Abstract

Surface channel waveguides (WGs) were fabricated in a monoclinic Tm3+:KLu(WO4)2 crystal by femtosecond direct laser writing (fs-DLW). The WGs consisted of a half-ring cladding with diameters of 50 and 60 μm located just beneath the crystal surface. They were characterized by confocal laser microscopy and μ-Raman spectroscopy, indicating a reduced crystallinity and stress-induced birefringence of the WG cladding. In continuous-wave (CW) mode, under Ti:sapphire laser pumping at 802 nm, the maximum output power reached 171.1 mW at 1847.4 nm, corresponding to a slope efficiency η of 37.8% for the 60 μm diameter WG. The WG propagation loss was 0.7±0.3  dB/cm. The top surface of the WGs was spin-coated by a polymethyl methacrylate film containing randomly oriented (spaghetti-like) arc-discharge single-walled carbon nanotubes serving as a saturable absorber based on evanescent field coupling. Stable passively Q-switched (PQS) operation was achieved. The PQS 60 μm diameter WG laser generated a record output power of 150 mW at 1846.8 nm with η=34.6%. The conversion efficiency with respect to the CW mode was 87.6%. The best pulse characteristics (energy/duration) were 105.6 nJ/98 ns at a repetition rate of 1.42 MHz.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tm:KY1-x-yGdxLuy(WO4)2 planar waveguide laser passively Q-switched by single-walled carbon nanotubes

Esrom Kifle, Xavier Mateos, Pavel Loiko, Sun Yung Choi, Ji Eun Bae, Fabian Rotermund, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Express 26(4) 4961-4966 (2018)

Passive Q-switching of microchip lasers based on Ho:YAG ceramics

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov
Appl. Opt. 55(18) 4877-4887 (2016)

Femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers

Esrom Kifle, Xavier Mateos, Javier Rodríguez Vázquez de Aldana, Airan Ródenas, Pavel Loiko, Sun Yung Choi, Fabian Rotermund, Uwe Griebner, Valentin Petrov, Magdalena Aguiló, and Francesc Díaz
Opt. Lett. 42(6) 1169-1172 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990).
    [Crossref]
  2. P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120, 26480–26489 (2016).
    [Crossref]
  3. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6  W of output power and ∼80% slope efficiency,” Opt. Lett. 39, 4380–4383 (2014).
    [Crossref]
  4. W. Bolaños, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9, 3525–3531 (2009).
    [Crossref]
  5. K. van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, and M. Pollnau, “Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers,” Opt. Express 19, 5277–5282 (2011).
    [Crossref]
  6. V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
    [Crossref]
  7. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref]
  8. S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
    [Crossref]
  9. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
    [Crossref]
  10. Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
    [Crossref]
  11. J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5  W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6, 91–96 (2016).
    [Crossref]
  12. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36, 1587–1589 (2011).
    [Crossref]
  13. F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. A. Brown, “Lasing action at around 1.9  μm from an ultrafast laser inscribed Tm-doped glass waveguide,” Opt. Lett. 36, 1566–1568 (2011).
    [Crossref]
  14. D. G. Lancaster, S. Gross, M. J. Withford, and T. M. Monro, “Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers,” Opt. Express 22, 25286–25294 (2014).
    [Crossref]
  15. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37, 3339–3341 (2012).
    [Crossref]
  16. D. G. Lancaster, S. Gross, A. Fuerbach, H. Ebendorff Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20, 27503–27509 (2012).
    [Crossref]
  17. J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J.-M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9  μm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25, 14910–14917 (2017).
    [Crossref]
  18. E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
    [Crossref]
  19. E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation,” Opt. Mater. Express 7, 4258–4268 (2017).
    [Crossref]
  20. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  21. J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23, 14108–14113 (2015).
    [Crossref]
  22. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
    [Crossref]
  23. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
    [Crossref]
  24. J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6, 3262–3273 (2016).
    [Crossref]
  25. P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
    [Crossref]
  26. P. Loiko, J. Bogusławski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zybała, K. Mars, A. MikuŁa, K. Kaszyca, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser,” Opt. Mater. Express 8, 1723–1732 (2018).
    [Crossref]
  27. Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
    [Crossref]
  28. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
    [Crossref]
  29. J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3, 119–124 (2015).
    [Crossref]
  30. G. R. Lin and Y. C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
    [Crossref]
  31. X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm,” Laser Phys. Lett. 14, 095801 (2017).
    [Crossref]
  32. P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
    [Crossref]
  33. W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84  μm,” Opt. Express 19, 1449–1454 (2011).
    [Crossref]
  34. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21, 395–400 (2015).
    [Crossref]
  35. E. Kifle, X. Mateos, P. Loiko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched Tm:KY(WO4)2 waveguide laser,” Laser Phys. 27, 045801 (2017).
    [Crossref]
  36. J. H. Lee, S. Gross, B. V. Cunning, C. L. Brown, D. Kielpinski, T. M. Monro, and D. G. Lancaster, “Graphene-based passive Q-switching of a Tm3+:ZBLAN short-infrared waveguide laser,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, California, June8–13, 2014, paper JTu4A.128.
  37. X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528, 543–550 (2016).
    [Crossref]
  38. J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38, 5090–5093 (2013).
    [Crossref]
  39. Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).
    [Crossref]
  40. A. Choudhary, S. J. Beecher, S. Dhingra, B. D’Urso, T. L. Parsonage, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, R. W. Eason, and D. P. Shepherd, “456-mW graphene Q-switched Yb:yttria waveguide laser by evanescent-field interaction,” Opt. Lett. 40, 1912–1915 (2015).
    [Crossref]
  41. J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5, 017110 (2015).
    [Crossref]
  42. H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23, 9730–9735 (2015).
    [Crossref]
  43. Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express 21, 16763–16776 (2013).
    [Crossref]
  44. J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
    [Crossref]
  45. J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3  W of output power,” Opt. Lett. 39, 4247–4250 (2014).
    [Crossref]
  46. H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24, 7777–7791 (2016).
    [Crossref]
  47. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
    [Crossref]
  48. X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Efficient micro-lasers based on highly-doped monoclinic double tungstates,” IEEE J. Quantum Electron. 53, 1700110 (2017).
    [Crossref]
  49. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17, 22417–22422 (2009).
    [Crossref]
  50. A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
    [Crossref]
  51. G. Li, H. Li, R. Gong, Y. Tan, J. R. Vázquez de Aldana, Y. Sun, and F. Chen, “Intracavity biosensor based on the Nd:YAG waveguide laser: tumor cells and dextrose solutions,” Photon. Res. 5, 728–732 (2017).
    [Crossref]

2018 (1)

2017 (8)

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm,” Laser Phys. Lett. 14, 095801 (2017).
[Crossref]

J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J.-M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9  μm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25, 14910–14917 (2017).
[Crossref]

E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
[Crossref]

E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation,” Opt. Mater. Express 7, 4258–4268 (2017).
[Crossref]

E. Kifle, X. Mateos, P. Loiko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched Tm:KY(WO4)2 waveguide laser,” Laser Phys. 27, 045801 (2017).
[Crossref]

X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Efficient micro-lasers based on highly-doped monoclinic double tungstates,” IEEE J. Quantum Electron. 53, 1700110 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

G. Li, H. Li, R. Gong, Y. Tan, J. R. Vázquez de Aldana, Y. Sun, and F. Chen, “Intracavity biosensor based on the Nd:YAG waveguide laser: tumor cells and dextrose solutions,” Photon. Res. 5, 728–732 (2017).
[Crossref]

2016 (6)

2015 (9)

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23, 14108–14113 (2015).
[Crossref]

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3, 119–124 (2015).
[Crossref]

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21, 395–400 (2015).
[Crossref]

A. Choudhary, S. J. Beecher, S. Dhingra, B. D’Urso, T. L. Parsonage, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, R. W. Eason, and D. P. Shepherd, “456-mW graphene Q-switched Yb:yttria waveguide laser by evanescent-field interaction,” Opt. Lett. 40, 1912–1915 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5, 017110 (2015).
[Crossref]

H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23, 9730–9735 (2015).
[Crossref]

2014 (7)

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6  W of output power and ∼80% slope efficiency,” Opt. Lett. 39, 4380–4383 (2014).
[Crossref]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

D. G. Lancaster, S. Gross, M. J. Withford, and T. M. Monro, “Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers,” Opt. Express 22, 25286–25294 (2014).
[Crossref]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3  W of output power,” Opt. Lett. 39, 4247–4250 (2014).
[Crossref]

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (5)

2010 (1)

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

2009 (5)

W. Bolaños, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9, 3525–3531 (2009).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17, 22417–22422 (2009).
[Crossref]

2007 (1)

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

2004 (1)

1996 (1)

1990 (1)

Abramski, K. M.

Aguiló, M.

P. Loiko, J. Bogusławski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zybała, K. Mars, A. MikuŁa, K. Kaszyca, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser,” Opt. Mater. Express 8, 1723–1732 (2018).
[Crossref]

E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
[Crossref]

E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation,” Opt. Mater. Express 7, 4258–4268 (2017).
[Crossref]

E. Kifle, X. Mateos, P. Loiko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched Tm:KY(WO4)2 waveguide laser,” Laser Phys. 27, 045801 (2017).
[Crossref]

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm,” Laser Phys. Lett. 14, 095801 (2017).
[Crossref]

X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Efficient micro-lasers based on highly-doped monoclinic double tungstates,” IEEE J. Quantum Electron. 53, 1700110 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24, 7777–7791 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6, 3262–3273 (2016).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23, 14108–14113 (2015).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3  W of output power,” Opt. Lett. 39, 4247–4250 (2014).
[Crossref]

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84  μm,” Opt. Express 19, 1449–1454 (2011).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

W. Bolaños, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9, 3525–3531 (2009).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

Ahn, K. J.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5, 017110 (2015).
[Crossref]

Aksienionek, M.

Ams, M.

Aravazhi, S.

Bae, S.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5, 017110 (2015).
[Crossref]

Bain, F. M.

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Beecher, S.

Beecher, S. J.

Boguslawski, J.

Bolaños, W.

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84  μm,” Opt. Express 19, 1449–1454 (2011).
[Crossref]

W. Bolaños, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9, 3525–3531 (2009).
[Crossref]

Bookey, H. T.

Brown, C. L.

J. H. Lee, S. Gross, B. V. Cunning, C. L. Brown, D. Kielpinski, T. M. Monro, and D. G. Lancaster, “Graphene-based passive Q-switching of a Tm3+:ZBLAN short-infrared waveguide laser,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, California, June8–13, 2014, paper JTu4A.128.

Brown, C. T. A.

Brown, G.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21, 395–400 (2015).
[Crossref]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37, 3339–3341 (2012).
[Crossref]

Cantelar, E.

Carvajal, J. J.

Castillo, G. R.

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Cerullo, G.

Chen, F.

G. Li, H. Li, R. Gong, Y. Tan, J. R. Vázquez de Aldana, Y. Sun, and F. Chen, “Intracavity biosensor based on the Nd:YAG waveguide laser: tumor cells and dextrose solutions,” Photon. Res. 5, 728–732 (2017).
[Crossref]

H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24, 7777–7791 (2016).
[Crossref]

H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23, 9730–9735 (2015).
[Crossref]

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21, 395–400 (2015).
[Crossref]

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).
[Crossref]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37, 3339–3341 (2012).
[Crossref]

Chen, H.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref]

Chen, S.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref]

Chen, Y.

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6, 3262–3273 (2016).
[Crossref]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Cheng, C.

H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23, 9730–9735 (2015).
[Crossref]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Cheng, C. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Chi, Y. C.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Chiodo, N.

Cho, W. B.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

Choi, S. Y.

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm,” Laser Phys. Lett. 14, 095801 (2017).
[Crossref]

E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
[Crossref]

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5, 017110 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38, 5090–5093 (2013).
[Crossref]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

Choudhary, A.

Cunning, B. V.

J. H. Lee, S. Gross, B. V. Cunning, C. L. Brown, D. Kielpinski, T. M. Monro, and D. G. Lancaster, “Graphene-based passive Q-switching of a Tm3+:ZBLAN short-infrared waveguide laser,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, California, June8–13, 2014, paper JTu4A.128.

D’Urso, B.

Davis, K. M.

Dawson, M. D.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

del Rosal Rabes, B.

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Demetriou, G.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21, 395–400 (2015).
[Crossref]

Dhingra, S.

Díaz, F.

P. Loiko, J. Bogusławski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zybała, K. Mars, A. MikuŁa, K. Kaszyca, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser,” Opt. Mater. Express 8, 1723–1732 (2018).
[Crossref]

E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
[Crossref]

E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation,” Opt. Mater. Express 7, 4258–4268 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

E. Kifle, X. Mateos, P. Loiko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched Tm:KY(WO4)2 waveguide laser,” Laser Phys. 27, 045801 (2017).
[Crossref]

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm,” Laser Phys. Lett. 14, 095801 (2017).
[Crossref]

X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Efficient micro-lasers based on highly-doped monoclinic double tungstates,” IEEE J. Quantum Electron. 53, 1700110 (2017).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
[Crossref]

H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24, 7777–7791 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6, 3262–3273 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23, 14108–14113 (2015).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3  W of output power,” Opt. Lett. 39, 4247–4250 (2014).
[Crossref]

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84  μm,” Opt. Express 19, 1449–1454 (2011).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

W. Bolaños, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9, 3525–3531 (2009).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

Du, J.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Eason, R. W.

Ebendorff Heidepriem, H.

Ebendorff-Heidepriem, H.

Esterowitz, L.

Ferrari, A. C.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21, 395–400 (2015).
[Crossref]

Fuerbach, A.

Fusari, F.

García-Blanco, S. M.

Geskus, D.

Gong, R.

Grant-Jacob, J. A.

Griebner, U.

P. Loiko, J. Bogusławski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zybała, K. Mars, A. MikuŁa, K. Kaszyca, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser,” Opt. Mater. Express 8, 1723–1732 (2018).
[Crossref]

E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation,” Opt. Mater. Express 7, 4258–4268 (2017).
[Crossref]

E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm,” Laser Phys. Lett. 14, 095801 (2017).
[Crossref]

E. Kifle, X. Mateos, P. Loiko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched Tm:KY(WO4)2 waveguide laser,” Laser Phys. 27, 045801 (2017).
[Crossref]

X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Efficient micro-lasers based on highly-doped monoclinic double tungstates,” IEEE J. Quantum Electron. 53, 1700110 (2017).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6, 3262–3273 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23, 14108–14113 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5, 017110 (2015).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3  W of output power,” Opt. Lett. 39, 4247–4250 (2014).
[Crossref]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38, 5090–5093 (2013).
[Crossref]

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84  μm,” Opt. Express 19, 1449–1454 (2011).
[Crossref]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

Grivas, C.

Gross, S.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528, 543–550 (2016).
[Crossref]

D. G. Lancaster, S. Gross, M. J. Withford, and T. M. Monro, “Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers,” Opt. Express 22, 25286–25294 (2014).
[Crossref]

D. G. Lancaster, S. Gross, A. Fuerbach, H. Ebendorff Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20, 27503–27509 (2012).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36, 1587–1589 (2011).
[Crossref]

J. H. Lee, S. Gross, B. V. Cunning, C. L. Brown, D. Kielpinski, T. M. Monro, and D. G. Lancaster, “Graphene-based passive Q-switching of a Tm3+:ZBLAN short-infrared waveguide laser,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, California, June8–13, 2014, paper JTu4A.128.

Guo, C.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref]

Guo, Z.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528, 543–550 (2016).
[Crossref]

Gusakova, N. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

He, J. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

He, R.

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).
[Crossref]

Hirao, K.

Hopkins, J.-M.

Hu, J.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref]

Hua, P.

Jaque, D.

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Jha, A.

Jia, Y.

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Jiang, G.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Jiang, X.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528, 543–550 (2016).
[Crossref]

Jose, G.

Kar, A. K.

Kaszyca, K.

Kielpinski, D.

J. H. Lee, S. Gross, B. V. Cunning, C. L. Brown, D. Kielpinski, T. M. Monro, and D. G. Lancaster, “Graphene-based passive Q-switching of a Tm3+:ZBLAN short-infrared waveguide laser,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, California, June8–13, 2014, paper JTu4A.128.

Kifle, E.

Killi, A.

Kim, J. W.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5, 017110 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38, 5090–5093 (2013).
[Crossref]

Kim, K.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

Kopf, D.

Kowalczyk, M.

Kozinski, R.

Kuan, K.

Kuleshov, N.

Kuleshov, N. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17, 22417–22422 (2009).
[Crossref]

Lagatsky, A. A.

Lancaster, D. G.

Laporta, P.

Lederer, M.

Lee, C. K.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lee, J. H.

J. H. Lee, S. Gross, B. V. Cunning, C. L. Brown, D. Kielpinski, T. M. Monro, and D. G. Lancaster, “Graphene-based passive Q-switching of a Tm3+:ZBLAN short-infrared waveguide laser,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, California, June8–13, 2014, paper JTu4A.128.

Lee, S.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

Li, G.

Li, H.

Librant, K.

Lifante, G.

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84  μm,” Opt. Express 19, 1449–1454 (2011).
[Crossref]

W. Bolaños, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9, 3525–3531 (2009).
[Crossref]

Lin, G. R.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

G. R. Lin and Y. C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
[Crossref]

Lin, G.-R.

Lin, R.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref]

Lin, S. F.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, Y. C.

G. R. Lin and Y. C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
[Crossref]

Lin, Y. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, Y.-H.

Liou, J.-H.

Lipinska, L.

Liu, A.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref]

Liu, H.

Liu, J. H.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Loiko, P.

P. Loiko, J. Bogusławski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zybała, K. Mars, A. MikuŁa, K. Kaszyca, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser,” Opt. Mater. Express 8, 1723–1732 (2018).
[Crossref]

E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
[Crossref]

E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation,” Opt. Mater. Express 7, 4258–4268 (2017).
[Crossref]

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm,” Laser Phys. Lett. 14, 095801 (2017).
[Crossref]

E. Kifle, X. Mateos, P. Loiko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched Tm:KY(WO4)2 waveguide laser,” Laser Phys. 27, 045801 (2017).
[Crossref]

X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Efficient micro-lasers based on highly-doped monoclinic double tungstates,” IEEE J. Quantum Electron. 53, 1700110 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120, 26480–26489 (2016).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6, 3262–3273 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23, 14108–14113 (2015).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3  W of output power,” Opt. Lett. 39, 4247–4250 (2014).
[Crossref]

Lu, S. B.

Macdonald, J.

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).
[Crossref]

Macherzynski, W.

Mackenzie, J. I.

Mars, K.

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

Martínez, J.

Mary, R.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21, 395–400 (2015).
[Crossref]

Mateos, X.

P. Loiko, J. Bogusławski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zybała, K. Mars, A. MikuŁa, K. Kaszyca, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser,” Opt. Mater. Express 8, 1723–1732 (2018).
[Crossref]

E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation,” Opt. Mater. Express 7, 4258–4268 (2017).
[Crossref]

E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
[Crossref]

X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Efficient micro-lasers based on highly-doped monoclinic double tungstates,” IEEE J. Quantum Electron. 53, 1700110 (2017).
[Crossref]

E. Kifle, X. Mateos, P. Loiko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched Tm:KY(WO4)2 waveguide laser,” Laser Phys. 27, 045801 (2017).
[Crossref]

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm,” Laser Phys. Lett. 14, 095801 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6, 3262–3273 (2016).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23, 14108–14113 (2015).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3  W of output power,” Opt. Lett. 39, 4247–4250 (2014).
[Crossref]

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84  μm,” Opt. Express 19, 1449–1454 (2011).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

W. Bolaños, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9, 3525–3531 (2009).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

MikuLa, A.

Miura, K.

Monro, T. M.

Morgner, U.

Morris, J.

Murugan, G. S.

Nguyen, H.-D.

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Osellame, R.

Paletko, P.

Panyutin, V. L.

Parsonage, T. L.

Petrov, V.

P. Loiko, J. Bogusławski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zybała, K. Mars, A. MikuŁa, K. Kaszyca, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser,” Opt. Mater. Express 8, 1723–1732 (2018).
[Crossref]

E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation,” Opt. Mater. Express 7, 4258–4268 (2017).
[Crossref]

E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

E. Kifle, X. Mateos, P. Loiko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched Tm:KY(WO4)2 waveguide laser,” Laser Phys. 27, 045801 (2017).
[Crossref]

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm,” Laser Phys. Lett. 14, 095801 (2017).
[Crossref]

X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Efficient micro-lasers based on highly-doped monoclinic double tungstates,” IEEE J. Quantum Electron. 53, 1700110 (2017).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6, 3262–3273 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23, 14108–14113 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5, 017110 (2015).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3  W of output power,” Opt. Lett. 39, 4247–4250 (2014).
[Crossref]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38, 5090–5093 (2013).
[Crossref]

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84  μm,” Opt. Express 19, 1449–1454 (2011).
[Crossref]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

Pollnau, M.

Popa, D.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21, 395–400 (2015).
[Crossref]

Psaila, N. D.

Pujol, M. C.

H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24, 7777–7791 (2016).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

W. Bolaños, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9, 3525–3531 (2009).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

Ren, Y.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21, 395–400 (2015).
[Crossref]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37, 3339–3341 (2012).
[Crossref]

Rivier, S.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

Ródenas, A.

Romero, C.

Rotermund, F.

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm,” Laser Phys. Lett. 14, 095801 (2017).
[Crossref]

E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
[Crossref]

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5, 017110 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38, 5090–5093 (2013).
[Crossref]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

Ruan, S.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref]

Schmidt, A.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

Serres, J. M.

P. Loiko, J. Bogusławski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zybała, K. Mars, A. MikuŁa, K. Kaszyca, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser,” Opt. Mater. Express 8, 1723–1732 (2018).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Efficient micro-lasers based on highly-doped monoclinic double tungstates,” IEEE J. Quantum Electron. 53, 1700110 (2017).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131  nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6, 3262–3273 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23, 14108–14113 (2015).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3  W of output power,” Opt. Lett. 39, 4247–4250 (2014).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shepherd, D. P.

Sibbett, W.

Silvestre, Ò.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

Sobon, G.

Solé, R. M.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

Sotor, J.

Steinmeyer, G.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

Stevenson, N. K.

Stoneman, R. C.

Sugimoto, N.

Sun, Y.

Svelto, O.

Taccheo, S.

Tan, Y.

G. Li, H. Li, R. Gong, Y. Tan, J. R. Vázquez de Aldana, Y. Sun, and F. Chen, “Intracavity biosensor based on the Nd:YAG waveguide laser: tumor cells and dextrose solutions,” Photon. Res. 5, 728–732 (2017).
[Crossref]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).
[Crossref]

Tang, D. Y.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Thomson, R. R.

Torrisi, F.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21, 395–400 (2015).
[Crossref]

Tseng, W. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Valle, G. D.

van Dalfsen, K.

Vázquez de Aldana, J. R.

G. Li, H. Li, R. Gong, Y. Tan, J. R. Vázquez de Aldana, Y. Sun, and F. Chen, “Intracavity biosensor based on the Nd:YAG waveguide laser: tumor cells and dextrose solutions,” Photon. Res. 5, 728–732 (2017).
[Crossref]

E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation,” Opt. Mater. Express 7, 4258–4268 (2017).
[Crossref]

E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
[Crossref]

H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24, 7777–7791 (2016).
[Crossref]

H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23, 9730–9735 (2015).
[Crossref]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Wang, Q.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Wang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wen, S.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Wen, S. C.

Wilkinson, J. S.

Withford, M. J.

Wörhoff, K.

Wu, C. I.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Wu, C. L.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Xiang, Y.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Xu, C.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Yan, P.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yang, C.-Y.

Yasukevich, A. S.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Yeom, D.-I.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5, 017110 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38, 5090–5093 (2013).
[Crossref]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

Yim, J. H.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

Yu, C.-P.

Yu, H.

Yumashev, K.

Yumashev, K. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Zhang, H.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528, 543–550 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6, 3262–3273 (2016).
[Crossref]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Zhao, C.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Zheng, J.

Zheng, Y.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref]

Zybala, R.

ACS Photon. (1)

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Adv. Funct. Mater. (2)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20, 1937–1943 (2010).
[Crossref]

AIP Adv. (1)

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5, 017110 (2015).
[Crossref]

Ann. Phys. (1)

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528, 543–550 (2016).
[Crossref]

Appl. Phys. Lett. (1)

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105, 101111 (2014).
[Crossref]

Cryst. Growth Des. (1)

W. Bolaños, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9, 3525–3531 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Efficient micro-lasers based on highly-doped monoclinic double tungstates,” IEEE J. Quantum Electron. 53, 1700110 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21, 395–400 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120, 26480–26489 (2016).
[Crossref]

Laser Photon. Rev. (2)

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

Laser Phys. (1)

E. Kifle, X. Mateos, P. Loiko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched Tm:KY(WO4)2 waveguide laser,” Laser Phys. 27, 045801 (2017).
[Crossref]

Laser Phys. Lett. (2)

G. R. Lin and Y. C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
[Crossref]

X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2  μm,” Laser Phys. Lett. 14, 095801 (2017).
[Crossref]

Opt. Commun. (1)

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Opt. Express (12)

F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17, 22417–22422 (2009).
[Crossref]

H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24, 7777–7791 (2016).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23, 9730–9735 (2015).
[Crossref]

Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express 21, 16763–16776 (2013).
[Crossref]

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84  μm,” Opt. Express 19, 1449–1454 (2011).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23, 14108–14113 (2015).
[Crossref]

D. G. Lancaster, S. Gross, M. J. Withford, and T. M. Monro, “Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers,” Opt. Express 22, 25286–25294 (2014).
[Crossref]

K. van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, and M. Pollnau, “Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers,” Opt. Express 19, 5277–5282 (2011).
[Crossref]

D. G. Lancaster, S. Gross, A. Fuerbach, H. Ebendorff Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20, 27503–27509 (2012).
[Crossref]

J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J.-M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9  μm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25, 14910–14917 (2017).
[Crossref]

Opt. Lett. (12)

E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42, 1169–1172 (2017).
[Crossref]

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36, 1587–1589 (2011).
[Crossref]

F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. A. Brown, “Lasing action at around 1.9  μm from an ultrafast laser inscribed Tm-doped glass waveguide,” Opt. Lett. 36, 1566–1568 (2011).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6  W of output power and ∼80% slope efficiency,” Opt. Lett. 39, 4380–4383 (2014).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
[Crossref]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37, 3339–3341 (2012).
[Crossref]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

A. Choudhary, S. J. Beecher, S. Dhingra, B. D’Urso, T. L. Parsonage, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, R. W. Eason, and D. P. Shepherd, “456-mW graphene Q-switched Yb:yttria waveguide laser by evanescent-field interaction,” Opt. Lett. 40, 1912–1915 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38, 5090–5093 (2013).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3  W of output power,” Opt. Lett. 39, 4247–4250 (2014).
[Crossref]

Opt. Mater. Express (4)

Photon. Res. (2)

Sci. Rep. (3)

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Other (1)

J. H. Lee, S. Gross, B. V. Cunning, C. L. Brown, D. Kielpinski, T. M. Monro, and D. G. Lancaster, “Graphene-based passive Q-switching of a Tm3+:ZBLAN short-infrared waveguide laser,” in Conference on Lasers and Electro-Optics (CLEO), San Jose, California, June8–13, 2014, paper JTu4A.128.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a) Small-signal internal transmission spectra of the SWCNT/PMMA films coated on quartz substrates with different concentrations of SWCNTs (0.1–0.35 wt. %); the spin-coating speed is 1500 r/min. (b) Raman spectrum of the 0.35 wt. % SWCNT/PMMA film coated on the surface of Tm:KLuW, λexc=514  nm.
Fig. 2.
Fig. 2. (a) Optical microscope image of the surface of SWCNT/PMMA film (200× magnification); (b) photograph of the Tm:KLuW crystal containing surface channel WGs with the deposited SWCNT/PMMA film.
Fig. 3.
Fig. 3. Confocal laser microscopy of a polished end-face of the fs-DLW Tm:KLuW surface channel WGs with cladding diameters of (a) 60 μm and (b) 50 μm, transmission mode, polarized light (P||Np), λ=405  nm.
Fig. 4.
Fig. 4. Confocal laser microscope images (top view) of the central part of the half-ring cladding fs-DLW surface WGs in Tm:KLuW: (a), (b) transmission mode, polarized light (P||Ng), λ=405  nm; (c), (d) transmission mode, crossed polarizers (P||Ng, A||Nm), λ=488  nm. WGs: (a), (c) 60 μm cladding and (b), (d) 50 μm cladding.
Fig. 5.
Fig. 5. μ-Raman mapping of a lateral face of the fs-DLW Tm:KLuW surface channel WGs monitoring the 907  cm1 Raman band: (a), (c) peak intensity (a.u.) and (b), (d) peak frequency (cm1). WGs: (a), (b) 60 μm cladding and (c), (d) 50 μm cladding. The measurement geometry is g(mm)g. The Nm-axis is horizontal.
Fig. 6.
Fig. 6. (a) Scheme of the PQS fs-DLW Tm:KLuW surface WG laser: ND, gradient neutral density filter, PM, pump mirror, WG, waveguide, OC, output coupler, F, cutoff filter. (b) Photograph of the Ti:sapphire pumped WG showing blue upconversion luminescence.
Fig. 7.
Fig. 7. Input–output dependences for CW fs-DLW Tm:KLuW surface channel WG lasers with (a) 60 μm and (b) 50 μm cladding, η–slope efficiency. The laser polarization is E||Nm.
Fig. 8.
Fig. 8. Typical laser emission spectra of CW fs-DLW Tm:KLuW surface channel WG lasers with (a) 60 μm and (b) 50 μm cladding (measured at maximum Pabs, Fig. 4). The laser polarization is E||Nm.
Fig. 9.
Fig. 9. Modified Caird analysis for 60 and 50 μm cladding CW fs-DLW Tm:KLuW surface channel WG lasers (symbols: experimental data; lines: their linear fits).
Fig. 10.
Fig. 10. Spatial near-field beam profiles of the output laser mode from the CW fs-DLW Tm:KLuW surface channel WG lasers with (a), (c) 60 μm and (b), (d) 50 μm cladding, TOC=30%, Pabs=0.4  W. The profiles were calibrated with respect to the WG output end-face. (a), (b) 2D profiles, (c), (d) intensity plots along the directions of the Nm axis (horizontal) and the Np axis (vertical). Symbols: experimental data; curves: their Gaussian fits.
Fig. 11.
Fig. 11. Simulated fundamental mode for (a) 60 μm and (b) 50 μm WG. The DLW tracks and the crystal surface are indicated by red color. The assumed refractive index change at DLW tracks is 0.01+0.0017i.
Fig. 12.
Fig. 12. fs-DLW Tm:KLuW surface channel WG lasers PQS by evanescent-field coupling with SWCNT-SA: (a) input–output dependences, η is slope efficiency; (b) typical laser emission spectra measured at maximum Pabs. The laser polarization is E||Nm.
Fig. 13.
Fig. 13. Pulse characteristics of fs-DLW Tm:KLuW surface channel WG lasers PQS by evanescent-field coupling with SWCNT-SA: (a) pulse duration, (b) PRF, (c) pulse energy, and (d) peak power. TOC=30%.
Fig. 14.
Fig. 14. Oscilloscope traces of (a), (b) the typical pulse trains and (c) the corresponding single Q-switched pulses for the fs-DLW Tm:KLuW surface channel WG lasers PQS by evanescent-field coupling with SWCNT-SA. WG lasers with (a), (c) 60 μm and (b), (c) 50 μm cladding, TOC=30%, Pabs=0.5  W.

Tables (1)

Tables Icon

Table 1. Pulse Characteristics of the fs-DLW Tm:KLuW Surface Channel Waveguide Lasers PQS by Evanescent-Field Coupling with SWCNTs

Metrics