X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).

[Crossref]

N. L. Aung, L. Ge, O. Malik, H. E. Türeci, and C. F. Gmachl, “Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping,” Appl. Phys. Lett. 107, 151106 (2015).

[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).

[Crossref]

S. F. Liew, L. Ge, B. Redding, G. S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).

[Crossref]

L. Ge, “Selective excitation of lasing modes by controlling modal interactions,” Opt. Express 23, 30049–30056 (2015).

[Crossref]

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).

[Crossref]

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5, 247–271 (2011).

[Crossref]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).

[Crossref]

J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).

[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: Generalization and analytic results,” Phys. Rev. A 82, 063824 (2010).

[Crossref]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).

[Crossref]

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).

[Crossref]

H. E. Türeci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).

[Crossref]

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasistadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).

[Crossref]

T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, C.-M. Kim, and Y.-J. Park, “Lasing modes in a spiral-shaped dielectric microcavity,” Opt. Lett. 31, 1250–1252 (2006).

[Crossref]

L. I. Deych, “Effects of spatial nonuniformity on laser dynamics,” Phys. Rev. Lett. 95, 043902 (2005).

[Crossref]

S. Sunada, T. Harayama, and K. S. Ikeda, “Multimode lasing in two-dimensional fully chaotic cavity lasers,” Phys. Rev. E 71, 046209 (2005).

[Crossref]

S. Shinohara, S. Sunada, T. Harayama, and K. S. Ikeda, “Mode expansion description of stadium-cavity laser dynamics,” Phys. Rev. E 71, 036203 (2005).

[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Chaos-assisted tunneling in dielectric microcavities,” Opt. Lett. 30, 474–476 (2005).

[Crossref]

T. Harayama, S. Sunada, and K. S. Ikeda, “Theory of two-dimensional microcavity lasers,” Phys. Rev. A 72, 013803 (2005).

[Crossref]

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, “Scarred resonances and steady probability distribution in a chaotic microcavity,” Phys. Rev. A 72, 061801(R) (2005).

[Crossref]

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).

[Crossref]

S. Sunada, T. Harayama, and K. S. Ikeda, “Nonlinear whispering-gallery modes in a microellipse cavity,” Opt. Lett. 29, 718–720 (2004).

[Crossref]

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE J. Sel. Top. Quantum Electron. 10, 1039–1051 (2004).

[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).

[Crossref]

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, “Asymmetric stationary lasing patterns in 2D symmetric microcavities,” Phys. Rev. Lett. 91, 073903 (2003).

[Crossref]

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A 5, 53–60 (2003).

[Crossref]

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside–outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).

[Crossref]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).

[Crossref]

T. E. Tureci, H. G. L. Schwefel, A. D. Stone, and E. E. Narimanov, “Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities,” Opt. Express 10, 752–776 (2002).

[Crossref]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385, 45–47 (1997).

[Crossref]

J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).

[Crossref]

N. L. Aung, L. Ge, O. Malik, H. E. Türeci, and C. F. Gmachl, “Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping,” Appl. Phys. Lett. 107, 151106 (2015).

[Crossref]

S. F. Liew, L. Ge, B. Redding, G. S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).

[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).

[Crossref]

J. Wiersig, J. Unterhinninghofen, Q. H. Song, H. Cao, M. Hentschel, and S. Shinohara, “Review on unidirectional light emission from ultralow-loss modes in deformed microdisks,” in Trends in Nano- and Micro-cavities, O. Kwon, B. Lee, and K. An, eds. (Bentham Books, 2011), pp. 109–152.

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).

[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).

[Crossref]

H. G. L. Schwefel, H. E. Tureci, A. D. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2004), pp. 415–495.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).

[Crossref]

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasistadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).

[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: Generalization and analytic results,” Phys. Rev. A 82, 063824 (2010).

[Crossref]

H. E. Türeci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).

[Crossref]

J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).

[Crossref]

L. I. Deych, “Effects of spatial nonuniformity on laser dynamics,” Phys. Rev. Lett. 95, 043902 (2005).

[Crossref]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).

[Crossref]

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasistadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).

[Crossref]

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE J. Sel. Top. Quantum Electron. 10, 1039–1051 (2004).

[Crossref]

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, “Asymmetric stationary lasing patterns in 2D symmetric microcavities,” Phys. Rev. Lett. 91, 073903 (2003).

[Crossref]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).

[Crossref]

S. F. Liew, L. Ge, B. Redding, G. S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).

[Crossref]

L. Ge, “Selective excitation of lasing modes by controlling modal interactions,” Opt. Express 23, 30049–30056 (2015).

[Crossref]

N. L. Aung, L. Ge, O. Malik, H. E. Türeci, and C. F. Gmachl, “Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping,” Appl. Phys. Lett. 107, 151106 (2015).

[Crossref]

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).

[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: Generalization and analytic results,” Phys. Rev. A 82, 063824 (2010).

[Crossref]

N. L. Aung, L. Ge, O. Malik, H. E. Türeci, and C. F. Gmachl, “Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping,” Appl. Phys. Lett. 107, 151106 (2015).

[Crossref]

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).

[Crossref]

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5, 247–271 (2011).

[Crossref]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).

[Crossref]

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).

[Crossref]

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasistadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).

[Crossref]

S. Sunada, T. Harayama, and K. S. Ikeda, “Multimode lasing in two-dimensional fully chaotic cavity lasers,” Phys. Rev. E 71, 046209 (2005).

[Crossref]

S. Shinohara, S. Sunada, T. Harayama, and K. S. Ikeda, “Mode expansion description of stadium-cavity laser dynamics,” Phys. Rev. E 71, 036203 (2005).

[Crossref]

T. Harayama, S. Sunada, and K. S. Ikeda, “Theory of two-dimensional microcavity lasers,” Phys. Rev. A 72, 013803 (2005).

[Crossref]

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE J. Sel. Top. Quantum Electron. 10, 1039–1051 (2004).

[Crossref]

S. Sunada, T. Harayama, and K. S. Ikeda, “Nonlinear whispering-gallery modes in a microellipse cavity,” Opt. Lett. 29, 718–720 (2004).

[Crossref]

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, “Asymmetric stationary lasing patterns in 2D symmetric microcavities,” Phys. Rev. Lett. 91, 073903 (2003).

[Crossref]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).

[Crossref]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).

[Crossref]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).

[Crossref]

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside–outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).

[Crossref]

J. Wiersig, J. Unterhinninghofen, Q. H. Song, H. Cao, M. Hentschel, and S. Shinohara, “Review on unidirectional light emission from ultralow-loss modes in deformed microdisks,” in Trends in Nano- and Micro-cavities, O. Kwon, B. Lee, and K. An, eds. (Bentham Books, 2011), pp. 109–152.

T. Harayama, S. Sunada, and K. S. Ikeda, “Theory of two-dimensional microcavity lasers,” Phys. Rev. A 72, 013803 (2005).

[Crossref]

S. Shinohara, S. Sunada, T. Harayama, and K. S. Ikeda, “Mode expansion description of stadium-cavity laser dynamics,” Phys. Rev. E 71, 036203 (2005).

[Crossref]

S. Sunada, T. Harayama, and K. S. Ikeda, “Multimode lasing in two-dimensional fully chaotic cavity lasers,” Phys. Rev. E 71, 046209 (2005).

[Crossref]

S. Sunada, T. Harayama, and K. S. Ikeda, “Nonlinear whispering-gallery modes in a microellipse cavity,” Opt. Lett. 29, 718–720 (2004).

[Crossref]

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, “Asymmetric stationary lasing patterns in 2D symmetric microcavities,” Phys. Rev. Lett. 91, 073903 (2003).

[Crossref]

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).

[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).

[Crossref]

T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, C.-M. Kim, and Y.-J. Park, “Lasing modes in a spiral-shaped dielectric microcavity,” Opt. Lett. 31, 1250–1252 (2006).

[Crossref]

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, “Scarred resonances and steady probability distribution in a chaotic microcavity,” Phys. Rev. A 72, 061801(R) (2005).

[Crossref]

J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).

[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).

[Crossref]

T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, C.-M. Kim, and Y.-J. Park, “Lasing modes in a spiral-shaped dielectric microcavity,” Opt. Lett. 31, 1250–1252 (2006).

[Crossref]

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, “Scarred resonances and steady probability distribution in a chaotic microcavity,” Phys. Rev. A 72, 061801(R) (2005).

[Crossref]

J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).

[Crossref]

J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).

[Crossref]

J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).

[Crossref]

T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, C.-M. Kim, and Y.-J. Park, “Lasing modes in a spiral-shaped dielectric microcavity,” Opt. Lett. 31, 1250–1252 (2006).

[Crossref]

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, “Scarred resonances and steady probability distribution in a chaotic microcavity,” Phys. Rev. A 72, 061801(R) (2005).

[Crossref]

S. F. Liew, L. Ge, B. Redding, G. S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).

[Crossref]

R. Loudon, The Quantum Theory of Light (Oxford University, 2000).

N. L. Aung, L. Ge, O. Malik, H. E. Türeci, and C. F. Gmachl, “Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping,” Appl. Phys. Lett. 107, 151106 (2015).

[Crossref]

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).

[Crossref]

J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).

[Crossref]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).

[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Chaos-assisted tunneling in dielectric microcavities,” Opt. Lett. 30, 474–476 (2005).

[Crossref]

T. E. Tureci, H. G. L. Schwefel, A. D. Stone, and E. E. Narimanov, “Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities,” Opt. Express 10, 752–776 (2002).

[Crossref]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385, 45–47 (1997).

[Crossref]

S. F. Liew, L. Ge, B. Redding, G. S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).

[Crossref]

T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, C.-M. Kim, and Y.-J. Park, “Lasing modes in a spiral-shaped dielectric microcavity,” Opt. Lett. 31, 1250–1252 (2006).

[Crossref]

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, “Scarred resonances and steady probability distribution in a chaotic microcavity,” Phys. Rev. A 72, 061801(R) (2005).

[Crossref]

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, “Scarred resonances and steady probability distribution in a chaotic microcavity,” Phys. Rev. A 72, 061801(R) (2005).

[Crossref]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).

[Crossref]

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside–outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).

[Crossref]

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside–outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).

[Crossref]

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).

[Crossref]

T. E. Tureci, H. G. L. Schwefel, A. D. Stone, and E. E. Narimanov, “Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities,” Opt. Express 10, 752–776 (2002).

[Crossref]

H. G. L. Schwefel, H. E. Tureci, A. D. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2004), pp. 415–495.

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5, 247–271 (2011).

[Crossref]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).

[Crossref]

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).

[Crossref]

S. Shinohara, S. Sunada, T. Harayama, and K. S. Ikeda, “Mode expansion description of stadium-cavity laser dynamics,” Phys. Rev. E 71, 036203 (2005).

[Crossref]

J. Wiersig, J. Unterhinninghofen, Q. H. Song, H. Cao, M. Hentschel, and S. Shinohara, “Review on unidirectional light emission from ultralow-loss modes in deformed microdisks,” in Trends in Nano- and Micro-cavities, O. Kwon, B. Lee, and K. An, eds. (Bentham Books, 2011), pp. 109–152.

S. F. Liew, L. Ge, B. Redding, G. S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).

[Crossref]

J. Wiersig, J. Unterhinninghofen, Q. H. Song, H. Cao, M. Hentschel, and S. Shinohara, “Review on unidirectional light emission from ultralow-loss modes in deformed microdisks,” in Trends in Nano- and Micro-cavities, O. Kwon, B. Lee, and K. An, eds. (Bentham Books, 2011), pp. 109–152.

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: Generalization and analytic results,” Phys. Rev. A 82, 063824 (2010).

[Crossref]

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).

[Crossref]

H. E. Türeci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).

[Crossref]

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).

[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).

[Crossref]

T. E. Tureci, H. G. L. Schwefel, A. D. Stone, and E. E. Narimanov, “Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities,” Opt. Express 10, 752–776 (2002).

[Crossref]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385, 45–47 (1997).

[Crossref]

H. G. L. Schwefel, H. E. Tureci, A. D. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2004), pp. 415–495.

T. Harayama, S. Sunada, and K. S. Ikeda, “Theory of two-dimensional microcavity lasers,” Phys. Rev. A 72, 013803 (2005).

[Crossref]

S. Shinohara, S. Sunada, T. Harayama, and K. S. Ikeda, “Mode expansion description of stadium-cavity laser dynamics,” Phys. Rev. E 71, 036203 (2005).

[Crossref]

S. Sunada, T. Harayama, and K. S. Ikeda, “Multimode lasing in two-dimensional fully chaotic cavity lasers,” Phys. Rev. E 71, 046209 (2005).

[Crossref]

S. Sunada, T. Harayama, and K. S. Ikeda, “Nonlinear whispering-gallery modes in a microellipse cavity,” Opt. Lett. 29, 718–720 (2004).

[Crossref]

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, “Asymmetric stationary lasing patterns in 2D symmetric microcavities,” Phys. Rev. Lett. 91, 073903 (2003).

[Crossref]

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasistadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).

[Crossref]

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).

[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).

[Crossref]

H. G. L. Schwefel, H. E. Tureci, A. D. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2004), pp. 415–495.

N. L. Aung, L. Ge, O. Malik, H. E. Türeci, and C. F. Gmachl, “Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping,” Appl. Phys. Lett. 107, 151106 (2015).

[Crossref]

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).

[Crossref]

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).

[Crossref]

H. E. Türeci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).

[Crossref]

J. Wiersig, J. Unterhinninghofen, Q. H. Song, H. Cao, M. Hentschel, and S. Shinohara, “Review on unidirectional light emission from ultralow-loss modes in deformed microdisks,” in Trends in Nano- and Micro-cavities, O. Kwon, B. Lee, and K. An, eds. (Bentham Books, 2011), pp. 109–152.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).

[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).

[Crossref]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).

[Crossref]

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A 5, 53–60 (2003).

[Crossref]

J. Wiersig, J. Unterhinninghofen, Q. H. Song, H. Cao, M. Hentschel, and S. Shinohara, “Review on unidirectional light emission from ultralow-loss modes in deformed microdisks,” in Trends in Nano- and Micro-cavities, O. Kwon, B. Lee, and K. An, eds. (Bentham Books, 2011), pp. 109–152.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).

[Crossref]

J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).

[Crossref]

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).

[Crossref]

N. L. Aung, L. Ge, O. Malik, H. E. Türeci, and C. F. Gmachl, “Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping,” Appl. Phys. Lett. 107, 151106 (2015).

[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).

[Crossref]

M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasistadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88, 211110 (2006).

[Crossref]

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside–outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).

[Crossref]

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE J. Sel. Top. Quantum Electron. 10, 1039–1051 (2004).

[Crossref]

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A 5, 53–60 (2003).

[Crossref]

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).

[Crossref]

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5, 247–271 (2011).

[Crossref]

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).

[Crossref]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385, 45–47 (1997).

[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Chaos-assisted tunneling in dielectric microcavities,” Opt. Lett. 30, 474–476 (2005).

[Crossref]

T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, C.-M. Kim, and Y.-J. Park, “Lasing modes in a spiral-shaped dielectric microcavity,” Opt. Lett. 31, 1250–1252 (2006).

[Crossref]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).

[Crossref]

S. Sunada, T. Harayama, and K. S. Ikeda, “Nonlinear whispering-gallery modes in a microellipse cavity,” Opt. Lett. 29, 718–720 (2004).

[Crossref]

S. F. Liew, L. Ge, B. Redding, G. S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).

[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: Generalization and analytic results,” Phys. Rev. A 82, 063824 (2010).

[Crossref]

T. Harayama, S. Sunada, and K. S. Ikeda, “Theory of two-dimensional microcavity lasers,” Phys. Rev. A 72, 013803 (2005).

[Crossref]

H. E. Türeci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).

[Crossref]

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, “Scarred resonances and steady probability distribution in a chaotic microcavity,” Phys. Rev. A 72, 061801(R) (2005).

[Crossref]

S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74, 033820 (2006).

[Crossref]

S. Sunada, T. Harayama, and K. S. Ikeda, “Multimode lasing in two-dimensional fully chaotic cavity lasers,” Phys. Rev. E 71, 046209 (2005).

[Crossref]

S. Shinohara, S. Sunada, T. Harayama, and K. S. Ikeda, “Mode expansion description of stadium-cavity laser dynamics,” Phys. Rev. E 71, 036203 (2005).

[Crossref]

L. I. Deych, “Effects of spatial nonuniformity on laser dynamics,” Phys. Rev. Lett. 95, 043902 (2005).

[Crossref]

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, “Asymmetric stationary lasing patterns in 2D symmetric microcavities,” Phys. Rev. Lett. 91, 073903 (2003).

[Crossref]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).

[Crossref]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).

[Crossref]

J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).

[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).

[Crossref]

H. G. L. Schwefel, H. E. Tureci, A. D. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2004), pp. 415–495.

J. Wiersig, J. Unterhinninghofen, Q. H. Song, H. Cao, M. Hentschel, and S. Shinohara, “Review on unidirectional light emission from ultralow-loss modes in deformed microdisks,” in Trends in Nano- and Micro-cavities, O. Kwon, B. Lee, and K. An, eds. (Bentham Books, 2011), pp. 109–152.

R. Loudon, The Quantum Theory of Light (Oxford University, 2000).