Abstract

Stable dual-mode semiconductor lasers can be applied for the photonic generation of microwave and terahertz waves. In this paper, the mode characteristics of a variable curvature microresonator are investigated by a two-dimensional finite element method for realizing stable dual-mode lasing. The microresonator features a smooth boundary and the same symmetry as a square resonator. A small variable-curvature microresonator with a radius of 4 μm can support the fundamental four-bounce mode and the circular-like mode simultaneously, with quality factors up to the order of 104 and 105, respectively. The dual modes in the phase space of the Poincaré surface of sections distribute far from each other and can maintain enough stability for dual-mode lasing. Furthermore, the refractive index and waveguide can modulate the dual-mode wavelength difference and quality factors efficiently thanks to the spatially separated fields of these two modes.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Observation of emission from chaotic lasing modes in deformed microspheres: displacement by the stable-orbit modes

Seongsik Chang, Richard K. Chang, A. Douglas Stone, and Jens U. Nöckel
J. Opt. Soc. Am. B 17(11) 1828-1834 (2000)

Abnormal high-Q modes of coupled stadium-shaped microcavities

Jung-Wan Ryu, Soo-Young Lee, Inbo Kim, Muhan Choi, Martina Hentschel, and Sang Wook Kim
Opt. Lett. 39(14) 4196-4199 (2014)

Spectral engineering for circular-side square microlasers

Hai-Zhong Weng, Yue-De Yang, Jin-Long Xiao, You-Zeng Hao, and Yong-Zhen Huang
Opt. Express 26(8) 9409-9414 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  2. G. Chern, H. Tureci, A. D. Stone, R. Chang, M. Kneissl, and N. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
    [Crossref]
  3. J. Unterhinninghofen, J. Wiersig, and M. Hentschel, “Goos-Hänchen shift and localization of optical modes in deformed microcavities,” Phys. Rev. E 78, 016201 (2008).
    [Crossref]
  4. H. E. Tureci, H. Schwefel, A. D. Stone, and E. Narimanov, “Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities,” Opt. Express 10, 752–776 (2002).
    [Crossref]
  5. C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
    [Crossref]
  6. J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
    [Crossref]
  7. X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGalnAs-InP microcylinder lasers,” IEEE Photon. Technol. Lett. 24, 963–965 (2012).
    [Crossref]
  8. L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013).
    [Crossref]
  9. X. W. Ma, X. M. Lv, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Mode characteristics for unidirectional-emission microring resonator lasers,” J. Opt. Soc. Am. B 31, 2773–2778 (2014).
    [Crossref]
  10. H. Z. Weng, Y. Z. Huang, Y. D. Yang, X. W. Ma, J. L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
    [Crossref]
  11. Z. X. Xiao, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and X. W. Ma, “Single-mode unidirectional-emission circular-side hexagonal resonator microlasers,” Opt. Lett. 42, 1309–1312 (2017).
    [Crossref]
  12. M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photon. Technol. Lett. 9, 158–160 (1997).
    [Crossref]
  13. P. Pellandini, R. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
    [Crossref]
  14. M. Brunner, K. Gulden, R. Hovel, M. Moser, J. Carlin, R. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
    [Crossref]
  15. N. Kim, J. Shin, E. Sim, C. W. Lee, D. S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express 17, 13851–13859 (2009).
    [Crossref]
  16. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
    [Crossref]
  17. Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
    [Crossref]
  18. H. Long, Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, L. X. Zou, and B. W. Liu, “Dual-transverse-mode microsquare lasers with tunable wavelength interval,” Opt. Lett. 40, 3548–3551 (2015).
    [Crossref]
  19. M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
    [Crossref]
  20. L. Chusseau, F. Philippe, P. Viktorovitch, and X. Letartre, “Mode competition in a dual-mode quantum-dot semiconductor microlaser,” Phy. Rev. A 88, 015803 (2013).
    [Crossref]
  21. M. Yamada, “Transverse and longitudinal mode control in semiconductor injection lasers,” IEEE J. Quantum Electron. 19, 1365–1380 (1983).
    [Crossref]
  22. M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
    [Crossref]
  23. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er 3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18, 12291–12297 (2010).
    [Crossref]
  24. S. Hoffmann, M. Hofmann, M. Kira, and S. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
    [Crossref]
  25. S. Osborne, S. O’Brien, E. O’Reilly, P. Huggard, and B. Ellison, “Generation of CW 0.5  THz radiation by photomixing the output of a two-colour 1.49  μm Fabry-Perot diode laser,” Electron. Lett. 44, 296–298 (2008).
    [Crossref]
  26. A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008).
    [Crossref]
  27. R. Price, V. Verma, K. Tobin, V. Elarde, and J. Coleman, “Y-branch surface-etched distributed Bragg reflector lasers at 850  nm for optical heterodyning,” IEEE Photon. Technol. Lett. 19, 1610–1612 (2007).
    [Crossref]

2017 (2)

H. Z. Weng, Y. Z. Huang, Y. D. Yang, X. W. Ma, J. L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and X. W. Ma, “Single-mode unidirectional-emission circular-side hexagonal resonator microlasers,” Opt. Lett. 42, 1309–1312 (2017).
[Crossref]

2015 (1)

2014 (1)

2013 (2)

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013).
[Crossref]

L. Chusseau, F. Philippe, P. Viktorovitch, and X. Letartre, “Mode competition in a dual-mode quantum-dot semiconductor microlaser,” Phy. Rev. A 88, 015803 (2013).
[Crossref]

2012 (1)

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGalnAs-InP microcylinder lasers,” IEEE Photon. Technol. Lett. 24, 963–965 (2012).
[Crossref]

2010 (1)

2009 (1)

2008 (4)

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[Crossref]

J. Unterhinninghofen, J. Wiersig, and M. Hentschel, “Goos-Hänchen shift and localization of optical modes in deformed microcavities,” Phys. Rev. E 78, 016201 (2008).
[Crossref]

S. Osborne, S. O’Brien, E. O’Reilly, P. Huggard, and B. Ellison, “Generation of CW 0.5  THz radiation by photomixing the output of a two-colour 1.49  μm Fabry-Perot diode laser,” Electron. Lett. 44, 296–298 (2008).
[Crossref]

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008).
[Crossref]

2007 (1)

R. Price, V. Verma, K. Tobin, V. Elarde, and J. Coleman, “Y-branch surface-etched distributed Bragg reflector lasers at 850  nm for optical heterodyning,” IEEE Photon. Technol. Lett. 19, 1610–1612 (2007).
[Crossref]

2006 (1)

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[Crossref]

2005 (3)

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
[Crossref]

S. Hoffmann, M. Hofmann, M. Kira, and S. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[Crossref]

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

2003 (3)

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

G. Chern, H. Tureci, A. D. Stone, R. Chang, M. Kneissl, and N. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

2002 (1)

2000 (1)

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. Carlin, R. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[Crossref]

1998 (1)

C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[Crossref]

1997 (2)

M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photon. Technol. Lett. 9, 158–160 (1997).
[Crossref]

P. Pellandini, R. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[Crossref]

1983 (1)

M. Yamada, “Transverse and longitudinal mode control in semiconductor injection lasers,” IEEE J. Quantum Electron. 19, 1365–1380 (1983).
[Crossref]

Brunner, M.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. Carlin, R. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[Crossref]

Capasso, F.

C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[Crossref]

Carlin, J.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. Carlin, R. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[Crossref]

Chang, R.

G. Chern, H. Tureci, A. D. Stone, R. Chang, M. Kneissl, and N. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Chen, X.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[Crossref]

Chern, G.

G. Chern, H. Tureci, A. D. Stone, R. Chang, M. Kneissl, and N. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Cho, A. Y.

C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[Crossref]

Chun, H. S.

Chusseau, L.

L. Chusseau, F. Philippe, P. Viktorovitch, and X. Letartre, “Mode competition in a dual-mode quantum-dot semiconductor microlaser,” Phy. Rev. A 88, 015803 (2013).
[Crossref]

Coleman, J.

R. Price, V. Verma, K. Tobin, V. Elarde, and J. Coleman, “Y-branch surface-etched distributed Bragg reflector lasers at 850  nm for optical heterodyning,” IEEE Photon. Technol. Lett. 19, 1610–1612 (2007).
[Crossref]

M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photon. Technol. Lett. 9, 158–160 (1997).
[Crossref]

Dai, Y.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[Crossref]

Du, Y.

H. Z. Weng, Y. Z. Huang, Y. D. Yang, X. W. Ma, J. L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

X. W. Ma, X. M. Lv, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Mode characteristics for unidirectional-emission microring resonator lasers,” J. Opt. Soc. Am. B 31, 2773–2778 (2014).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGalnAs-InP microcylinder lasers,” IEEE Photon. Technol. Lett. 24, 963–965 (2012).
[Crossref]

Elarde, V.

R. Price, V. Verma, K. Tobin, V. Elarde, and J. Coleman, “Y-branch surface-etched distributed Bragg reflector lasers at 850  nm for optical heterodyning,” IEEE Photon. Technol. Lett. 19, 1610–1612 (2007).
[Crossref]

Ellison, B.

S. Osborne, S. O’Brien, E. O’Reilly, P. Huggard, and B. Ellison, “Generation of CW 0.5  THz radiation by photomixing the output of a two-colour 1.49  μm Fabry-Perot diode laser,” Electron. Lett. 44, 296–298 (2008).
[Crossref]

Erbert, G.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008).
[Crossref]

Faist, J.

C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[Crossref]

Fricke, J.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008).
[Crossref]

Gmachl, C.

C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[Crossref]

Gulden, K.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. Carlin, R. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[Crossref]

Han, S.-P.

Hangyo, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

Hentschel, M.

J. Unterhinninghofen, J. Wiersig, and M. Hentschel, “Goos-Hänchen shift and localization of optical modes in deformed microcavities,” Phys. Rev. E 78, 016201 (2008).
[Crossref]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[Crossref]

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
[Crossref]

Hoffmann, S.

S. Hoffmann, M. Hofmann, M. Kira, and S. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[Crossref]

Hofmann, M.

S. Hoffmann, M. Hofmann, M. Kira, and S. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[Crossref]

Houdre, R.

P. Pellandini, R. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[Crossref]

Hovel, R.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. Carlin, R. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[Crossref]

Huang, Y. Z.

H. Z. Weng, Y. Z. Huang, Y. D. Yang, X. W. Ma, J. L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and X. W. Ma, “Single-mode unidirectional-emission circular-side hexagonal resonator microlasers,” Opt. Lett. 42, 1309–1312 (2017).
[Crossref]

H. Long, Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, L. X. Zou, and B. W. Liu, “Dual-transverse-mode microsquare lasers with tunable wavelength interval,” Opt. Lett. 40, 3548–3551 (2015).
[Crossref]

X. W. Ma, X. M. Lv, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Mode characteristics for unidirectional-emission microring resonator lasers,” J. Opt. Soc. Am. B 31, 2773–2778 (2014).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGalnAs-InP microcylinder lasers,” IEEE Photon. Technol. Lett. 24, 963–965 (2012).
[Crossref]

Huggard, P.

S. Osborne, S. O’Brien, E. O’Reilly, P. Huggard, and B. Ellison, “Generation of CW 0.5  THz radiation by photomixing the output of a two-colour 1.49  μm Fabry-Perot diode laser,” Electron. Lett. 44, 296–298 (2008).
[Crossref]

Ilegems, M.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. Carlin, R. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[Crossref]

P. Pellandini, R. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[Crossref]

Jang, Y.

Jeon, M. Y.

Jeong, J. S.

Johnson, N.

G. Chern, H. Tureci, A. D. Stone, R. Chang, M. Kneissl, and N. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Kim, N.

Kira, M.

S. Hoffmann, M. Hofmann, M. Kira, and S. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[Crossref]

Klehr, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008).
[Crossref]

Knauer, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008).
[Crossref]

Kneissl, M.

G. Chern, H. Tureci, A. D. Stone, R. Chang, M. Kneissl, and N. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Koch, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008).
[Crossref]

Koch, S.

S. Hoffmann, M. Hofmann, M. Kira, and S. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[Crossref]

Lammert, R.

M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photon. Technol. Lett. 9, 158–160 (1997).
[Crossref]

Lee, C. W.

Leem, Y. A.

Letartre, X.

L. Chusseau, F. Philippe, P. Viktorovitch, and X. Letartre, “Mode competition in a dual-mode quantum-dot semiconductor microlaser,” Phy. Rev. A 88, 015803 (2013).
[Crossref]

Lin, J. D.

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGalnAs-InP microcylinder lasers,” IEEE Photon. Technol. Lett. 24, 963–965 (2012).
[Crossref]

Liu, B. W.

Liu, X.

Long, H.

H. Long, Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, L. X. Zou, and B. W. Liu, “Dual-transverse-mode microsquare lasers with tunable wavelength interval,” Opt. Lett. 40, 3548–3551 (2015).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013).
[Crossref]

Lu, C.

Lu, F.

Lv, X. M.

X. W. Ma, X. M. Lv, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Mode characteristics for unidirectional-emission microring resonator lasers,” J. Opt. Soc. Am. B 31, 2773–2778 (2014).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGalnAs-InP microcylinder lasers,” IEEE Photon. Technol. Lett. 24, 963–965 (2012).
[Crossref]

Ma, X. W.

Matsuura, S.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

Mikulics, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008).
[Crossref]

Morikawa, O.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

Moser, M.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. Carlin, R. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[Crossref]

Narimanov, E.

H. E. Tureci, H. Schwefel, A. D. Stone, and E. Narimanov, “Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities,” Opt. Express 10, 752–776 (2002).
[Crossref]

C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[Crossref]

Ng, J.

Nöckel, J. U.

C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[Crossref]

O’Brien, S.

S. Osborne, S. O’Brien, E. O’Reilly, P. Huggard, and B. Ellison, “Generation of CW 0.5  THz radiation by photomixing the output of a two-colour 1.49  μm Fabry-Perot diode laser,” Electron. Lett. 44, 296–298 (2008).
[Crossref]

O’Reilly, E.

S. Osborne, S. O’Brien, E. O’Reilly, P. Huggard, and B. Ellison, “Generation of CW 0.5  THz radiation by photomixing the output of a two-colour 1.49  μm Fabry-Perot diode laser,” Electron. Lett. 44, 296–298 (2008).
[Crossref]

Oesterle, U.

P. Pellandini, R. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[Crossref]

Osborne, S.

S. Osborne, S. O’Brien, E. O’Reilly, P. Huggard, and B. Ellison, “Generation of CW 0.5  THz radiation by photomixing the output of a two-colour 1.49  μm Fabry-Perot diode laser,” Electron. Lett. 44, 296–298 (2008).
[Crossref]

Osowski, M.

M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photon. Technol. Lett. 9, 158–160 (1997).
[Crossref]

Park, K. H.

Pellandini, P.

P. Pellandini, R. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[Crossref]

Philippe, F.

L. Chusseau, F. Philippe, P. Viktorovitch, and X. Letartre, “Mode competition in a dual-mode quantum-dot semiconductor microlaser,” Phy. Rev. A 88, 015803 (2013).
[Crossref]

Price, R.

R. Price, V. Verma, K. Tobin, V. Elarde, and J. Coleman, “Y-branch surface-etched distributed Bragg reflector lasers at 850  nm for optical heterodyning,” IEEE Photon. Technol. Lett. 19, 1610–1612 (2007).
[Crossref]

Schomerus, H.

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
[Crossref]

Schubert, R.

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
[Crossref]

Schwefel, H.

Shin, J.

Sim, E.

Sivco, D. L.

C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[Crossref]

Stanley, R.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. Carlin, R. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[Crossref]

P. Pellandini, R. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[Crossref]

Stone, A. D.

G. Chern, H. Tureci, A. D. Stone, R. Chang, M. Kneissl, and N. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

H. E. Tureci, H. Schwefel, A. D. Stone, and E. Narimanov, “Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities,” Opt. Express 10, 752–776 (2002).
[Crossref]

C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[Crossref]

Tani, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

Tobin, K.

R. Price, V. Verma, K. Tobin, V. Elarde, and J. Coleman, “Y-branch surface-etched distributed Bragg reflector lasers at 850  nm for optical heterodyning,” IEEE Photon. Technol. Lett. 19, 1610–1612 (2007).
[Crossref]

Tureci, H.

G. Chern, H. Tureci, A. D. Stone, R. Chang, M. Kneissl, and N. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Tureci, H. E.

Unterhinninghofen, J.

J. Unterhinninghofen, J. Wiersig, and M. Hentschel, “Goos-Hänchen shift and localization of optical modes in deformed microcavities,” Phys. Rev. E 78, 016201 (2008).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Verma, V.

R. Price, V. Verma, K. Tobin, V. Elarde, and J. Coleman, “Y-branch surface-etched distributed Bragg reflector lasers at 850  nm for optical heterodyning,” IEEE Photon. Technol. Lett. 19, 1610–1612 (2007).
[Crossref]

Viktorovitch, P.

L. Chusseau, F. Philippe, P. Viktorovitch, and X. Letartre, “Mode competition in a dual-mode quantum-dot semiconductor microlaser,” Phy. Rev. A 88, 015803 (2013).
[Crossref]

Walther, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008).
[Crossref]

Weisbuch, C.

P. Pellandini, R. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[Crossref]

Weng, H. Z.

H. Z. Weng, Y. Z. Huang, Y. D. Yang, X. W. Ma, J. L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

Wiersig, J.

J. Unterhinninghofen, J. Wiersig, and M. Hentschel, “Goos-Hänchen shift and localization of optical modes in deformed microcavities,” Phys. Rev. E 78, 016201 (2008).
[Crossref]

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[Crossref]

Wilk, R.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008).
[Crossref]

Xiao, J. L.

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and X. W. Ma, “Single-mode unidirectional-emission circular-side hexagonal resonator microlasers,” Opt. Lett. 42, 1309–1312 (2017).
[Crossref]

H. Z. Weng, Y. Z. Huang, Y. D. Yang, X. W. Ma, J. L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

H. Long, Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, L. X. Zou, and B. W. Liu, “Dual-transverse-mode microsquare lasers with tunable wavelength interval,” Opt. Lett. 40, 3548–3551 (2015).
[Crossref]

X. W. Ma, X. M. Lv, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Mode characteristics for unidirectional-emission microring resonator lasers,” J. Opt. Soc. Am. B 31, 2773–2778 (2014).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGalnAs-InP microcylinder lasers,” IEEE Photon. Technol. Lett. 24, 963–965 (2012).
[Crossref]

Xiao, Z. X.

Xie, S.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[Crossref]

Yamada, M.

M. Yamada, “Transverse and longitudinal mode control in semiconductor injection lasers,” IEEE J. Quantum Electron. 19, 1365–1380 (1983).
[Crossref]

Yang, X.

Yang, Y. D.

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and X. W. Ma, “Single-mode unidirectional-emission circular-side hexagonal resonator microlasers,” Opt. Lett. 42, 1309–1312 (2017).
[Crossref]

H. Z. Weng, Y. Z. Huang, Y. D. Yang, X. W. Ma, J. L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

H. Long, Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, L. X. Zou, and B. W. Liu, “Dual-transverse-mode microsquare lasers with tunable wavelength interval,” Opt. Lett. 40, 3548–3551 (2015).
[Crossref]

X. W. Ma, X. M. Lv, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Mode characteristics for unidirectional-emission microring resonator lasers,” J. Opt. Soc. Am. B 31, 2773–2778 (2014).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGalnAs-InP microcylinder lasers,” IEEE Photon. Technol. Lett. 24, 963–965 (2012).
[Crossref]

Yao, Q. F.

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGalnAs-InP microcylinder lasers,” IEEE Photon. Technol. Lett. 24, 963–965 (2012).
[Crossref]

Yao, Y.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[Crossref]

Yee, D. S.

Yee, D.-S.

Zhou, X.

Zou, L. X.

H. Long, Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, L. X. Zou, and B. W. Liu, “Dual-transverse-mode microsquare lasers with tunable wavelength interval,” Opt. Lett. 40, 3548–3551 (2015).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGalnAs-InP microcylinder lasers,” IEEE Photon. Technol. Lett. 24, 963–965 (2012).
[Crossref]

Appl. Phys. Lett. (2)

G. Chern, H. Tureci, A. D. Stone, R. Chang, M. Kneissl, and N. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

P. Pellandini, R. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[Crossref]

Electron. Lett. (1)

S. Osborne, S. O’Brien, E. O’Reilly, P. Huggard, and B. Ellison, “Generation of CW 0.5  THz radiation by photomixing the output of a two-colour 1.49  μm Fabry-Perot diode laser,” Electron. Lett. 44, 296–298 (2008).
[Crossref]

Europhys. Lett. (1)

M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Yamada, “Transverse and longitudinal mode control in semiconductor injection lasers,” IEEE J. Quantum Electron. 19, 1365–1380 (1983).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (5)

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. Carlin, R. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[Crossref]

X. M. Lv, L. X. Zou, J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, J. L. Xiao, and Y. Du, “Unidirectional-emission single-mode AlGalnAs-InP microcylinder lasers,” IEEE Photon. Technol. Lett. 24, 963–965 (2012).
[Crossref]

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[Crossref]

R. Price, V. Verma, K. Tobin, V. Elarde, and J. Coleman, “Y-branch surface-etched distributed Bragg reflector lasers at 850  nm for optical heterodyning,” IEEE Photon. Technol. Lett. 19, 1610–1612 (2007).
[Crossref]

M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photon. Technol. Lett. 9, 158–160 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phy. Rev. A (1)

L. Chusseau, F. Philippe, P. Viktorovitch, and X. Letartre, “Mode competition in a dual-mode quantum-dot semiconductor microlaser,” Phy. Rev. A 88, 015803 (2013).
[Crossref]

Phys. Rev. A (1)

H. Z. Weng, Y. Z. Huang, Y. D. Yang, X. W. Ma, J. L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

Phys. Rev. E (1)

J. Unterhinninghofen, J. Wiersig, and M. Hentschel, “Goos-Hänchen shift and localization of optical modes in deformed microcavities,” Phys. Rev. E 78, 016201 (2008).
[Crossref]

Phys. Rev. Lett. (1)

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[Crossref]

Science (1)

C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[Crossref]

Semicond. Sci. Technol. (2)

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[Crossref]

S. Hoffmann, M. Hofmann, M. Kira, and S. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of a 2D VCM. The curvature is linearly changed as the boundary starting from zero curvature points to the neighboring maximum-curvature points.
Fig. 2.
Fig. 2. (a) Mode intensity spectrum and mode field patterns |Hz| of the (b) circular-like mode, (c) fundamental four-bounce mode, (d) first-order four-bounce mode, and (e) high-order hybrid mode.
Fig. 3.
Fig. 3. Q factors and wavelengths for deformed resonator from VCM to (a) microcircular resonator and (b) microsquare resonator.
Fig. 4.
Fig. 4. (a) Poincaré surface of sections (SOSs) of VCM; inset shows ray trajectories of two kinds of closed orbits with reflection times of 3000, which are marked by dots of the same color in the phase space. We zoom in on one of the droplets to show the details of the regular regions. (b) Top and droplet centers of the SOS; horizontal and vertical coordinate ranges are expressed on the left and bottom of each graph.
Fig. 5.
Fig. 5. Husimi projections of the (a) circular-like mode and (b) fundamental four-bounce mode. Insets show the field distributions |Hz| of both modes.
Fig. 6.
Fig. 6. (a) Wavelengths, Q factors, and (b) frequency differentials of circular-like and fundamental four-bounce modes versus the refractive index change of the dark-colored ring region.
Fig. 7.
Fig. 7. Frequencies of the circular-like and fundamental four-bounce modes versus VCM size.
Fig. 8.
Fig. 8. (a) Q factors of dual mode versus waveguide rotating angles and field distributions of |Hz| for the circular-like modes with rotating angles of (b) 0° and (c) 27°, and for the fundamental four-bounce modes with rotating angles of (d) 27° and (e) 45°.

Tables (2)

Tables Icon

Table 1. Wavelengths and Q Factors for Symmetric TE Modes in VCM with d=4  μm

Tables Icon

Table 2. Ratios of Cross-Saturation Coefficient to Self-Saturation Coefficient

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ(θ)={k0θrdθ0<θπ4kθπ2rdθπ4<θπ2,
rdef=rVCM+α(rcircular(square)rVCM),
Gm(k)=c1+δm,k|Fm(r)Fk(r)|2dr,

Metrics