Abstract

Hybrid plasmonic waveguides leveraging the coupling between dielectric modes and plasmon polaritons have emerged as a major focus of research attention during the past decade. A feasible way for constructing practical hybrid plasmonic structures is to integrate metallic configurations with silicon-on-insulator waveguiding platforms. Here we report a transformative high-performance silicon-based hybrid plasmonic waveguide that consists of a silicon nano-rib loaded with a metallic nanowire. A deep-subwavelength mode area (λ2/4.5×105λ2/7×103), in conjunction with a reasonable propagation distance (2.2–60.2 μm), is achievable at a telecommunication wavelength of 1.55 μm. Such a nano-rib-based waveguide outperforms its conventional hybrid and plasmonic waveguiding counterparts, demonstrating tighter optical confinement for similar propagation distances and a significantly enhanced figure of merit. The guiding properties of the fundamental mode are also quite robust against possible fabrication imperfections. Due to the strong confinement capability, our proposed hybrid configuration features ultralow waveguide cross talk and enables submicron bends with moderate attenuation as well. The outstanding optical performance renders such waveguides as promising building blocks for ultracompact passive and active silicon-based integrated photonic components.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of multiple-slot waveguides for biochemical sensing

Iman Khodadad, Nigel Clarke, Mohammadreza Khorasaninejad, Dale Henneke, and Simarjeet S. Saini
Appl. Opt. 53(23) 5169-5178 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. F. Koenderink, A. Alu, and A. Polman, “Nanophotonics: shrinking light-based technology,” Science 348, 516–521 (2015).
    [Crossref]
  2. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
    [Crossref]
  3. N. Kinsey, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials,” J. Opt. Soc. Am. B 32, 121–142 (2015).
    [Crossref]
  4. Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
    [Crossref]
  5. C. L. Zhao, Y. M. Liu, Y. H. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
    [Crossref]
  6. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [Crossref]
  7. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref]
  8. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
    [Crossref]
  9. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8, 394–408 (2014).
    [Crossref]
  10. D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [Crossref]
  11. X. W. Guan, H. Wu, and D. X. Dai, “Silicon hybrid nanoplasmonics for ultra-dense photonic integration,” Front. Optoelectron. 7, 300–319 (2014).
    [Crossref]
  12. M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).
    [Crossref]
  13. H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
    [Crossref]
  14. X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
    [Crossref]
  15. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
    [Crossref]
  16. X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,” Opt. Lett. 37, 4814–4816 (2012).
    [Crossref]
  17. X. W. Guan, H. Wu, Y. C. Shi, L. Wosinski, and D. X. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38, 3005–3008 (2013).
    [Crossref]
  18. R. M. Ma, S. Ota, Y. M. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotech. 9, 600–604 (2014).
    [Crossref]
  19. Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
    [Crossref]
  20. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
    [Crossref]
  21. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010).
    [Crossref]
  22. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
    [Crossref]
  23. J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Tech. Lett. 23, 1481–1483 (2011).
    [Crossref]
  24. L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 30, 163–168 (2012).
    [Crossref]
  25. C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron. 18, 1661–1668 (2012).
    [Crossref]
  26. Y. S. Bian and Q. H. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21, 23907–23920 (2013).
    [Crossref]
  27. Y. Q. Ma, G. Farrell, Y. Semenova, and Q. Wu, “A hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement,” J. Lightwave Technol. 33, 3827–3835 (2015).
    [Crossref]
  28. C. C. Gui and J. Wang, “Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area,” Sci. Rep. 5, 11457 (2015).
  29. Y. S. Bian and Q. H. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photon. Rev. 8, 549–561 (2014).
    [Crossref]
  30. Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
    [Crossref]
  31. M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005).
    [Crossref]
  32. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  33. H. Wei and H. X. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophotonics 1, 155–169 (2012).
    [Crossref]
  34. X. Guo, Y. G. Ma, Y. P. Wang, and L. M. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
    [Crossref]
  35. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [Crossref]
  36. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
    [Crossref]
  37. S. P. Zhang and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
    [Crossref]
  38. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
    [Crossref]
  39. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [Crossref]
  40. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [Crossref]
  41. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [Crossref]
  42. G. Veronis and S. H. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
    [Crossref]
  43. Y. S. Bian and Q. H. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7, 4415–4422 (2015).
    [Crossref]
  44. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15, 4474–4484 (2007).
    [Crossref]
  45. G. Veronis and S. H. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
    [Crossref]
  46. W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).
    [Crossref]
  47. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
    [Crossref]
  48. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
    [Crossref]

2015 (5)

N. Kinsey, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials,” J. Opt. Soc. Am. B 32, 121–142 (2015).
[Crossref]

A. F. Koenderink, A. Alu, and A. Polman, “Nanophotonics: shrinking light-based technology,” Science 348, 516–521 (2015).
[Crossref]

Y. Q. Ma, G. Farrell, Y. Semenova, and Q. Wu, “A hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement,” J. Lightwave Technol. 33, 3827–3835 (2015).
[Crossref]

C. C. Gui and J. Wang, “Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area,” Sci. Rep. 5, 11457 (2015).

Y. S. Bian and Q. H. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7, 4415–4422 (2015).
[Crossref]

2014 (4)

Y. S. Bian and Q. H. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photon. Rev. 8, 549–561 (2014).
[Crossref]

R. M. Ma, S. Ota, Y. M. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotech. 9, 600–604 (2014).
[Crossref]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8, 394–408 (2014).
[Crossref]

X. W. Guan, H. Wu, and D. X. Dai, “Silicon hybrid nanoplasmonics for ultra-dense photonic integration,” Front. Optoelectron. 7, 300–319 (2014).
[Crossref]

2013 (6)

X. W. Guan, H. Wu, Y. C. Shi, L. Wosinski, and D. X. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38, 3005–3008 (2013).
[Crossref]

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[Crossref]

C. L. Zhao, Y. M. Liu, Y. H. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[Crossref]

Y. S. Bian and Q. H. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21, 23907–23920 (2013).
[Crossref]

X. Guo, Y. G. Ma, Y. P. Wang, and L. M. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[Crossref]

2012 (6)

L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 30, 163–168 (2012).
[Crossref]

C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron. 18, 1661–1668 (2012).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,” Opt. Lett. 37, 4814–4816 (2012).
[Crossref]

H. Wei and H. X. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophotonics 1, 155–169 (2012).
[Crossref]

S. P. Zhang and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
[Crossref]

2011 (4)

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
[Crossref]

J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Tech. Lett. 23, 1481–1483 (2011).
[Crossref]

2010 (4)

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[Crossref]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010).
[Crossref]

M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).
[Crossref]

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

2009 (3)

2008 (3)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref]

G. Veronis and S. H. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
[Crossref]

2007 (5)

2006 (4)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[Crossref]

2005 (3)

1994 (1)

Aitchison, J. S.

Alam, M. Z.

Alu, A.

A. F. Koenderink, A. Alu, and A. Polman, “Nanophotonics: shrinking light-based technology,” Science 348, 516–521 (2015).
[Crossref]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Bai, P.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Berini, P.

Bian, Y. S.

Y. S. Bian and Q. H. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7, 4415–4422 (2015).
[Crossref]

Y. S. Bian and Q. H. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photon. Rev. 8, 549–561 (2014).
[Crossref]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[Crossref]

Y. S. Bian and Q. H. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21, 23907–23920 (2013).
[Crossref]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

Boltasseva, A.

Bozhevolnyi, S. I.

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Buckley, R.

Chen, L.

Chen, S. H.

Chu, H. S.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

Conway, J. A.

Dai, D. X.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[Crossref]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Dufresne, E. R.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[Crossref]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Fan, S. H.

Fang, N.

C. L. Zhao, Y. M. Liu, Y. H. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref]

Farrell, G.

Ferrera, M.

Gao, D. S.

Garcia-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Gong, Q. H.

Y. S. Bian and Q. H. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7, 4415–4422 (2015).
[Crossref]

Y. S. Bian and Q. H. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photon. Rev. 8, 549–561 (2014).
[Crossref]

Y. S. Bian and Q. H. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21, 23907–23920 (2013).
[Crossref]

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[Crossref]

Guan, X. W.

Gui, C. C.

C. C. Gui and J. Wang, “Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area,” Sci. Rep. 5, 11457 (2015).

Guo, X.

X. Guo, Y. G. Ma, Y. P. Wang, and L. M. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[Crossref]

Han, Z.

Han, Z. H.

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[Crossref]

M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).
[Crossref]

He, S.

He, S. L.

Hegde, R.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

Huang, C. C.

C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron. 18, 1661–1668 (2012).
[Crossref]

Huang, T. J.

C. L. Zhao, Y. M. Liu, Y. H. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref]

Huang, W. P.

Kim, J. T.

J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Tech. Lett. 23, 1481–1483 (2011).
[Crossref]

Kimerling, L.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[Crossref]

Kinsey, N.

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[Crossref]

Koenderink, A. F.

A. F. Koenderink, A. Alu, and A. Polman, “Nanophotonics: shrinking light-based technology,” Science 348, 516–521 (2015).
[Crossref]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Kwong, D. L.

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[Crossref]

Li, E. P.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

Li, W.

Li, X.

Li, Y. M.

R. M. Ma, S. Ota, Y. M. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotech. 9, 600–604 (2014).
[Crossref]

Liow, T. Y.

Lipson, M.

Liu, J. S.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[Crossref]

Liu, L.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[Crossref]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[Crossref]

Liu, Y. M.

C. L. Zhao, Y. M. Liu, Y. H. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref]

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

Lo, G. Q.

Ma, R. M.

R. M. Ma, S. Ota, Y. M. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotech. 9, 600–604 (2014).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Ma, R.-M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Ma, Y. G.

X. Guo, Y. G. Ma, Y. P. Wang, and L. M. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[Crossref]

Ma, Y. Q.

Martin-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref]

Meier, J.

Mojahedi, M.

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref]

Ota, S.

R. M. Ma, S. Ota, Y. M. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotech. 9, 600–604 (2014).
[Crossref]

Oulton, R. F.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Polman, A.

A. F. Koenderink, A. Alu, and A. Polman, “Nanophotonics: shrinking light-based technology,” Science 348, 516–521 (2015).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Reed, M. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[Crossref]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Routenberg, D. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[Crossref]

Sahni, S.

Sanders, A. W.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[Crossref]

Semenova, Y.

Shalaev, V. M.

Shi, Y. C.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Sorger, V. J.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Su, Y. L.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[Crossref]

Sun, X.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Szkopek, T.

Tong, L. M.

X. Guo, Y. G. Ma, Y. P. Wang, and L. M. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[Crossref]

Van, V.

Veronis, G.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Wagner, S. J.

Wang, G. P.

Wang, J.

C. C. Gui and J. Wang, “Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area,” Sci. Rep. 5, 11457 (2015).

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Wang, Y. P.

X. Guo, Y. G. Ma, Y. P. Wang, and L. M. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[Crossref]

Wei, H.

H. Wei and H. X. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophotonics 1, 155–169 (2012).
[Crossref]

Wiley, B. J.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[Crossref]

Wosinski, L.

Wu, H.

Wu, M.

Wu, Q.

Xia, Y. N.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[Crossref]

Xiao, L.

Xu, H. X.

H. Wei and H. X. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophotonics 1, 155–169 (2012).
[Crossref]

S. P. Zhang and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
[Crossref]

Yang, S.

R. M. Ma, S. Ota, Y. M. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotech. 9, 600–604 (2014).
[Crossref]

Yang, X. D.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Yin, X. B.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Zhang, S. P.

S. P. Zhang and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
[Crossref]

Zhang, X.

R. M. Ma, S. Ota, Y. M. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotech. 9, 600–604 (2014).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Zhang, X. A.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

Zhao, C. L.

C. L. Zhao, Y. M. Liu, Y. H. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref]

Zhao, X.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[Crossref]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

Zhao, Y. H.

C. L. Zhao, Y. M. Liu, Y. H. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref]

Zheng, Z.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[Crossref]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

Zhou, T.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[Crossref]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

Zhu, J. S.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[Crossref]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

Zhu, S. Y.

ACS Nano (1)

S. P. Zhang and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
[Crossref]

Appl. Phys. Lett. (2)

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[Crossref]

Front. Optoelectron. (1)

X. W. Guan, H. Wu, and D. X. Dai, “Silicon hybrid nanoplasmonics for ultra-dense photonic integration,” Front. Optoelectron. 7, 300–319 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron. 18, 1661–1668 (2012).
[Crossref]

IEEE Photon. Tech. Lett. (1)

J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Tech. Lett. 23, 1481–1483 (2011).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. (1)

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (3)

Y. S. Bian and Q. H. Gong, “Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges,” Laser Photon. Rev. 8, 549–561 (2014).
[Crossref]

X. Guo, Y. G. Ma, Y. P. Wang, and L. M. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7, 855–881 (2013).
[Crossref]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8, 394–408 (2014).
[Crossref]

Nano Lett. (2)

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[Crossref]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006).
[Crossref]

Nanophotonics (2)

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

H. Wei and H. X. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophotonics 1, 155–169 (2012).
[Crossref]

Nanoscale (1)

Y. S. Bian and Q. H. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7, 4415–4422 (2015).
[Crossref]

Nat. Commun. (2)

C. L. Zhao, Y. M. Liu, Y. H. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Nat. Nanotech. (1)

R. M. Ma, S. Ota, Y. M. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotech. 9, 600–604 (2014).
[Crossref]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[Crossref]

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Opt. Express (10)

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[Crossref]

J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15, 4474–4484 (2007).
[Crossref]

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
[Crossref]

Y. S. Bian and Q. H. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21, 23907–23920 (2013).
[Crossref]

G. Veronis and S. H. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
[Crossref]

D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[Crossref]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref]

M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).
[Crossref]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010).
[Crossref]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

Phys. Rev. Lett. (2)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref]

Rep. Prog. Phys. (1)

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[Crossref]

Sci. Rep. (1)

C. C. Gui and J. Wang, “Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area,” Sci. Rep. 5, 11457 (2015).

Science (1)

A. F. Koenderink, A. Alu, and A. Polman, “Nanophotonics: shrinking light-based technology,” Science 348, 516–521 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Hybrid nanowire-loaded silicon nano-rib waveguide. (a) Schematic of the 3D geometry. (b) Cross section of the configuration within the x-y plane. The hybrid waveguide comprises a silver nanowire (with a radius of r) located above a silicon nano-rib structure on a silica substrate. An additional silica buffer layer (with a height of h) is sandwiched between the nanowire and the silicon slab, which also determines the gap size (i.e., g=h). The height of the silicon waveguide is H, and the rib width is w. The nanowire is positioned at the center (along the x axis) with respect to the silicon nano-rib.
Fig. 2.
Fig. 2. Normalized electric field distributions of the fundamental hybrid plasmonic mode supported by a typical hybrid nanowire-loaded nano-rib waveguide. The geometric parameters of the waveguide are w=10  nm, h=g=5  nm, r=75  nm, and t=60  nm. (a) 2D electric field profile in the x-y plane. 1D electric field plots along the (b) x and (c) y directions, respectively. The 1D field profiles are evaluated at the bottom corner of the silver nanowire.
Fig. 3.
Fig. 3. Dependence of modal properties on the radius of the silver nanowire for a silicon slab with different thicknesses (w=10  nm, h=5  nm): (a) modal effective index (neff); (b) propagation length (L), inset showing schematically the considered hybrid gap region in the study; (c) normalized mode area (Aeff/A0); (d) confinement factor in the hybrid gap (Γgap); (e) confinement factor inside the silicon region (ΓSi); (f) FoM. The dashed black line in (a) corresponds to the refractive index of the SiO2 substrate (ns=1.444).
Fig. 4.
Fig. 4. Dependence of the modal properties on the size of the silicon nano-rib (r=50  nm, t=40  nm): (a) modal effective index (neff); (b) propagation length (L); (c) normalized mode area (Aeff/A0); (d) confinement factor inside the hybrid gap (Γgap); (e) confinement factor within the silicon region (ΓSi); (f) FoM. The dashed black line in (a) represents the refractive index of the SiO2 substrate (ns=1.444). The inset in (d) shows schematically the hybrid gap region considered in the study.
Fig. 5.
Fig. 5. Dependence of the hybrid mode’s properties on lateral misalignments (the waveguide dimensions are r=50  nm, t=40  nm, w=10  nm, and h=5  nm): (a) modal effective index (neff); (b) propagation length (L); (c) normalized mode area (Aeff/A0); (d) confinement factor in the hybrid gap (Γgap); (e) confinement factor inside the silicon region (ΓSi); (f) FoM. The dashed black line in (a) corresponds to the refractive index of the SiO2 substrate (ns=1.444). The inset in (c) displays the electric field profile for the fundamental mode in a hybrid waveguide when Δx=5  nm. The inset in (d) shows the 2D schematic of a hybrid nanowire-loaded nano-rib waveguide with a laterally displaced silver nanowire. The deviation of the nanowire with respect to the silicon nano-rib is denoted as Δx.
Fig. 6.
Fig. 6. Dependence of the hybrid mode’s properties on Δw (the waveguide dimensions are r=50  nm, t=40  nm, w=10  nm, and h=5  nm): (a) modal effective index (neff); (b) propagation length (L); (c) normalized mode area (Aeff/A0); (d) confinement factor in the hybrid gap (Γgap); (e) confinement factor inside the silicon region (ΓSi); (f) FoM. The dashed black line in (a) corresponds to the refractive index of the SiO2 substrate (ns=1.444). The inset in (b) shows the 2D schematic of a hybrid nanowire-loaded nano-rib waveguide with a nonideal silicon nano-rib. The variation in the nano-rib width is denoted as Δw.
Fig. 7.
Fig. 7. (a), (b) Parametric plots of normalized mode area (Aeff/A0) versus normalized propagation length (L/λ). (a) The curves for hybrid nanowire-loaded nano-rib waveguides are obtained by replotting the results in Figs. 3(b) and 3(c). For the hybrid nanowire-loaded nano-rib waveguide and metallic nanowire waveguide, a trajectory corresponds to a range of nanowire radius: r=[10,80]nm. Arrows indicate increasing the size of the nanowire. The HPW comprises a silicon nanowire embedded in silica near a silver substrate. Its dimensions are r=100  nm, g=5  nm. (b) The curves for hybrid nanowire-loaded nano-rib waveguides are obtained by replotting the results in Figs. 4(b) and 4(c). For the hybrid nanowire-loaded nano-rib waveguide and HPW, a trajectory corresponds to a range of nano-rib height (gap size): h=g=[2,20]nm. Arrows indicate increasing h(g). The radii of the HPW and the metallic nanowire waveguide are 100 and 50 nm, respectively. NW, nanowire.
Fig. 8.
Fig. 8. Cross talk analysis for the proposed hybrid nanowire-loaded nano-rib waveguides, and performance comparison with metallic nanowire-loaded SOI waveguides and nanowire waveguides. (a) 3D schematic of the coupling system, which consists of two horizontally parallel hybrid nanowire-loaded nano-rib waveguides. The center-to-center separation between the waveguides is S. (b) The distributions of the major component (Ey) of the electric fields of the symmetric and antisymmetric modes in a typical coupling system based on hybrid nanowire-loaded nano-rib waveguides (r=50  nm, t=40  nm, w=10  nm, g=h=5  nm, and S=500  nm). (c)–(e) Dependence of the normalized coupling length (Lc/L) on the waveguide separation (S) for adjacent waveguides: (c) proposed waveguides (r=50  nm, t=40  nm, w=10  nm, and g=h=2  nm), metallic nanowire-loaded SOI waveguides (r=50  nm, t=40  nm, and g=2  nm), and nanowire waveguides (r=50  nm); (d) proposed waveguides (r=50  nm, t=40  nm, w=10  nm, and g=h=5  nm), metallic nanowire-loaded SOI waveguides (r=50  nm, t=40  nm, and g=5  nm), and nanowire waveguides (r=50  nm); (e) proposed waveguides (r=50  nm, t=40  nm, w=10  nm, and g=h=10  nm), metallic nanowire-loaded SOI waveguides (r=50  nm, t=40  nm, and g=10  nm), and nanowire waveguides (r=50  nm).
Fig. 9.
Fig. 9. (a) Dependence of the light transmission through a 90° hybrid nanowire-loaded nano-rib waveguide bend on the bend radius. The physical dimensions of the hybrid waveguide used in this study are r=20  nm, t=40  nm, w=10  nm, and h=5  nm. Transmitted electric field distributions for typical waveguide bends: (b) R=0.3  μm and (c) R=1  μm. The field profiles are evaluated at the center of the silicon nano-rib.
Fig. 10.
Fig. 10. Excitation of the fundamental plasmonic mode guided by the hybrid nanowire-loaded nano-rib waveguide. The 3D electric field profile shows that a paraxial Gaussian beam is focused normally onto the left terminus of a silver nanowire, which efficiently launches the plasmonic mode in the hybrid waveguide. In the simulations, the length of the silver nanowire is set to be 4 μm. Other structural parameters for the cross section of the configuration are r=50  nm, t=40  nm, w=10  nm, and h=5  nm. For better visibility, the silica substrate is not shown in the 3D figure. The left top figures demonstrate the 2D transmitted electric field plots in the y-z plane (x=0) and the 2D electric field profile over the cross section of the structure (x-y plane).
Fig. 11.
Fig. 11. Schematic of modified hybrid nanowire-loaded nano-rib waveguides and the electrical field distributions for the fundamental guided modes. (a), (b) Hybrid nanowire-loaded nano-rib waveguides that incorporate a silicon nanowedge in between the silicon slab and the silver nanowire (r=50  nm, h=10  nm, t=40  nm, and the tip angle of the wedge is 60°). (c), (d) Hybrid nanowire-loaded nano-rib waveguide with a silicon nanowire inside the gap region (r=50  nm, h=10  nm, t=40  nm, and the radius of the silicon nanowire is 5 nm).

Tables (1)

Tables Icon

Table 1. Comparisons of the FoM for the Hybrid Nanowire-Loaded Nano-Rib Waveguide Studied in this Paper and Other High-Performance Subwavelength Plasmonic Waveguides

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Aeff=W(r)dA/max(W(r)).
W(r)=12Re{d[ωϵ(r)]dω}|E(r)|2+12μ0|H(r)|2.
Lc=π/|kska|.

Metrics