Abstract

Future quantum information networks operated on telecom channels require qubit transfer between different wavelengths while preserving quantum coherence and entanglement. Qubit transfer is a nonlinear optical process, but currently the types of atoms used for quantum information processing and storage are limited by the narrow bandwidth of upconversion available. Here we present the first experimental demonstration of broadband and high-efficiency quasi-phase matching second-harmonic generation (SHG) in a chip-scale periodically poled lithium niobate thin film. We achieve a large bandwidth of up to 2 THz for SHG by satisfying quasi-phase matching and group-velocity matching simultaneously. Furthermore, by changing the film thickness, the central wavelength of the quasi-phase matching SHG bandwidth can be modulated from 2.70 μm to 1.44 μm. The reconfigurable quasi-phase matching lithium niobate thin film provides a significant on-chip integrated platform for photonics and quantum optics.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band

Guangzhen Li, Yuping Chen, Haowei Jiang, and Xianfeng Chen
Opt. Lett. 42(5) 939-942 (2017)

Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band

Nan Ei Yu, Jung Hoon Ro, Myoungsik Cha, Sunao Kurimura, and Takunori Taira
Opt. Lett. 27(12) 1046-1048 (2002)

Effect of MgO doping of periodically poled lithium niobate on second-harmonic generation of femtosecond laser pulses

Junfeng Zhang, Yuping Chen, Feng Lu, Wenjie Lu, Weirui Dang, Xianfeng Chen, and Yuxing Xia
Appl. Opt. 46(32) 7792-7796 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Milburn, “Quantum optical Fredkin gate,” Phys. Rev. Lett. 62, 2124–2127 (1989).
    [Crossref]
  2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  3. L.-M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [Crossref]
  4. L. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
    [Crossref]
  5. S. Brustlein, E. Lantz, and F. Devaux, “Absolute radiance imaging using parametric image amplification,” Opt. Lett. 32, 1278–1280 (2007).
    [Crossref]
  6. J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “High-resolution two-dimensional image upconversion of incoherent light,” Opt. Lett. 35, 3796–3798 (2010).
    [Crossref]
  7. M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped pulse upconversion,” Opt. Lett. 32, 713–715 (2007).
    [Crossref]
  8. K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100, 151102 (2012).
    [Crossref]
  9. J. Falk and Y. See, “Internal cw parametric upconversion,” Appl. Phys. Lett. 32, 100–101 (1978).
    [Crossref]
  10. B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
    [Crossref]
  11. O. Kuzucu, F. N. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett. 33, 2257–2259 (2008).
    [Crossref]
  12. M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103, 213601 (2009).
    [Crossref]
  13. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
    [Crossref]
  14. H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
    [Crossref]
  15. H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
    [Crossref]
  16. G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
    [Crossref]
  17. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 6, 488–503 (2018).
    [Crossref]
  18. H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, and R. M. Osgood, “Helium-ion-induced radiation damage in linbo3 thin-film electro-optic modulators,” Opt. Express 22, 19653–19661 (2014).
    [Crossref]
  19. L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24, 4640–4647 (2016).
    [Crossref]
  20. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
    [Crossref]
  21. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
    [Crossref]
  22. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  23. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
    [Crossref]
  24. R. Luo, H. Jiang, H. Liang, Y. Chen, and Q. Lin, “Self-referenced temperature sensing with a lithium niobate microdisk resonator,” Opt. Lett. 42, 1281–1284 (2017).
    [Crossref]
  25. J. Sun and C. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO:LiNbO3 ridge waveguides,” Opt. Lett. 37, 2028–2030 (2012).
    [Crossref]
  26. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [Crossref]
  27. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [Crossref]
  28. H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
    [Crossref]
  29. Y.-Q. Qin, C. Zhang, Y.-Y. Zhu, X.-P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
    [Crossref]
  30. M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous type I QPM broadband SFG and SHG in MGO:PPLN,” Opt. Lett. 35, 2672–2674 (2010).
    [Crossref]
  31. J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MGO-doped PPLN,” Opt. Express 16, 6957–6962 (2008).
    [Crossref]
  32. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
    [Crossref]
  33. T. Dougherty and E. J. Heilweil, “Dual-beam subpicosecond broadband infrared spectrometer,” Opt. Lett. 19, 129–131 (1994).
    [Crossref]
  34. E. J. Heilweil, “Ultrashort-pulse multichannel infrared spectroscopy using broadband frequency conversion in LiIO3,” Opt. Lett. 14, 551–553 (1989).
    [Crossref]
  35. A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
    [Crossref]
  36. C. Rulliere, Femtosecond Laser Pulses (Springer, 1998).
  37. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MGO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046–1048 (2002).
    [Crossref]
  38. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [Crossref]
  39. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).
  40. C. Zhu, Y. Chen, G. Li, L. Ge, B. Zhu, M. Hu, and X. Chen, “Multiple-mode phase matching in a single-crystal lithium niobate waveguide for three-wave mixing,” Chin. Opt. Lett. 15, 091901 (2017).
    [Crossref]
  41. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  42. R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107, 162903 (2015).
    [Crossref]
  43. P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
    [Crossref]
  44. S. Kim and V. Gopalan, “Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate,” Mater. Sci. Eng. B 120, 91–94 (2005).
    [Crossref]
  45. I. Mhaouech, V. Coda, G. Montemezzani, M. Chauvet, and L. Guilbert, “Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide,” Opt. Lett. 41, 4174–4177 (2016).
    [Crossref]
  46. W. Jin and K. S. Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” Opt. Lett. 40, 237–240 (2015).
    [Crossref]
  47. R. W. Boyd, “Nonlinear optics,” in Handbook of Laser Technology and Applications (Three-Volume Set) (Taylor & Francis, 2003), pp. 161–183.

2018 (2)

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 6, 488–503 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref]

2017 (3)

2016 (5)

2015 (4)

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

W. Jin and K. S. Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” Opt. Lett. 40, 237–240 (2015).
[Crossref]

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107, 162903 (2015).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

2014 (3)

2012 (3)

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100, 151102 (2012).
[Crossref]

J. Sun and C. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO:LiNbO3 ridge waveguides,” Opt. Lett. 37, 2028–2030 (2012).
[Crossref]

2011 (2)

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[Crossref]

H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref]

2010 (3)

2009 (1)

M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103, 213601 (2009).
[Crossref]

2008 (4)

O. Kuzucu, F. N. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett. 33, 2257–2259 (2008).
[Crossref]

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MGO-doped PPLN,” Opt. Express 16, 6957–6962 (2008).
[Crossref]

Y.-Q. Qin, C. Zhang, Y.-Y. Zhu, X.-P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

2007 (2)

2005 (2)

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

S. Kim and V. Gopalan, “Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate,” Mater. Sci. Eng. B 120, 91–94 (2005).
[Crossref]

2004 (1)

L.-M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref]

2002 (2)

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

1994 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

1989 (2)

1978 (1)

J. Falk and Y. See, “Internal cw parametric upconversion,” Appl. Phys. Lett. 32, 100–101 (1978).
[Crossref]

1962 (1)

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Almendros, M.

M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103, 213601 (2009).
[Crossref]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Armstrong, J.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Atikian, H. A.

Bakhru, H.

Bennink, R. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Berth, G.

P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

Bloembergen, N.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 6, 488–503 (2018).
[Crossref]

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 6, 488–503 (2018).
[Crossref]

Bowers, J. E.

Boyd, R. W.

R. W. Boyd, “Nonlinear optics,” in Handbook of Laser Technology and Applications (Three-Volume Set) (Taylor & Francis, 2003), pp. 161–183.

Brambilla, E.

L. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
[Crossref]

Brustlein, S.

Burek, M. J.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Cai, L.

Camacho-González, G. F.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Cha, M.

Chan, H. S.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[Crossref]

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 6, 488–503 (2018).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

Chauvet, M.

Chen, X.

Chen, Y.

Cheng, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Chiang, K. S.

Chiles, J.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Coda, V.

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 6, 488–503 (2018).
[Crossref]

Dadap, J. I.

Dam, J. S.

Dayan, B.

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

DeSalvo, R.

Devaux, F.

Diziain, S.

Dougherty, T.

Duan, L.-M.

L.-M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref]

Dubin, F.

M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103, 213601 (2009).
[Crossref]

Ducuing, J.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Eschner, J.

M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103, 213601 (2009).
[Crossref]

Evans, P. G.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Falk, J.

J. Falk and Y. See, “Internal cw parametric upconversion,” Appl. Phys. Lett. 32, 100–101 (1978).
[Crossref]

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Fathpour, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
[Crossref]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Friesem, A. A.

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

Gainutdinov, R. V.

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107, 162903 (2015).
[Crossref]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Gatti, A.

L. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Ge, L.

Geiss, R.

Gong, M.

Gong, Y.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref]

Gopalan, V.

S. Kim and V. Gopalan, “Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate,” Mater. Sci. Eng. B 120, 91–94 (2005).
[Crossref]

Grange, R.

Grice, W. P.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Gu, X.

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100, 151102 (2012).
[Crossref]

Guenter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Guilbert, L.

Heilweil, E. J.

Hennrich, M.

M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103, 213601 (2009).
[Crossref]

Honardoost, A.

Hsieh, Z. M.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[Crossref]

Hu, H.

L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24, 4640–4647 (2016).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Hu, M.

Hu, X.-P.

Y.-Q. Qin, C. Zhang, Y.-Y. Zhu, X.-P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[Crossref]

Huang, H.-C.

Huang, I.

Huang, K.

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100, 151102 (2012).
[Crossref]

Humble, T. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Huwer, J.

M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103, 213601 (2009).
[Crossref]

Jiang, H.

Jin, H.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref]

Jin, W.

Joffre, M.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Kang, Y.

Khan, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Kim, S.

S. Kim and V. Gopalan, “Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate,” Mater. Sci. Eng. B 120, 91–94 (2005).
[Crossref]

Kimble, H.

L.-M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref]

Kley, E. B.

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Kubarych, K. J.

Kung, A. H.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[Crossref]

Kurimura, S.

Kuzucu, O.

Kymissis, I.

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Lai, C. J.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[Crossref]

Lantz, E.

Lee, C. K.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[Crossref]

Leng, H.

H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref]

Li, G.

Li, Y.

Liang, H.

Liang, W. H.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[Crossref]

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Lin, Q.

Lin, Z.

Lipson, M.

Liu, F.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Loncar, M.

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).

Lu, F.

Lugiato, L.

L. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
[Crossref]

Luo, R.

Mackwitz, P.

P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Malinowski, M.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Malladi, G.

McCanne, R.

Mhaouech, I.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

G. J. Milburn, “Quantum optical Fredkin gate,” Phys. Rev. Lett. 62, 2124–2127 (1989).
[Crossref]

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 6, 488–503 (2018).
[Crossref]

Montemezzani, G.

Müller, K.

P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

Nee, M. J.

Osgood, R. M.

Pan, H.

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100, 151102 (2012).
[Crossref]

Pan, R. P.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[Crossref]

Paolella, A.

Patil, A.

Pe’er, A.

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

Pedersen, C.

Peng, L. H.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[Crossref]

Pershan, P.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Pertsch, T.

Peters, J.

Piro, N.

M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103, 213601 (2009).
[Crossref]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Qin, Y.-Q.

Y.-Q. Qin, C. Zhang, Y.-Y. Zhu, X.-P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[Crossref]

Rabiei, P.

Rao, A.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
[Crossref]

Ro, J. H.

Rohde, F.

M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103, 213601 (2009).
[Crossref]

Rulliere, C.

C. Rulliere, Femtosecond Laser Pulses (Springer, 1998).

Rusing, M.

P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Saravi, S.

Schaake, J.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Schrempel, F.

Schuck, C.

M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103, 213601 (2009).
[Crossref]

See, Y.

J. Falk and Y. See, “Internal cw parametric upconversion,” Appl. Phys. Lett. 32, 100–101 (1978).
[Crossref]

Sergeyev, A.

Setzpfandt, F.

Silberberg, Y.

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Stark, P.

Stern, B.

Sun, J.

Taira, T.

Tidemand-Lichtenberg, P.

Toroghi, S.

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Tovstonog, S.

Tünnermann, A.

Venkataraman, V.

Volet, N.

Volk, T. R.

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107, 162903 (2015).
[Crossref]

Wang, C.

Wang, L.

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Wang, W.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Widhalm, A.

P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

Wong, F. N.

Wu, E.

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100, 151102 (2012).
[Crossref]

Xia, J.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Xie, Z.

H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref]

Xu, C.

Xu, P.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref]

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Yu, N. E.

Yu, X.

H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref]

Yuan, Y.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Zeng, H.

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100, 151102 (2012).
[Crossref]

Zhang, C.

H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref]

Y.-Q. Qin, C. Zhang, Y.-Y. Zhu, X.-P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[Crossref]

Zhang, H. H.

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107, 162903 (2015).
[Crossref]

Zhang, J.

Zhang, M.

Zhao, G.

Y.-Q. Qin, C. Zhang, Y.-Y. Zhu, X.-P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[Crossref]

Zhong, M.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Zhou, J.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Zhu, B.

Zhu, C.

Zhu, S.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref]

Zhu, Y.-Y.

Y.-Q. Qin, C. Zhang, Y.-Y. Zhu, X.-P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[Crossref]

Zrenner, A.

P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Appl. Phys. Lett. (5)

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107, 162903 (2015).
[Crossref]

P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100, 151102 (2012).
[Crossref]

J. Falk and Y. See, “Internal cw parametric upconversion,” Appl. Phys. Lett. 32, 100–101 (1978).
[Crossref]

A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, and S. Fathpour, “Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation,” Appl. Phys. Lett. 110, 111109 (2017).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

J. Opt. B (1)

L. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
[Crossref]

Laser Photon. Rev. (2)

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (LNOI) for micro photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 6, 488–503 (2018).
[Crossref]

Mater. Sci. Eng. B (1)

S. Kim and V. Gopalan, “Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate,” Mater. Sci. Eng. B 120, 91–94 (2005).
[Crossref]

Nat. Commun. (1)

H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, and S. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Opt. Express (5)

Opt. Lett. (14)

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

T. Dougherty and E. J. Heilweil, “Dual-beam subpicosecond broadband infrared spectrometer,” Opt. Lett. 19, 129–131 (1994).
[Crossref]

E. J. Heilweil, “Ultrashort-pulse multichannel infrared spectroscopy using broadband frequency conversion in LiIO3,” Opt. Lett. 14, 551–553 (1989).
[Crossref]

M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous type I QPM broadband SFG and SHG in MGO:PPLN,” Opt. Lett. 35, 2672–2674 (2010).
[Crossref]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MGO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046–1048 (2002).
[Crossref]

R. Luo, H. Jiang, H. Liang, Y. Chen, and Q. Lin, “Self-referenced temperature sensing with a lithium niobate microdisk resonator,” Opt. Lett. 42, 1281–1284 (2017).
[Crossref]

J. Sun and C. Xu, “466 mW green light generation using annealed proton-exchanged periodically poled MgO:LiNbO3 ridge waveguides,” Opt. Lett. 37, 2028–2030 (2012).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
[Crossref]

O. Kuzucu, F. N. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett. 33, 2257–2259 (2008).
[Crossref]

S. Brustlein, E. Lantz, and F. Devaux, “Absolute radiance imaging using parametric image amplification,” Opt. Lett. 32, 1278–1280 (2007).
[Crossref]

J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “High-resolution two-dimensional image upconversion of incoherent light,” Opt. Lett. 35, 3796–3798 (2010).
[Crossref]

M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped pulse upconversion,” Opt. Lett. 32, 713–715 (2007).
[Crossref]

I. Mhaouech, V. Coda, G. Montemezzani, M. Chauvet, and L. Guilbert, “Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide,” Opt. Lett. 41, 4174–4177 (2016).
[Crossref]

W. Jin and K. S. Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” Opt. Lett. 40, 237–240 (2015).
[Crossref]

Optica (1)

Phys. Rev. (1)

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Phys. Rev. Lett. (7)

G. J. Milburn, “Quantum optical Fredkin gate,” Phys. Rev. Lett. 62, 2124–2127 (1989).
[Crossref]

Y.-Q. Qin, C. Zhang, Y.-Y. Zhu, X.-P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[Crossref]

L.-M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, and J. Eschner, “Bandwidth-tunable single-photon source in an ion-trap quantum network,” Phys. Rev. Lett. 103, 213601 (2009).
[Crossref]

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Sci. Rep. (1)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Science (1)

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011).
[Crossref]

Other (3)

C. Rulliere, Femtosecond Laser Pulses (Springer, 1998).

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).

R. W. Boyd, “Nonlinear optics,” in Handbook of Laser Technology and Applications (Three-Volume Set) (Taylor & Francis, 2003), pp. 161–183.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Traditional GVMM upconversion (δ0) in bulk birefringent-phase-matching (BPM) crystal has an extremely short interaction length, resulting in low efficiency for the frequency conversion of ultrashort pulses. (b) GVM upconversion (δ=0) in a PPLN thin film with a wide bandwidth, supporting ultrashort pulse upconversion. Lc is the coherence length. (c) Diagram of birefringent-phase matching of a negative uniaxial crystal. θm is the phase-matching angle between optical axis c and wave vector k. (d) Scheme of QPM by offering a reciprocal vector G. (e) The efficiencies of SHG for different phase-matching types.
Fig. 2.
Fig. 2. Simulated QPM period (2Lc) as a function of the fundamental wavelength for different types of upconversions. GVM occurs at the extreme of the dispersion curve, in which case it exists in three kinds of upconversion, as marked as points A (1.490, 18.0), B (1.505, 6.5), and C (1.515, 4.0).
Fig. 3.
Fig. 3. (a) BBO: central wavelengths of δ=0 and Δk=0 as a function of θm. δ=0 and Δk=0 simultaneously only occur at θm=19.84°, as inserted in (a). At other angles, only one matching type can be satisfied. (b) PPLN thin film: central wavelengths of δ=0 and Δk=0 as a function of the thickness of the film. Δk=0 can always be satisfied under the same condition when δ=0 if given a proper QPM period. Insert: two specific examples that show that δ and Δk equal zero at the same time, when h=30  μm at λ=2.7  μm (nearly bulk) and h=700  nm at λ=1.515  μm, respectively.
Fig. 4.
Fig. 4. (a) SEM image of the endface of the sample. A 700-nm-thick PPLN thin film is sitting on a SiO2 layer with a LN substrate. (b) Observed light confinement and top view of the periodic QPM structure. The direction of the periodic structure has a 8° angle-off with the x axis. (c) Diffraction pattern of PPLN thin film, which indicates the grating structure on the interface of PPLN and SiO2. (d) Simulated intensity distributions of fundamental and second-harmonic waves with TM mode.
Fig. 5.
Fig. 5. (a) Measured normalized SHG power as a function of fundamental wavelength. The upconversion bandwidth is 9 nm (1.125 THz) for a 4-cm-long crystal. (b) Linear relationship between SHG power and the square of input FF power at wavelength of 1530 nm and temperature of 24.1°C. (c) Recorded upconversion bandwidth for a 2-cm-long crystal, which is 15 nm (1.875 THz). (d) Experiment and simulation upconversion bandwidths as functions of crystal length.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S2(ω,L)sinc2{[(v21v11)ωΔk]L/2}I12.
d(Δk)dλ=4πcλ2δ.

Metrics