Abstract

We present a method to generate a frequency-doubled microwave signal by employing a coupling-modulated ring resonator. Critical coupling is achieved when the resonator intrinsic loss is perfectly balanced by the external coupling enabled by a Mach–Zehnder interferometer coupler. The high suppression of the carrier leads to a clean two-tone optical signal with the frequency interval two times larger than that of the input microwave frequency. The beating of the two-tone signal at a photodiode generates the frequency upconverted microwave signal. A theoretical model is established to analyze the modulation process and the microwave signal generation. Experimental results show that the electrical harmonic suppression ratio is around 20  dB (29 dB) for an input microwave signal with 5 dBm (10 dBm) power.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Frequency comb generation in a silicon ring resonator modulator

Iosif Demirtzioglou, Cosimo Lacava, Kyle R. H. Bottrill, David J. Thomson, Graham T. Reed, David J. Richardson, and Periklis Petropoulos
Opt. Express 26(2) 790-796 (2018)

Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links

Leimeng Zhuang, Caterina Taddei, Marcel Hoekman, Arne Leinse, René Heideman, Paulus van Dijk, and Chris Roeloffzen
Opt. Express 21(22) 25999-26013 (2013)

Coupled-ring-resonator-based silicon modulator for enhanced performance

Yunchu Li, Lin Zhang, Muping Song, Bo Zhang, Jeng-Yuan Yang, Raymond G. Beausoleil, Alan E. Willner, and P. Daniel Dapkus
Opt. Express 16(17) 13342-13348 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
    [Crossref]
  2. T. Berceli and P. R. Herczfeld, “Microwave photonics-A historical perspective,” IEEE Trans. Microwave Theory Tech. 58, 2992–3000 (2010).
    [Crossref]
  3. A. Madjar and T. Berceli, “Microwave generation by optical techniques-A review,” in 36th European Microwave Conference (IEEE, 2006), pp. 1099–1102.
  4. A. Stohr, A. Malcoci, and D. Jager, “THz photomixing employing travelling-wave photodetectors,” in IEEE MTT-S International Microwave Symposium Digest (2004), pp. 275–278.
  5. A. Madjar, P. R. Herczfeld, A. Rosen, P. Yu, and D. Jager, “Design considerations for a uni-traveling carrier traveling wave photo detector for efficient generation of millimeter wave and sub-mm wave signals,” in European Microwave Conference (IEEE, 2005), p. 3.
  6. D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998, 139–147 (2003).
    [Crossref]
  7. T. Banky, T. Berceli, and B. Horváth, “Improving the frequency stability and phase noise of opto-electronic oscillators by harmonic feedback,” in IEEE MTT-S International Microwave Symposium Digest (2004), pp. 291–294.
  8. N. Yu, E. Salik, and L. Maleki, “Photonic microwave oscillator using mode-locked laser as the high Q resonator,” in IEEE International Frequency Control Symposium and Exposition (2004), pp. 219–223.
  9. K. K. Gupta, D. Novak, and H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
    [Crossref]
  10. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
    [Crossref]
  11. X. Lin, L. Chao, C. W. Chow, and T. Hon Ki, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett. 21, 209–211 (2009).
    [Crossref]
  12. J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett. 19, 1057–1059 (2007).
    [Crossref]
  13. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
    [Crossref]
  14. W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microwave Theory Tech. 58, 3259–3268 (2010).
    [Crossref]
  15. J. O’reilly, P. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
    [Crossref]
  16. J. O’reilly and P. Lane, “Fibre-supported optical generation and delivery of 60  GHz signals,” Electron. Lett. 30, 1329–1330 (1994).
    [Crossref]
  17. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  18. L. Zhou, Y. Zhou, M. Wang, Y. Zhong, Y. Xia, and J. Chen, “Microwave signal processing using high speed silicon optical modulators,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), paper AS2E.2.
  19. Y. Zhong, L. Zhou, Y. Xia, M. Wang, and J. Chen, “Microwave frequency-doubling based on a coupling-modulated silicon ring resonator,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SM1O.8.
  20. H. Shao, H. Yu, X. Li, Y. Li, J. Jiang, H. Wei, G. Wang, T. Dai, Q. Chen, J. Yang, and X. Jiang, “On-chip microwave signal generation based on a silicon microring modulator,” Opt. Lett. 40, 3360–3363 (2015).
    [Crossref]
  21. R. Yang, L. Zhou, H. Zhu, and J. Chen, “28  Gb/s BPSK modulation in a coupling-tuned silicon microring resonator,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015), pp. 1–2.
  22. R. Yang, L. Zhou, H. Zhu, and J. Chen, “Low-voltage high-speed coupling modulation in silicon racetrack ring resonators,” Opt. Express 23, 28993–29003 (2015).
    [Crossref]
  23. W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol. 27, 3800–3811 (2009).
    [Crossref]
  24. W. D. Sacher and J. K. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16, 15741–15753 (2008).
    [Crossref]
  25. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]

2015 (2)

2012 (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

2010 (2)

T. Berceli and P. R. Herczfeld, “Microwave photonics-A historical perspective,” IEEE Trans. Microwave Theory Tech. 58, 2992–3000 (2010).
[Crossref]

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microwave Theory Tech. 58, 3259–3268 (2010).
[Crossref]

2009 (2)

X. Lin, L. Chao, C. W. Chow, and T. Hon Ki, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett. 21, 209–211 (2009).
[Crossref]

W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol. 27, 3800–3811 (2009).
[Crossref]

2008 (1)

2007 (1)

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett. 19, 1057–1059 (2007).
[Crossref]

2006 (2)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
[Crossref]

2005 (1)

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

2003 (1)

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998, 139–147 (2003).
[Crossref]

2000 (1)

K. K. Gupta, D. Novak, and H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
[Crossref]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[Crossref]

1994 (1)

J. O’reilly and P. Lane, “Fibre-supported optical generation and delivery of 60  GHz signals,” Electron. Lett. 30, 1329–1330 (1994).
[Crossref]

1992 (1)

J. O’reilly, P. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
[Crossref]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Banky, T.

T. Banky, T. Berceli, and B. Horváth, “Improving the frequency stability and phase noise of opto-electronic oscillators by harmonic feedback,” in IEEE MTT-S International Microwave Symposium Digest (2004), pp. 291–294.

Belisle, C.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

Berceli, T.

T. Berceli and P. R. Herczfeld, “Microwave photonics-A historical perspective,” IEEE Trans. Microwave Theory Tech. 58, 2992–3000 (2010).
[Crossref]

A. Madjar and T. Berceli, “Microwave generation by optical techniques-A review,” in 36th European Microwave Conference (IEEE, 2006), pp. 1099–1102.

T. Banky, T. Berceli, and B. Horváth, “Improving the frequency stability and phase noise of opto-electronic oscillators by harmonic feedback,” in IEEE MTT-S International Microwave Symposium Digest (2004), pp. 291–294.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Chao, L.

X. Lin, L. Chao, C. W. Chow, and T. Hon Ki, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett. 21, 209–211 (2009).
[Crossref]

Chen, H.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett. 19, 1057–1059 (2007).
[Crossref]

Chen, J.

R. Yang, L. Zhou, H. Zhu, and J. Chen, “Low-voltage high-speed coupling modulation in silicon racetrack ring resonators,” Opt. Express 23, 28993–29003 (2015).
[Crossref]

R. Yang, L. Zhou, H. Zhu, and J. Chen, “28  Gb/s BPSK modulation in a coupling-tuned silicon microring resonator,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015), pp. 1–2.

L. Zhou, Y. Zhou, M. Wang, Y. Zhong, Y. Xia, and J. Chen, “Microwave signal processing using high speed silicon optical modulators,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), paper AS2E.2.

Y. Zhong, L. Zhou, Y. Xia, M. Wang, and J. Chen, “Microwave frequency-doubling based on a coupling-modulated silicon ring resonator,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SM1O.8.

Chen, M.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett. 19, 1057–1059 (2007).
[Crossref]

Chen, Q.

Chow, C. W.

X. Lin, L. Chao, C. W. Chow, and T. Hon Ki, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett. 21, 209–211 (2009).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Dai, T.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Eliyahu, D.

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998, 139–147 (2003).
[Crossref]

Gupta, K. K.

K. K. Gupta, D. Novak, and H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
[Crossref]

Heidemann, R.

J. O’reilly, P. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
[Crossref]

Herczfeld, P. R.

T. Berceli and P. R. Herczfeld, “Microwave photonics-A historical perspective,” IEEE Trans. Microwave Theory Tech. 58, 2992–3000 (2010).
[Crossref]

A. Madjar, P. R. Herczfeld, A. Rosen, P. Yu, and D. Jager, “Design considerations for a uni-traveling carrier traveling wave photo detector for efficient generation of millimeter wave and sub-mm wave signals,” in European Microwave Conference (IEEE, 2005), p. 3.

Hofstetter, R.

J. O’reilly, P. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
[Crossref]

Hon Ki, T.

X. Lin, L. Chao, C. W. Chow, and T. Hon Ki, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett. 21, 209–211 (2009).
[Crossref]

Horváth, B.

T. Banky, T. Berceli, and B. Horváth, “Improving the frequency stability and phase noise of opto-electronic oscillators by harmonic feedback,” in IEEE MTT-S International Microwave Symposium Digest (2004), pp. 291–294.

Jager, D.

A. Madjar, P. R. Herczfeld, A. Rosen, P. Yu, and D. Jager, “Design considerations for a uni-traveling carrier traveling wave photo detector for efficient generation of millimeter wave and sub-mm wave signals,” in European Microwave Conference (IEEE, 2005), p. 3.

A. Stohr, A. Malcoci, and D. Jager, “THz photomixing employing travelling-wave photodetectors,” in IEEE MTT-S International Microwave Symposium Digest (2004), pp. 275–278.

Jiang, J.

Jiang, X.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Lane, P.

J. O’reilly and P. Lane, “Fibre-supported optical generation and delivery of 60  GHz signals,” Electron. Lett. 30, 1329–1330 (1994).
[Crossref]

J. O’reilly, P. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
[Crossref]

Li, W.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microwave Theory Tech. 58, 3259–3268 (2010).
[Crossref]

Li, X.

Li, Y.

Lin, X.

X. Lin, L. Chao, C. W. Chow, and T. Hon Ki, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett. 21, 209–211 (2009).
[Crossref]

Liu, H.-F.

K. K. Gupta, D. Novak, and H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
[Crossref]

Madjar, A.

A. Madjar, P. R. Herczfeld, A. Rosen, P. Yu, and D. Jager, “Design considerations for a uni-traveling carrier traveling wave photo detector for efficient generation of millimeter wave and sub-mm wave signals,” in European Microwave Conference (IEEE, 2005), p. 3.

A. Madjar and T. Berceli, “Microwave generation by optical techniques-A review,” in 36th European Microwave Conference (IEEE, 2006), pp. 1099–1102.

Malcoci, A.

A. Stohr, A. Malcoci, and D. Jager, “THz photomixing employing travelling-wave photodetectors,” in IEEE MTT-S International Microwave Symposium Digest (2004), pp. 275–278.

Maleki, L.

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998, 139–147 (2003).
[Crossref]

N. Yu, E. Salik, and L. Maleki, “Photonic microwave oscillator using mode-locked laser as the high Q resonator,” in IEEE International Frequency Control Symposium and Exposition (2004), pp. 219–223.

Novak, D.

K. K. Gupta, D. Novak, and H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[Crossref]

O’reilly, J.

J. O’reilly and P. Lane, “Fibre-supported optical generation and delivery of 60  GHz signals,” Electron. Lett. 30, 1329–1330 (1994).
[Crossref]

J. O’reilly, P. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
[Crossref]

Paquet, S.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

Poon, J. K.

Poon, J. K. S.

Qi, G.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

Rosen, A.

A. Madjar, P. R. Herczfeld, A. Rosen, P. Yu, and D. Jager, “Design considerations for a uni-traveling carrier traveling wave photo detector for efficient generation of millimeter wave and sub-mm wave signals,” in European Microwave Conference (IEEE, 2005), p. 3.

Sacher, W. D.

Salik, E.

N. Yu, E. Salik, and L. Maleki, “Photonic microwave oscillator using mode-locked laser as the high Q resonator,” in IEEE International Frequency Control Symposium and Exposition (2004), pp. 219–223.

Sariri, K.

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998, 139–147 (2003).
[Crossref]

Seeds, A. J.

Seregelyi, J.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

Shao, H.

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Stohr, A.

A. Stohr, A. Malcoci, and D. Jager, “THz photomixing employing travelling-wave photodetectors,” in IEEE MTT-S International Microwave Symposium Digest (2004), pp. 275–278.

Taylor, J.

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998, 139–147 (2003).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Wang, G.

Wang, M.

Y. Zhong, L. Zhou, Y. Xia, M. Wang, and J. Chen, “Microwave frequency-doubling based on a coupling-modulated silicon ring resonator,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SM1O.8.

L. Zhou, Y. Zhou, M. Wang, Y. Zhong, Y. Xia, and J. Chen, “Microwave signal processing using high speed silicon optical modulators,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), paper AS2E.2.

Wang, T.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett. 19, 1057–1059 (2007).
[Crossref]

Wei, H.

Williams, K. J.

Xia, Y.

L. Zhou, Y. Zhou, M. Wang, Y. Zhong, Y. Xia, and J. Chen, “Microwave signal processing using high speed silicon optical modulators,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), paper AS2E.2.

Y. Zhong, L. Zhou, Y. Xia, M. Wang, and J. Chen, “Microwave frequency-doubling based on a coupling-modulated silicon ring resonator,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SM1O.8.

Xie, S.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett. 19, 1057–1059 (2007).
[Crossref]

Yang, J.

Yang, R.

R. Yang, L. Zhou, H. Zhu, and J. Chen, “Low-voltage high-speed coupling modulation in silicon racetrack ring resonators,” Opt. Express 23, 28993–29003 (2015).
[Crossref]

R. Yang, L. Zhou, H. Zhu, and J. Chen, “28  Gb/s BPSK modulation in a coupling-tuned silicon microring resonator,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015), pp. 1–2.

Yao, J.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microwave Theory Tech. 58, 3259–3268 (2010).
[Crossref]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

Yu, H.

Yu, N.

N. Yu, E. Salik, and L. Maleki, “Photonic microwave oscillator using mode-locked laser as the high Q resonator,” in IEEE International Frequency Control Symposium and Exposition (2004), pp. 219–223.

Yu, P.

A. Madjar, P. R. Herczfeld, A. Rosen, P. Yu, and D. Jager, “Design considerations for a uni-traveling carrier traveling wave photo detector for efficient generation of millimeter wave and sub-mm wave signals,” in European Microwave Conference (IEEE, 2005), p. 3.

Zhang, J.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett. 19, 1057–1059 (2007).
[Crossref]

Zhong, Y.

L. Zhou, Y. Zhou, M. Wang, Y. Zhong, Y. Xia, and J. Chen, “Microwave signal processing using high speed silicon optical modulators,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), paper AS2E.2.

Y. Zhong, L. Zhou, Y. Xia, M. Wang, and J. Chen, “Microwave frequency-doubling based on a coupling-modulated silicon ring resonator,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SM1O.8.

Zhou, L.

R. Yang, L. Zhou, H. Zhu, and J. Chen, “Low-voltage high-speed coupling modulation in silicon racetrack ring resonators,” Opt. Express 23, 28993–29003 (2015).
[Crossref]

Y. Zhong, L. Zhou, Y. Xia, M. Wang, and J. Chen, “Microwave frequency-doubling based on a coupling-modulated silicon ring resonator,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SM1O.8.

R. Yang, L. Zhou, H. Zhu, and J. Chen, “28  Gb/s BPSK modulation in a coupling-tuned silicon microring resonator,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015), pp. 1–2.

L. Zhou, Y. Zhou, M. Wang, Y. Zhong, Y. Xia, and J. Chen, “Microwave signal processing using high speed silicon optical modulators,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), paper AS2E.2.

Zhou, Y.

L. Zhou, Y. Zhou, M. Wang, Y. Zhong, Y. Xia, and J. Chen, “Microwave signal processing using high speed silicon optical modulators,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), paper AS2E.2.

Zhu, H.

R. Yang, L. Zhou, H. Zhu, and J. Chen, “Low-voltage high-speed coupling modulation in silicon racetrack ring resonators,” Opt. Express 23, 28993–29003 (2015).
[Crossref]

R. Yang, L. Zhou, H. Zhu, and J. Chen, “28  Gb/s BPSK modulation in a coupling-tuned silicon microring resonator,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015), pp. 1–2.

Electron. Lett. (2)

J. O’reilly, P. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
[Crossref]

J. O’reilly and P. Lane, “Fibre-supported optical generation and delivery of 60  GHz signals,” Electron. Lett. 30, 1329–1330 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

K. K. Gupta, D. Novak, and H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

X. Lin, L. Chao, C. W. Chow, and T. Hon Ki, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett. 21, 209–211 (2009).
[Crossref]

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett. 19, 1057–1059 (2007).
[Crossref]

IEEE Trans. Microwave Theory Tech. (4)

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech. 53, 3090–3097 (2005).
[Crossref]

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microwave Theory Tech. 58, 3259–3268 (2010).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[Crossref]

T. Berceli and P. R. Herczfeld, “Microwave photonics-A historical perspective,” IEEE Trans. Microwave Theory Tech. 58, 2992–3000 (2010).
[Crossref]

J. Lightwave Technol. (2)

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998, 139–147 (2003).
[Crossref]

Other (8)

T. Banky, T. Berceli, and B. Horváth, “Improving the frequency stability and phase noise of opto-electronic oscillators by harmonic feedback,” in IEEE MTT-S International Microwave Symposium Digest (2004), pp. 291–294.

N. Yu, E. Salik, and L. Maleki, “Photonic microwave oscillator using mode-locked laser as the high Q resonator,” in IEEE International Frequency Control Symposium and Exposition (2004), pp. 219–223.

A. Madjar and T. Berceli, “Microwave generation by optical techniques-A review,” in 36th European Microwave Conference (IEEE, 2006), pp. 1099–1102.

A. Stohr, A. Malcoci, and D. Jager, “THz photomixing employing travelling-wave photodetectors,” in IEEE MTT-S International Microwave Symposium Digest (2004), pp. 275–278.

A. Madjar, P. R. Herczfeld, A. Rosen, P. Yu, and D. Jager, “Design considerations for a uni-traveling carrier traveling wave photo detector for efficient generation of millimeter wave and sub-mm wave signals,” in European Microwave Conference (IEEE, 2005), p. 3.

L. Zhou, Y. Zhou, M. Wang, Y. Zhong, Y. Xia, and J. Chen, “Microwave signal processing using high speed silicon optical modulators,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), paper AS2E.2.

Y. Zhong, L. Zhou, Y. Xia, M. Wang, and J. Chen, “Microwave frequency-doubling based on a coupling-modulated silicon ring resonator,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SM1O.8.

R. Yang, L. Zhou, H. Zhu, and J. Chen, “28  Gb/s BPSK modulation in a coupling-tuned silicon microring resonator,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic structure of the coupling-modulated silicon ring resonator. Inset depicts the cross-sectional view of rib waveguides. (b) Resonance ER change upon modulation. (c) A frequency-doubled microwave signal is generated by beating the ±1st-order sidebands at a PD.
Fig. 2.
Fig. 2. Evolution of a resonance notch profile with the bias voltage V2. V1 is fixed at 3 V.
Fig. 3.
Fig. 3. Extracted waveguide effective refractive index change as a function of PN junction bias voltage.
Fig. 4.
Fig. 4. SR changing with the input microwave power. V1 and V2 are fixed at 3 V.
Fig. 5.
Fig. 5. Experimental setup for microwave frequency upconversion measurement.
Fig. 6.
Fig. 6. Output optical spectrum when the critically coupled microring resonator is modulated by a 7 GHz microwave signal with (a) 5 and (b) 10 dBm power. Output electrical spectrum when the input microwave frequency increases from 3 to 9 GHz with (c) 5 and (d) 10 dBm power.
Fig. 7.
Fig. 7. Modeled and measured SR at various microwave frequencies for 5 and 10 dBm input microwave power, respectively.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

T=[tkkt],
t=|t|eiφt=α1sinθ1θ22·eiθ1+θ2+π2,
k=|k|eiφk=α1cosθ1θ22·eiθ1+θ2+π2,
φt=φk=φ=θ1+θ2+π2.
[b1b2]=T·[a1a2]=[tkkt]·[a1a2],
a2=α2·eiθb2,
b1a1=α12α2ei(2φ+θ)+t1+α2teiθ.
π+φ+θ=2πm.
|b1a1|2=(|t|α12·α21α2|t|)2.
|t|=α12·α2.
neff(vpn)=n0+avpn+bvpn2,
θ1(vpn1)=θ0+neff(vpn1)·2πλL,
θ2(vpn2)=neff(vpn2)·2πλL,
sinθ0+[neff(V1)neff(V1+V2)]·2πλL2=α1α2.
vpn1=V1+Vm2cos(ωmt),
vpn2=V1+V2Vm2cos(ωmt),
Vm=2PmR,
|t|=α12α2cos[mcos(ωmt)]+α11α12α22  sin[mcos(ωmt)],
m=ϵ[a+b(2V1+V2)]·πLλVm,
|t|α12α2J0(m)+2α11α12α22J1(m)cos(ωmt)2α12α2J2(m)cos(2ωmt).
b1a1=[Ec+E1cos(ωmt)+E2cos(2ωmt)]·eiφ,
Ec=α12α2+(1α12α22)α12α2J0(m)[1+α12α22J0(m)]+2α12α2(1α12α22)[(1α12α22)J12(m)+α2J22(m)],
E1=2(1α12α22)α12α14α22J1(m)[1+2α12α22J0(m)],
E2=2α12α2(1α12α22)[(1α12α22)J12(m)J2(m)2α12α22J0(m)J2(m)].
IPD|b1|2.
IPD(Ec2+E122+E222)+(2EcE1+E1E2)cos(ωt)+(E122+2EcE2)cos(2ωt)+E1E2cos(3ωt).
P1(2EcE1+E1E2)2,
P2(E122+2EcE2)2.
SR=20log10|E122+2EcE22EcE1+E1E2|.

Metrics