J. H. Choi, H.-G. Bach, J.-Y. Dupuy, A. Konczykowska, Z. Zhang, P. Harati, E. Miller, A. Beretta, L. Gounaridis, F. Jorge, V. Nodjiadjim, A. Dede, A. Vannucci, G. Cangini, R. Dinu, N. Keil, N. Grote, H. Avramopoulos, and C. Kouloumentas, “Multi-100  GbE and 400  GbE interfaces for intra-data center networks based on arrayed transceivers with serial 100  Gb/s operation,” J. Lightwave Technol. 33, 943–954 (2015).
    [Crossref]
  6. C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170  GHz bandwidth demonstrated at 100  GBd NRZ,” Opt. Express 25, 1762–1768 (2017).
    [Crossref]
  7. H. Zwickel, S. Wolf, C. Kieninger, Y. Ku-Tuvantavida, M. Lauermann, T. De keulenaer, A. Vyncke, R. Vaernewyck, J. Luo, A. K.-Y. Jen, W. Freude, J. Bauwelinck, S. Randel, and C. Koos, “Silicon-organic hybrid (SOH) modulators for intensity-modulation/direct-detection links with line rates of up to 120  Gbit/s,” Opt. Express 25, 23784–23799 (2017).
    [Crossref]
  8. Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communications Conference (2016), paper Th5B.4.
  9. M. Streshinsky, A. Novack, R. Ding, Y. Liu, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Silicon parallel single mode 48 × 50  Gb/s modulator and photodetector array,” J. Lightwave Technol. 32, 4370–4377 (2014).
    [Crossref]
  10. G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56  Gb/s NRZ 2.2  km transmission over single mode fiber,” in 40th European Conference Optical Communication (ECOC), Cannes, France, September 2014, paper PD.2.4.
  11. D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41  GHz silicon photonic modulator,” Opt. Express 23, 14263–14287 (2015).
    [Crossref]
  12. X. Xiao, H. Xu, X. Y. Li, Z. Y. Li, T. Chu, Y. D. Yu, and J. Z. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).
    [Crossref]
  13. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
  14. R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32, 2240–2247 (2014).
    [Crossref]
  15. P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).
    [Crossref]
  16. M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. V. Plant, “Experimental study of 112  Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3  μm,” Opt. Express 22, 21018–21036 (2014).
    [Crossref]
  17. A. Samani, D. Patel, M. Chagnon, E. Elfiky, R. Li, M. Jacques, N. Abadia, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128  Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25, 13252–13262 (2017).
    [Crossref]
  18. A. R. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  19. R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27, 654–667 (1991).
    [Crossref]
  20. K. Ogawa, K. Goi, Y. T. Tan, T.-Y. Liow, X. Tu, Q. Fang, G.-Q. Lo, and D.-L. Kwong, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10  dB at 10.0–12.5  Gbps,” Opt. Express 20, 6163–6169 (2012).
    [Crossref]
  21. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drove push-pull silicon Mach-Zehnder modulators,” Opt. Express 19, B26–B31 (2011).
    [Crossref]
  22. Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
    [Crossref]
  23. D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, P. Crozat, F. Boeuf, and L. Vivien, “A 40  Gbit/s optical link on a 300-mm silicon platform,” Opt. Express 22, 6674–6679 (2014).
    [Crossref]
  24. L. Chen, C. R. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25  Gbps and 100-GHz spacing,” Opt. Express 19, B946–B951 (2011).
    [Crossref]
  25. H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightwave Technol. 30, 1602–1609 (2012).
    [Crossref]
  26. G. Ghione, Semiconductor Devices for High-speed Optoelectronics (Cambridge University, 2009), Chap. 6.
  27. J. Lee, N. Kaneda, T. Pfau, A. Konczykowska, F. Jorge, J. Y. Dupuy, and Y. K. Chen, “Serial 103.125-Gb/s transmission over 1  km SSMF for low-cost, short-reach optical interconnects,” in Optical Fiber Communications Conference (2014), paper Th2A.4.

2017 (3)

2015 (2)

2014 (6)

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32, 2240–2247 (2014).
[Crossref]

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).
[Crossref]

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. V. Plant, “Experimental study of 112  Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3  μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref]

M. Streshinsky, A. Novack, R. Ding, Y. Liu, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Silicon parallel single mode 48 × 50  Gb/s modulator and photodetector array,” J. Lightwave Technol. 32, 4370–4377 (2014).
[Crossref]

Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
[Crossref]

D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, P. Crozat, F. Boeuf, and L. Vivien, “A 40  Gbit/s optical link on a 300-mm silicon platform,” Opt. Express 22, 6674–6679 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (2)

2010 (2)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14, 3–9 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

1991 (1)

R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27, 654–667 (1991).
[Crossref]

1987 (1)

A. R. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Abadia, N.

Aroca, R.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).
[Crossref]

Avramopoulos, H.

Bach, H.-G.

Baehr-Jones, T.

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32, 2240–2247 (2014).
[Crossref]

M. Streshinsky, A. Novack, R. Ding, Y. Liu, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Silicon parallel single mode 48 × 50  Gb/s modulator and photodetector array,” J. Lightwave Technol. 32, 4370–4377 (2014).
[Crossref]

Baeuerle, B.

Baudot, C.

Bauwelinck, J.

Bennett, B. R.

A. R. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Beretta, A.

Bergman, K.

Boeuf, F.

Bogaerts, W.

Brindel, P.

Buhl, L. L.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).
[Crossref]

Cangini, G.

Carey, G.

Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communications Conference (2016), paper Th5B.4.

Chagnon, M.

Chandrasekhar, S.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).
[Crossref]

Chen, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56  Gb/s NRZ 2.2  km transmission over single mode fiber,” in 40th European Conference Optical Communication (ECOC), Cannes, France, September 2014, paper PD.2.4.

Chen, L.

Chen, Y. K.

J. Lee, N. Kaneda, T. Pfau, A. Konczykowska, F. Jorge, J. Y. Dupuy, and Y. K. Chen, “Serial 103.125-Gb/s transmission over 1  km SSMF for low-cost, short-reach optical interconnects,” in Optical Fiber Communications Conference (2014), paper Th2A.4.

Chen, Y.-K.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).
[Crossref]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drove push-pull silicon Mach-Zehnder modulators,” Opt. Express 19, B26–B31 (2011).
[Crossref]

L. Chen, C. R. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25  Gbps and 100-GHz spacing,” Opt. Express 19, B946–B951 (2011).
[Crossref]

Choi, J. H.

Chrostowski, L.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

Chu, T.

Crozat, P.

Daghighian, H.

Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communications Conference (2016), paper Th5B.4.

Dalton, L. R.

De keulenaer, T.

Dede, A.

Denoyer, G.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56  Gb/s NRZ 2.2  km transmission over single mode fiber,” in 40th European Conference Optical Communication (ECOC), Cannes, France, September 2014, paper PD.2.4.

Ding, R.

M. Streshinsky, A. Novack, R. Ding, Y. Liu, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Silicon parallel single mode 48 × 50  Gb/s modulator and photodetector array,” J. Lightwave Technol. 32, 4370–4377 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32, 2240–2247 (2014).
[Crossref]

Dinu, R.

Doerr, C. R.

Dong, P.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).
[Crossref]

L. Chen, C. R. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25  Gbps and 100-GHz spacing,” Opt. Express 19, B946–B951 (2011).
[Crossref]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drove push-pull silicon Mach-Zehnder modulators,” Opt. Express 19, B26–B31 (2011).
[Crossref]

Dupuy, J. Y.

J. Lee, N. Kaneda, T. Pfau, A. Konczykowska, F. Jorge, J. Y. Dupuy, and Y. K. Chen, “Serial 103.125-Gb/s transmission over 1  km SSMF for low-cost, short-reach optical interconnects,” in Optical Fiber Communications Conference (2014), paper Th2A.4.

Dupuy, J.-Y.

Elder, D. L.

Elfiky, E.

Fang, Q.

Fédéli, J.-M.

Fedoryshyn, Y.

Freude, W.

Fujisawa, T.

S. Kanazawa, T. Fujisawa, K. Takahata, H. Sanjoh, R. Iga, Y. Ueda, W. Kobayashi, and H. Ishii, “400-Gb/s operation of flip-chip interconnection EADFB laser array module,” in Optical Fiber Communications Conference (2015), paper Tu3I.1.

Gagné, J.-F.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Ghione, G.

G. Ghione, Semiconductor Devices for High-speed Optoelectronics (Cambridge University, 2009), Chap. 6.

Ghosh, S.

Goi, K.

Gounaridis, L.

Grote, N.

Groumas, P.

Haffner, C.

Harati, P.

Hartmann, J.-M.

Heni, W.

Hettrich, H.

Hillerkuss, D.

Hochberg, M.

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32, 2240–2247 (2014).
[Crossref]

M. Streshinsky, A. Novack, R. Ding, Y. Liu, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Silicon parallel single mode 48 × 50  Gb/s modulator and photodetector array,” J. Lightwave Technol. 32, 4370–4377 (2014).
[Crossref]

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

Hoessbacher, C.

Iga, R.

S. Kanazawa, T. Fujisawa, K. Takahata, H. Sanjoh, R. Iga, Y. Ueda, W. Kobayashi, and H. Ishii, “400-Gb/s operation of flip-chip interconnection EADFB laser array module,” in Optical Fiber Communications Conference (2015), paper Tu3I.1.

Ishii, H.

S. Kanazawa, T. Fujisawa, K. Takahata, H. Sanjoh, R. Iga, Y. Ueda, W. Kobayashi, and H. Ishii, “400-Gb/s operation of flip-chip interconnection EADFB laser array module,” in Optical Fiber Communications Conference (2015), paper Tu3I.1.

Jacques, M.

Jen, A. K.-Y.

Jorge, F.

Josten, A.

Kaiser, C.

Kanazawa, S.

S. Kanazawa, T. Fujisawa, K. Takahata, H. Sanjoh, R. Iga, Y. Ueda, W. Kobayashi, and H. Ishii, “400-Gb/s operation of flip-chip interconnection EADFB laser array module,” in Optical Fiber Communications Conference (2015), paper Tu3I.1.

Kaneda, N.

J. Lee, N. Kaneda, T. Pfau, A. Konczykowska, F. Jorge, J. Y. Dupuy, and Y. K. Chen, “Serial 103.125-Gb/s transmission over 1  km SSMF for low-cost, short-reach optical interconnects,” in Optical Fiber Communications Conference (2014), paper Th2A.4.

Katopodis, V.

Keil, N.

Kieninger, C.

Kobayashi, W.

S. Kanazawa, T. Fujisawa, K. Takahata, H. Sanjoh, R. Iga, Y. Ueda, W. Kobayashi, and H. Ishii, “400-Gb/s operation of flip-chip interconnection EADFB laser array module,” in Optical Fiber Communications Conference (2015), paper Tu3I.1.

Konczykowska, A.

Koos, C.

Kouloumentas, C.

Ku-Tuvantavida, Y.

Kwong, D.-L.

Latrasse, C.

Lauermann, M.

Lee, J.

J. Lee, N. Kaneda, T. Pfau, A. Konczykowska, F. Jorge, J. Y. Dupuy, and Y. K. Chen, “Serial 103.125-Gb/s transmission over 1  km SSMF for low-cost, short-reach optical interconnects,” in Optical Fiber Communications Conference (2014), paper Th2A.4.

Lessard, S.

Leuthold, J.

Li, Q.

Li, R.

Li, X. Y.

Li, Z. Y.

Lim, A. E.-J.

M. Streshinsky, A. Novack, R. Ding, Y. Liu, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Silicon parallel single mode 48 × 50  Gb/s modulator and photodetector array,” J. Lightwave Technol. 32, 4370–4377 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32, 2240–2247 (2014).
[Crossref]

Ling, W. A.

Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communications Conference (2016), paper Th5B.4.

Liow, T.-Y.

Liu, X.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).
[Crossref]

Liu, Y.

M. Streshinsky, A. Novack, R. Ding, Y. Liu, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Silicon parallel single mode 48 × 50  Gb/s modulator and photodetector array,” J. Lightwave Technol. 32, 4370–4377 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32, 2240–2247 (2014).
[Crossref]

Lo, G.-Q.

Lo, P. G.-Q.

M. Streshinsky, A. Novack, R. Ding, Y. Liu, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Silicon parallel single mode 48 × 50  Gb/s modulator and photodetector array,” J. Lightwave Technol. 32, 4370–4377 (2014).
[Crossref]

Luo, J.

Ma, Y.

Marris-Morini, D.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Matsui, Y.

Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communications Conference (2016), paper Th5B.4.

Miller, E.

Möller, M.

Nodjiadjim, V.

Novack, A.

M. Streshinsky, A. Novack, R. Ding, Y. Liu, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Silicon parallel single mode 48 × 50  Gb/s modulator and photodetector array,” J. Lightwave Technol. 32, 4370–4377 (2014).
[Crossref]

Ogawa, K.

Olivier, S.

Osman, M.

Painchaud, Y.

Paquet, C.

Park, B.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56  Gb/s NRZ 2.2  km transmission over single mode fiber,” in 40th European Conference Optical Communication (ECOC), Cannes, France, September 2014, paper PD.2.4.

Patel, D.

Perez-Galacho, D.

Pfau, T.

J. Lee, N. Kaneda, T. Pfau, A. Konczykowska, F. Jorge, J. Y. Dupuy, and Y. K. Chen, “Serial 103.125-Gb/s transmission over 1  km SSMF for low-cost, short-reach optical interconnects,” in Optical Fiber Communications Conference (2014), paper Th2A.4.

Pham, T.

Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communications Conference (2016), paper Th5B.4.

Plant, D. V.

Poulin, M.

Randel, S.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Roxlo, C.

Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communications Conference (2016), paper Th5B.4.

Rusli, R.

Russo, R.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56  Gb/s NRZ 2.2  km transmission over single mode fiber,” in 40th European Conference Optical Communication (ECOC), Cannes, France, September 2014, paper PD.2.4.

Salamin, Y.

Samani, A.

Sanjoh, H.

S. Kanazawa, T. Fujisawa, K. Takahata, H. Sanjoh, R. Iga, Y. Ueda, W. Kobayashi, and H. Ishii, “400-Gb/s operation of flip-chip interconnection EADFB laser array module,” in Optical Fiber Communications Conference (2015), paper Tu3I.1.

Santipo, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56  Gb/s NRZ 2.2  km transmission over single mode fiber,” in 40th European Conference Optical Communication (ECOC), Cannes, France, September 2014, paper PD.2.4.

Schatz, R.

Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communications Conference (2016), paper Th5B.4.

Schmid, R.

Soref, A. R.

A. R. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Streshinsky, M.

M. Streshinsky, A. Novack, R. Ding, Y. Liu, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Silicon parallel single mode 48 × 50  Gb/s modulator and photodetector array,” J. Lightwave Technol. 32, 4370–4377 (2014).
[Crossref]

Sudo, T.

Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communications Conference (2016), paper Th5B.4.

Takahata, K.

S. Kanazawa, T. Fujisawa, K. Takahata, H. Sanjoh, R. Iga, Y. Ueda, W. Kobayashi, and H. Ishii, “400-Gb/s operation of flip-chip interconnection EADFB laser array module,” in Optical Fiber Communications Conference (2015), paper Tu3I.1.

Tan, Y. T.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Tkach, R. W.

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14, 3–9 (2010).
[Crossref]

Tu, X.

Ueda, Y.

S. Kanazawa, T. Fujisawa, K. Takahata, H. Sanjoh, R. Iga, Y. Ueda, W. Kobayashi, and H. Ishii, “400-Gb/s operation of flip-chip interconnection EADFB laser array module,” in Optical Fiber Communications Conference (2015), paper Tu3I.1.

Vaernewyck, R.

Vannucci, A.

Veerasubramanian, V.

Virot, L.

Vivien, L.

Vyncke, A.

Walker, R. G.

R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27, 654–667 (1991).
[Crossref]

Wolf, S.

Xiao, X.

Xu, H.

Yang, Y.

Yu, H.

Yu, J. Z.

Yu, M.

Yu, Y. D.

Zhang, Z.

Zhou, Y.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56  Gb/s NRZ 2.2  km transmission over single mode fiber,” in 40th European Conference Optical Communication (ECOC), Cannes, France, September 2014, paper PD.2.4.

Zwickel, H.

Bell Labs Tech. J. (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14, 3–9 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

A. R. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27, 654–667 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Opt. Express (11)

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. V. Plant, “Experimental study of 112  Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3  μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref]

Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
[Crossref]

X. Xiao, H. Xu, X. Y. Li, Z. Y. Li, T. Chu, Y. D. Yu, and J. Z. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).
[Crossref]

D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, P. Crozat, F. Boeuf, and L. Vivien, “A 40  Gbit/s optical link on a 300-mm silicon platform,” Opt. Express 22, 6674–6679 (2014).
[Crossref]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drove push-pull silicon Mach-Zehnder modulators,” Opt. Express 19, B26–B31 (2011).
[Crossref]

L. Chen, C. R. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25  Gbps and 100-GHz spacing,” Opt. Express 19, B946–B951 (2011).
[Crossref]

K. Ogawa, K. Goi, Y. T. Tan, T.-Y. Liow, X. Tu, Q. Fang, G.-Q. Lo, and D.-L. Kwong, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10  dB at 10.0–12.5  Gbps,” Opt. Express 20, 6163–6169 (2012).
[Crossref]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41  GHz silicon photonic modulator,” Opt. Express 23, 14263–14287 (2015).
[Crossref]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170  GHz bandwidth demonstrated at 100  GBd NRZ,” Opt. Express 25, 1762–1768 (2017).
[Crossref]

A. Samani, D. Patel, M. Chagnon, E. Elfiky, R. Li, M. Jacques, N. Abadia, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128  Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25, 13252–13262 (2017).
[Crossref]

H. Zwickel, S. Wolf, C. Kieninger, Y. Ku-Tuvantavida, M. Lauermann, T. De keulenaer, A. Vyncke, R. Vaernewyck, J. Luo, A. K.-Y. Jen, W. Freude, J. Bauwelinck, S. Randel, and C. Koos, “Silicon-organic hybrid (SOH) modulators for intensity-modulation/direct-detection links with line rates of up to 120  Gbit/s,” Opt. Express 25, 23784–23799 (2017).
[Crossref]

Other (7)

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56  Gb/s NRZ 2.2  km transmission over single mode fiber,” in 40th European Conference Optical Communication (ECOC), Cannes, France, September 2014, paper PD.2.4.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

IEEE, “200 Gb/s and 400 Gb/s ethernet task force,” IEEE P802.3bs, 2016, available at http://www.ieee802.org/3/bs/ .

S. Kanazawa, T. Fujisawa, K. Takahata, H. Sanjoh, R. Iga, Y. Ueda, W. Kobayashi, and H. Ishii, “400-Gb/s operation of flip-chip interconnection EADFB laser array module,” in Optical Fiber Communications Conference (2015), paper Tu3I.1.

Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communications Conference (2016), paper Th5B.4.

G. Ghione, Semiconductor Devices for High-speed Optoelectronics (Cambridge University, 2009), Chap. 6.

J. Lee, N. Kaneda, T. Pfau, A. Konczykowska, F. Jorge, J. Y. Dupuy, and Y. K. Chen, “Serial 103.125-Gb/s transmission over 1  km SSMF for low-cost, short-reach optical interconnects,” in Optical Fiber Communications Conference (2014), paper Th2A.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Diagram of the cross-sectional structure.
Fig. 2.
Fig. 2. Microwave electrical mode distribution of the TWMZM cross section (a) before and (b) after the silicon substrate is removed.
Fig. 3.
Fig. 3. Microwave attenuation based on finite element method (FEM) simulations on unloaded CPS transmission lines before and after substrate removing of the wafer used in our design.
Fig. 4.
Fig. 4. Simulated EO S21 before and after substrate removal of the wafer used in our design.
Fig. 5.
Fig. 5. Fabrication process of the substrate removed modulator based on IME’s silicon photonics platform.
Fig. 6.
Fig. 6. Micrograph of the fabricated substrate removed silicon modulator viewed from above and the enlarged picture of the (a) edge couple, (b) phase shifter, and (c) the electrode region.
Fig. 7.
Fig. 7. (a) Measured EE S21 of the substrate removed modulator under various bias voltages. (b) Microwave index of the modulator before and after the silicon substrate is removed, which is extracted from the tested EE S21 at 4  V bias voltage. (c) Electrode characteristic impedance of the modulator before and after the silicon substrate is removed, which is calculated from the tested EE S21 and S11 at 4  V bias voltage.
Fig. 8.
Fig. 8. Measured EO S21 response under various bias voltages after the silicon substrate is removed.
Fig. 9.
Fig. 9. Experimental setup for the substrate removed TWMZM OOK eye-diagram measurements.
Fig. 10.
Fig. 10. Optical eye diagrams at the different rates of 70  GBaud/s, 80  GBaud/s, and 90  GBaud/s under the driving voltage of 5 V Vpp without any pre-emphasis under bias voltage of 6  V. The extinction ratios are 3.6 dB, 2.7 dB, and 3.3 dB, respectively.
Fig. 11.
Fig. 11. Experimental setup for the substrate removed TWMZM PAM-4 eye-diagram measurements.
Fig. 12.
Fig. 12. Measured PAM-4 modulation optical eye diagrams at 28  GBaud/s, 50  GBaud/s, and 56  GBaud/s without any pre-emphasis under bias voltage of 6  V. The extinction ratios are 3.6 dB, 2.5 dB, and 2.7 dB, respectively.
Fig. 13.
Fig. 13. Experimental setup for the PAM-4 signal transmission based on the substrate removed silicon modulator even different distances.
Fig. 14.
Fig. 14. Measured curve of BER versus the received optical power for 56  GBaud/s (112  Gb/s) PAM-4 signal transmission under bias voltage of 6  V.
Fig. 15.
Fig. 15. Measured curve of BER versus the received optical power for 64  GBaud/s (128  Gb/s) PAM-4 signal transmission under bias voltage of 6  V.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

EOS21=10log|S21|22·|S21|·cos(βoptμ·l)+1(ln|S21|)2+(βoptμ·l)2,
βoptμ=ωmc(nμnopt),

Metrics