Abstract

Near infrared light-controlled release of payloads from ultraviolet-sensitive (UV-sensitive) polymer hydrogels or nanocarriers is one of the most promising strategies for biotherapy. Here, we propose the concept of light activation of NaYF4:20%Yb,2%Tm nanocrystals (NCs). NaYF4:20%Yb,2%Tm NCs are synthesized by a solvothermal method. Effective upconversion luminescence from NaYF4:20%Yb,2%Tm NCs excited by a continuous wave (CW) 980 nm laser is obtained. The NaYF4:20%Yb,2%Tm NCs are then used as a laser gain medium and sandwiched between Al and quartz reflectors to form laser microcavities. UV and blue upconverted random lasing is obtained from the laser microcavities. Hence, we verify explicitly that the NaYF4:Yb,Tm NCs support UV and blue upconversion random lasing via a 980 nm nanosecond laser excitation. Our work provides what we believe is a new concept for precision and localized cancer therapy by external light excitation.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF3 nanocrystals

Lili Wang, Xiaojie Xue, Feng Shi, Dan Zhao, Daisheng Zhang, Kezhi Zheng, Guofeng Wang, Chunfeng He, Ryongjin Kim, and Weiping Qin
Opt. Lett. 34(18) 2781-2783 (2009)

Up/down conversion switching by adjusting the pulse width of red laser beams in LaF3:Tm3+ nanocrystals

Dangli Gao, Dongping Tian, Guoqing Xiao, Bo Chong, Genghua Yu, and Qing Pang
Opt. Lett. 40(15) 3580-3583 (2015)

Enhanced upconversion fluorescence and altered particle size of β-NaGdF4:Yb3+/Er3+ nanocrystals by codoping with Mo3+ ions

Wei Zhu, Qixiao Wu, Suling Zhao, Zhiqin Liang, Yongxin Yang, Junjie Zhang, and Zheng Xu
Opt. Mater. Express 6(9) 3001-3007 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Yan, H. Zhao, D. F. Perepichka, and F. Rosei, “Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties,” Small 12, 3888–3907 (2016).
    [Crossref]
  2. L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, and P. A. Millner, “The theoretical molecular weight of NaYF4: RE upconversion nanoparticles,” Sci. Rep. 8, 1106 (2018).
    [Crossref]
  3. Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, and H. M. Kim, “Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors,” Phys. Chem. Chem. Phys. 19, 7326–7332 (2017).
    [Crossref]
  4. M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, and Z. Ji, “A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing,” J. Mater. Chem. C 4, 6516–6524 (2016).
    [Crossref]
  5. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014).
    [Crossref]
  6. B. Yan, J.-C. Boyer, N. R. Branda, and Y. Zhao, “Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles,” J. Am. Chem. Soc. 133, 19714–19717 (2011).
    [Crossref]
  7. B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 134, 16558–16561 (2012).
    [Crossref]
  8. F. Shi and Y. Zhao, “Sub-10  nm and monodisperse b-NaYF4:Yb, Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence,” J. Mater. Chem. C 2, 2198–2203 (2014).
    [Crossref]
  9. L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).
    [Crossref]
  10. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
    [Crossref]
  11. L. Florescu and S. John, “Photon statistics and coherence in light emission from a random laser,” Phys. Rev. Lett. 93, 013602 (2004).
    [Crossref]
  12. A. L. Burin, H. Cao, and M. A. Ratner, “Understanding and control of random lasing,” Phys. B Condens. Matter 338, 212–214 (2003).
    [Crossref]
  13. A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, and L. Chi, “Tunable random lasing behavior in plasmonic nanostructures,” Nano Converg. 4, 1 (2017).
    [Crossref]
  14. D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414, 708–709 (2001).
    [Crossref]
  15. R. C. Polson and Z. V. Varden, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
    [Crossref]
  16. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
    [Crossref]
  17. Q. Song, S. Xiao, Z. Xu, V. M. Shalaev, and Y. L. Kim, “Random laser spectroscopy for nanoscale perturbation sensing,” Opt. Lett. 35, 2624–2626 (2010).
    [Crossref]
  18. Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. Opt. Express 1, 1401–1407 (2010).
    [Crossref]
  19. S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in conjugated polymer thin films,” Phys. Rev. Lett. 78, 729–732 (1997).
    [Crossref]
  20. R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
    [Crossref]
  21. G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
    [Crossref]
  22. S. F. Yu and E. S. Leong, “High-power single-mode ZnO thin-film random lasers,” IEEE J. Quantum Electron. 40, 1186–1194 (2004).
    [Crossref]
  23. Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
    [Crossref]
  24. H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
    [Crossref]
  25. Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19, 345606 (2008).
    [Crossref]
  26. Q. Song, L. Liu, S. Xiao, X. Zhou, W. Wang, and L. Xu, “Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser,” Phys. Rev. Lett. 96, 033902 (2006).
    [Crossref]
  27. L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core shell nanoparticles via the use of laser cavity,” ACS Nano 11, 834–849 (2017).
    [Crossref]
  28. H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
    [Crossref]
  29. X. Xu, W. Zhang, L. Jin, J. Qiu, and S. F. Yu, “Random lasing in Eu(3)(+) doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation,” Nanoscale 7, 16246–16250 (2015).
    [Crossref]

2018 (2)

L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, and P. A. Millner, “The theoretical molecular weight of NaYF4: RE upconversion nanoparticles,” Sci. Rep. 8, 1106 (2018).
[Crossref]

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

2017 (4)

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core shell nanoparticles via the use of laser cavity,” ACS Nano 11, 834–849 (2017).
[Crossref]

Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, and H. M. Kim, “Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors,” Phys. Chem. Chem. Phys. 19, 7326–7332 (2017).
[Crossref]

A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, and L. Chi, “Tunable random lasing behavior in plasmonic nanostructures,” Nano Converg. 4, 1 (2017).
[Crossref]

2016 (3)

C. Yan, H. Zhao, D. F. Perepichka, and F. Rosei, “Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties,” Small 12, 3888–3907 (2016).
[Crossref]

M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, and Z. Ji, “A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing,” J. Mater. Chem. C 4, 6516–6524 (2016).
[Crossref]

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).
[Crossref]

2015 (1)

X. Xu, W. Zhang, L. Jin, J. Qiu, and S. F. Yu, “Random lasing in Eu(3)(+) doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation,” Nanoscale 7, 16246–16250 (2015).
[Crossref]

2014 (2)

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]

F. Shi and Y. Zhao, “Sub-10  nm and monodisperse b-NaYF4:Yb, Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence,” J. Mater. Chem. C 2, 2198–2203 (2014).
[Crossref]

2012 (2)

B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 134, 16558–16561 (2012).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref]

2011 (1)

B. Yan, J.-C. Boyer, N. R. Branda, and Y. Zhao, “Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles,” J. Am. Chem. Soc. 133, 19714–19717 (2011).
[Crossref]

2010 (2)

2008 (2)

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19, 345606 (2008).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

2006 (2)

Q. Song, L. Liu, S. Xiao, X. Zhou, W. Wang, and L. Xu, “Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser,” Phys. Rev. Lett. 96, 033902 (2006).
[Crossref]

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
[Crossref]

2005 (2)

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[Crossref]

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[Crossref]

2004 (3)

S. F. Yu and E. S. Leong, “High-power single-mode ZnO thin-film random lasers,” IEEE J. Quantum Electron. 40, 1186–1194 (2004).
[Crossref]

R. C. Polson and Z. V. Varden, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

L. Florescu and S. John, “Photon statistics and coherence in light emission from a random laser,” Phys. Rev. Lett. 93, 013602 (2004).
[Crossref]

2003 (1)

A. L. Burin, H. Cao, and M. A. Ratner, “Understanding and control of random lasing,” Phys. B Condens. Matter 338, 212–214 (2003).
[Crossref]

2001 (1)

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414, 708–709 (2001).
[Crossref]

1997 (1)

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in conjugated polymer thin films,” Phys. Rev. Lett. 78, 729–732 (1997).
[Crossref]

Akkus, O.

Boltasseva, A.

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

Boyer, J.-C.

B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 134, 16558–16561 (2012).
[Crossref]

B. Yan, J.-C. Boyer, N. R. Branda, and Y. Zhao, “Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles,” J. Am. Chem. Soc. 133, 19714–19717 (2011).
[Crossref]

Branda, N. R.

B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 134, 16558–16561 (2012).
[Crossref]

B. Yan, J.-C. Boyer, N. R. Branda, and Y. Zhao, “Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles,” J. Am. Chem. Soc. 133, 19714–19717 (2011).
[Crossref]

Burin, A. L.

A. L. Burin, H. Cao, and M. A. Ratner, “Understanding and control of random lasing,” Phys. B Condens. Matter 338, 212–214 (2003).
[Crossref]

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref]

A. L. Burin, H. Cao, and M. A. Ratner, “Understanding and control of random lasing,” Phys. B Condens. Matter 338, 212–214 (2003).
[Crossref]

Care, A.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).
[Crossref]

Cavalieri, S.

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414, 708–709 (2001).
[Crossref]

Chen, D.

M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, and Z. Ji, “A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing,” J. Mater. Chem. C 4, 6516–6524 (2016).
[Crossref]

Chen, G.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]

Chen, X.

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core shell nanoparticles via the use of laser cavity,” ACS Nano 11, 834–849 (2017).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]

Chen, Y.-F.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Cheng, B. H.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Cheng, G. J.

A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, and L. Chi, “Tunable random lasing behavior in plasmonic nanostructures,” Nano Converg. 4, 1 (2017).
[Crossref]

Chi, L.

A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, and L. Chi, “Tunable random lasing behavior in plasmonic nanostructures,” Nano Converg. 4, 1 (2017).
[Crossref]

Cho, Y.

Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, and H. M. Kim, “Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors,” Phys. Chem. Chem. Phys. 19, 7326–7332 (2017).
[Crossref]

Choi, S. H.

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref]

Dice, G. D.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[Crossref]

Elezzabi, A. Y.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[Crossref]

Florescu, L.

L. Florescu and S. John, “Photon statistics and coherence in light emission from a random laser,” Phys. Rev. Lett. 93, 013602 (2004).
[Crossref]

Frolov, S. V.

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in conjugated polymer thin films,” Phys. Rev. Lett. 78, 729–732 (1997).
[Crossref]

Gellermann, W.

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in conjugated polymer thin films,” Phys. Rev. Lett. 78, 729–732 (1997).
[Crossref]

Goode, J. A.

L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, and P. A. Millner, “The theoretical molecular weight of NaYF4: RE upconversion nanoparticles,” Sci. Rep. 8, 1106 (2018).
[Crossref]

Habault, D.

B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 134, 16558–16561 (2012).
[Crossref]

Haider, G.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Huang, P.

M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, and Z. Ji, “A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing,” J. Mater. Chem. C 4, 6516–6524 (2016).
[Crossref]

Ji, Z.

M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, and Z. Ji, “A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing,” J. Mater. Chem. C 4, 6516–6524 (2016).
[Crossref]

Jiang, L.

A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, and L. Chi, “Tunable random lasing behavior in plasmonic nanostructures,” Nano Converg. 4, 1 (2017).
[Crossref]

Jin, L.

X. Xu, W. Zhang, L. Jin, J. Qiu, and S. F. Yu, “Random lasing in Eu(3)(+) doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation,” Nanoscale 7, 16246–16250 (2015).
[Crossref]

Jin, L. M.

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core shell nanoparticles via the use of laser cavity,” ACS Nano 11, 834–849 (2017).
[Crossref]

John, S.

L. Florescu and S. John, “Photon statistics and coherence in light emission from a random laser,” Phys. Rev. Lett. 93, 013602 (2004).
[Crossref]

Jose, G.

L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, and P. A. Millner, “The theoretical molecular weight of NaYF4: RE upconversion nanoparticles,” Sci. Rep. 8, 1106 (2018).
[Crossref]

Kildishev, A. V.

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

Kim, H. M.

Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, and H. M. Kim, “Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors,” Phys. Chem. Chem. Phys. 19, 7326–7332 (2017).
[Crossref]

Kim, J. H.

Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, and H. M. Kim, “Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors,” Phys. Chem. Chem. Phys. 19, 7326–7332 (2017).
[Crossref]

Kim, Y. L.

Leong, E. S.

S. F. Yu and E. S. Leong, “High-power single-mode ZnO thin-film random lasers,” IEEE J. Quantum Electron. 40, 1186–1194 (2004).
[Crossref]

Li, Y.-H.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Li, Z.

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19, 345606 (2008).
[Crossref]

Liang, L.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).
[Crossref]

Liao, W.-C.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Liao, Y.-M.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Lim, S. Y.

Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, and H. M. Kim, “Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors,” Phys. Chem. Chem. Phys. 19, 7326–7332 (2017).
[Crossref]

Lin, H.-I.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Lin, S.-Y.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Lin, T.-Y.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Lin, W.-J.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Liu, L.

Q. Song, L. Liu, S. Xiao, X. Zhou, W. Wang, and L. Xu, “Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser,” Phys. Rev. Lett. 96, 033902 (2006).
[Crossref]

Lu, Y.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).
[Crossref]

Mackenzie, L. E.

L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, and P. A. Millner, “The theoretical molecular weight of NaYF4: RE upconversion nanoparticles,” Sci. Rep. 8, 1106 (2018).
[Crossref]

Mai, H.-X.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
[Crossref]

Meng, X.

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

Millner, P. A.

L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, and P. A. Millner, “The theoretical molecular weight of NaYF4: RE upconversion nanoparticles,” Sci. Rep. 8, 1106 (2018).
[Crossref]

Mujumdar, S.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[Crossref]

Nampi, P. P.

L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, and P. A. Millner, “The theoretical molecular weight of NaYF4: RE upconversion nanoparticles,” Sci. Rep. 8, 1106 (2018).
[Crossref]

Ozaki, M.

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in conjugated polymer thin films,” Phys. Rev. Lett. 78, 729–732 (1997).
[Crossref]

Packer, N. H.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).
[Crossref]

Park, C. R.

Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, and H. M. Kim, “Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors,” Phys. Chem. Chem. Phys. 19, 7326–7332 (2017).
[Crossref]

Perepichka, D. F.

C. Yan, H. Zhao, D. F. Perepichka, and F. Rosei, “Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties,” Small 12, 3888–3907 (2016).
[Crossref]

Perumal, P.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[Crossref]

R. C. Polson and Z. V. Varden, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

Prasad, P. N.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]

Qian, Y.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).
[Crossref]

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]

Qiu, J.

X. Xu, W. Zhang, L. Jin, J. Qiu, and S. F. Yu, “Random lasing in Eu(3)(+) doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation,” Nanoscale 7, 16246–16250 (2015).
[Crossref]

Ratner, M. A.

A. L. Burin, H. Cao, and M. A. Ratner, “Understanding and control of random lasing,” Phys. B Condens. Matter 338, 212–214 (2003).
[Crossref]

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref]

Rosei, F.

C. Yan, H. Zhao, D. F. Perepichka, and F. Rosei, “Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties,” Small 12, 3888–3907 (2016).
[Crossref]

Saha, S.

L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, and P. A. Millner, “The theoretical molecular weight of NaYF4: RE upconversion nanoparticles,” Sci. Rep. 8, 1106 (2018).
[Crossref]

Shalaev, V. M.

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

Q. Song, S. Xiao, Z. Xu, V. M. Shalaev, and Y. L. Kim, “Random laser spectroscopy for nanoscale perturbation sensing,” Opt. Lett. 35, 2624–2626 (2010).
[Crossref]

Shen, K.-C.

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Shi, F.

F. Shi and Y. Zhao, “Sub-10  nm and monodisperse b-NaYF4:Yb, Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence,” J. Mater. Chem. C 2, 2198–2203 (2014).
[Crossref]

Si, R.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
[Crossref]

Siu, C. K.

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core shell nanoparticles via the use of laser cavity,” ACS Nano 11, 834–849 (2017).
[Crossref]

Song, Q.

Song, S. W.

Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, and H. M. Kim, “Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors,” Phys. Chem. Chem. Phys. 19, 7326–7332 (2017).
[Crossref]

Sun, I.-D.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
[Crossref]

Sun, J.

A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, and L. Chi, “Tunable random lasing behavior in plasmonic nanostructures,” Nano Converg. 4, 1 (2017).
[Crossref]

Sun, X.

Sunna, A.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).
[Crossref]

Vakurov, A.

L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, and P. A. Millner, “The theoretical molecular weight of NaYF4: RE upconversion nanoparticles,” Sci. Rep. 8, 1106 (2018).
[Crossref]

Varden, Z. V.

R. C. Polson and Z. V. Varden, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[Crossref]

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in conjugated polymer thin films,” Phys. Rev. Lett. 78, 729–732 (1997).
[Crossref]

Wan, Z.

M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, and Z. Ji, “A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing,” J. Mater. Chem. C 4, 6516–6524 (2016).
[Crossref]

Wang, F.

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core shell nanoparticles via the use of laser cavity,” ACS Nano 11, 834–849 (2017).
[Crossref]

Wang, W.

Q. Song, L. Liu, S. Xiao, X. Zhou, W. Wang, and L. Xu, “Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser,” Phys. Rev. Lett. 96, 033902 (2006).
[Crossref]

Wang, Z.

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414, 708–709 (2001).
[Crossref]

Xiao, S.

Xu, L.

Q. Song, L. Liu, S. Xiao, X. Zhou, W. Wang, and L. Xu, “Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser,” Phys. Rev. Lett. 96, 033902 (2006).
[Crossref]

Xu, M.

M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, and Z. Ji, “A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing,” J. Mater. Chem. C 4, 6516–6524 (2016).
[Crossref]

Xu, X.

X. Xu, W. Zhang, L. Jin, J. Qiu, and S. F. Yu, “Random lasing in Eu(3)(+) doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation,” Nanoscale 7, 16246–16250 (2015).
[Crossref]

Xu, Z.

Yadav, A.

A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, and L. Chi, “Tunable random lasing behavior in plasmonic nanostructures,” Nano Converg. 4, 1 (2017).
[Crossref]

Yan, B.

B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 134, 16558–16561 (2012).
[Crossref]

B. Yan, J.-C. Boyer, N. R. Branda, and Y. Zhao, “Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles,” J. Am. Chem. Soc. 133, 19714–19717 (2011).
[Crossref]

Yan, C.

C. Yan, H. Zhao, D. F. Perepichka, and F. Rosei, “Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties,” Small 12, 3888–3907 (2016).
[Crossref]

Yan, C.-H.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
[Crossref]

Yan, Z.-G.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
[Crossref]

Yoshino, K.

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in conjugated polymer thin films,” Phys. Rev. Lett. 78, 729–732 (1997).
[Crossref]

You, L.-P.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
[Crossref]

Yu, S. F.

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core shell nanoparticles via the use of laser cavity,” ACS Nano 11, 834–849 (2017).
[Crossref]

X. Xu, W. Zhang, L. Jin, J. Qiu, and S. F. Yu, “Random lasing in Eu(3)(+) doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation,” Nanoscale 7, 16246–16250 (2015).
[Crossref]

S. F. Yu and E. S. Leong, “High-power single-mode ZnO thin-film random lasers,” IEEE J. Quantum Electron. 40, 1186–1194 (2004).
[Crossref]

Zhang, R.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).
[Crossref]

Zhang, W.

X. Xu, W. Zhang, L. Jin, J. Qiu, and S. F. Yu, “Random lasing in Eu(3)(+) doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation,” Nanoscale 7, 16246–16250 (2015).
[Crossref]

Zhang, Y.

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19, 345606 (2008).
[Crossref]

Zhang, Y.-W.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
[Crossref]

Zhao, H.

C. Yan, H. Zhao, D. F. Perepichka, and F. Rosei, “Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties,” Small 12, 3888–3907 (2016).
[Crossref]

Zhao, Y.

F. Shi and Y. Zhao, “Sub-10  nm and monodisperse b-NaYF4:Yb, Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence,” J. Mater. Chem. C 2, 2198–2203 (2014).
[Crossref]

B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 134, 16558–16561 (2012).
[Crossref]

B. Yan, J.-C. Boyer, N. R. Branda, and Y. Zhao, “Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles,” J. Am. Chem. Soc. 133, 19714–19717 (2011).
[Crossref]

Zhong, L.

A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, and L. Chi, “Tunable random lasing behavior in plasmonic nanostructures,” Nano Converg. 4, 1 (2017).
[Crossref]

Zhou, X.

Q. Song, L. Liu, S. Xiao, X. Zhou, W. Wang, and L. Xu, “Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser,” Phys. Rev. Lett. 96, 033902 (2006).
[Crossref]

Zhou, Y.

M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, and Z. Ji, “A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing,” J. Mater. Chem. C 4, 6516–6524 (2016).
[Crossref]

Zvyagin, A. V.

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, “Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy,” ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).
[Crossref]

ACS Nano (1)

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core shell nanoparticles via the use of laser cavity,” ACS Nano 11, 834–849 (2017).
[Crossref]

ACS Photon. (1)

H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, and Y.-F. Chen, “Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action,” ACS Photon. 5, 718–727 (2018).
[Crossref]

Appl. Phys. Lett. (2)

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[Crossref]

R. C. Polson and Z. V. Varden, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

Biomed. Opt. Express (1)

Chem. Rev. (1)

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

S. F. Yu and E. S. Leong, “High-power single-mode ZnO thin-film random lasers,” IEEE J. Quantum Electron. 40, 1186–1194 (2004).
[Crossref]

J. Am. Chem. Soc. (3)

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
[Crossref]

B. Yan, J.-C. Boyer, N. R. Branda, and Y. Zhao, “Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles,” J. Am. Chem. Soc. 133, 19714–19717 (2011).
[Crossref]

B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 134, 16558–16561 (2012).
[Crossref]

J. Mater. Chem. C (2)

F. Shi and Y. Zhao, “Sub-10  nm and monodisperse b-NaYF4:Yb, Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence,” J. Mater. Chem. C 2, 2198–2203 (2014).
[Crossref]

M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, and Z. Ji, “A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing,” J. Mater. Chem. C 4, 6516–6524 (2016).
[Crossref]

Laser Photon. Rev. (1)

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

Nano Converg. (1)

A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, and L. Chi, “Tunable random lasing behavior in plasmonic nanostructures,” Nano Converg. 4, 1 (2017).
[Crossref]

Nanoscale (1)

X. Xu, W. Zhang, L. Jin, J. Qiu, and S. F. Yu, “Random lasing in Eu(3)(+) doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation,” Nanoscale 7, 16246–16250 (2015).
[Crossref]

Nanotechnology (1)

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19, 345606 (2008).
[Crossref]

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

Nature (1)

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414, 708–709 (2001).
[Crossref]

Opt. Lett. (1)

Phys. B Condens. Matter (1)

A. L. Burin, H. Cao, and M. A. Ratner, “Understanding and control of random lasing,” Phys. B Condens. Matter 338, 212–214 (2003).
[Crossref]

Phys. Chem. Chem. Phys. (1)

Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, and H. M. Kim, “Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors,” Phys. Chem. Chem. Phys. 19, 7326–7332 (2017).
[Crossref]

Phys. Rev. B (1)

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[Crossref]

Phys. Rev. Lett. (3)

Q. Song, L. Liu, S. Xiao, X. Zhou, W. Wang, and L. Xu, “Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser,” Phys. Rev. Lett. 96, 033902 (2006).
[Crossref]

S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z. V. Vardeny, “Cooperative emission in conjugated polymer thin films,” Phys. Rev. Lett. 78, 729–732 (1997).
[Crossref]

L. Florescu and S. John, “Photon statistics and coherence in light emission from a random laser,” Phys. Rev. Lett. 93, 013602 (2004).
[Crossref]

Sci. Rep. (1)

L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, and P. A. Millner, “The theoretical molecular weight of NaYF4: RE upconversion nanoparticles,” Sci. Rep. 8, 1106 (2018).
[Crossref]

Small (1)

C. Yan, H. Zhao, D. F. Perepichka, and F. Rosei, “Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties,” Small 12, 3888–3907 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) TEM image and HR-TEM image (inset), (b) SAED pattern, (c) size distribution, and (d) XRD pattern of the NaYF4:Yb,Tm NCs.
Fig. 2.
Fig. 2. (a) Schematic diagram of energy levels and transitions of Yb3+ and Tm3+ ions by 980 nm pumping. (b) Upconversion luminescence spectra of NaYF4:20%Yb,2%Tm by 980 nm excitation at room temperature. The inset of (b) is the plot of peak intensity ratios, I345/I364, I346/I450, and I450/I474 versus Ip.
Fig. 3.
Fig. 3. Emission spectra versus different excitation power at (a) 345 nm and (b) 474 nm. The insets of (a) and (b) are the FWHM of the emission spectra of NCs lasers. (c) and (d) Output intensity and FWHM of the emission spectra at 345 nm and 474 nm versus different pump power density. Emission spectra at different observation angles at (e) 345 nm and (f) 474 nm. The left inset of (e) is the optical microscope image of the NaYF4:20%Yb,2%Tm NCs film. The inset of (f) is the sandwich structure of the proposed NaYF4:Yb,Tm NCs lasers.

Metrics