Abstract

Optical spin splitting has attracted significant attention owing to its potential applications in quantum information and precision metrology. However, it is typically small and cannot be controlled efficiently. Here, we enhance the spin splitting by transmitting higher-order Laguerre–Gaussian (LG) beams through graphene metamaterial slabs. The interaction between LG beams and metamaterial results in an orbital-angular-momentum- (OAM) dependent spin splitting. The upper bound of the OAM-dependent spin splitting is found, which varies with the incident OAM and beam waist. Moreover, the spin splitting can be flexibly tuned by modulating the Fermi energy of the graphene sheets. This tunable spin splitting has potential applications in the development of spin-based applications and the manipulation of mid-infrared waves.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Chirality induced asymmetric spin splitting of light beams reflected from an air-chiral interface

Mengjiang Jiang, Hai Lin, Linqing Zhuo, Wenguo Zhu, Heyuan Guan, Jianhui Yu, Huihui Lu, Jieyuan Tan, and Zhe Chen
Opt. Express 26(6) 6593-6601 (2018)

Large spatial and angular spin splitting in a thin anisotropic ε-near-zero metamaterial

Wenguo Zhu, Jianhui Yu, Heyuan Guan, Huihui Lu, Jieyuan Tang, Yuanhan Luo, and Zhe Chen
Opt. Express 25(5) 5196-5205 (2017)

Giant spin splitting induced by orbital angular momentum in an epsilon-near-zero metamaterial slab

Mengjiang Jiang, Wenguo Zhu, Heyuan Guan, Jianhui Yu, Huihui Lu, Jieyuan Tan, Jun Zhang, and Zhe Chen
Opt. Lett. 42(17) 3259-3262 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. H. L. Koppens, D. E. Chang, and F. J. García De Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
    [Crossref]
  2. J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
    [Crossref]
  3. S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
    [Crossref]
  4. T. Q. Tran, S. Lee, H. Heo, and S. Kim, “Tunable wide-angle tunneling in graphene-assisted frustrated total internal reflection,” Sci. Rep. 6, 19975 (2016).
    [Crossref]
  5. A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
    [Crossref]
  6. D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
    [Crossref]
  7. H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
    [Crossref]
  8. N. Mohammadi Estakhri and A. Alù, “Wave-front transformation with gradient metasurfaces,” Phys. Rev. X 6, 41008 (2016).
    [Crossref]
  9. X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
    [Crossref]
  10. Y. Chang, C. Liu, C. Liu, S. Zhang, and S. R. Marder, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
    [Crossref]
  11. O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).
    [Crossref]
  12. K. Y. Bliokh and A. Aiello, “Goos–Hänchen and Imbert–Fedorov beam shifts: an overview,” J. Opt. 15, 14001 (2013).
    [Crossref]
  13. H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 43806 (2011).
    [Crossref]
  14. J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
    [Crossref]
  15. J. L. Ren, B. Wang, Y. F. Xiao, Q. Gong, and Y. Li, “Direct observation of a resolvable spin separation in the spin Hall effect of light at an air–glass interface,” Appl. Phys. Lett. 107, 111105 (2015).
    [Crossref]
  16. X. Tan and X. Zhu, “Enhancing photonic spin Hall effect via long-range surface plasmon resonance,” Opt. Lett. 41, 2478–2481 (2016).
    [Crossref]
  17. T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
    [Crossref]
  18. W. Zhu and W. She, “Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab,” Opt. Lett. 40, 2961–2964 (2015).
    [Crossref]
  19. W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, J. Zhang, Y. Luo, and Z. Chen, “The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass–air interface,” Sci. Rep. 7, 1150 (2017).
    [Crossref]
  20. K. Y. Bliokh, I. V. Shadrivov, and Y. S. Kivshar, “Goos–Hänchen and Imbert–Fedorov shifts of polarized vortex beams,” Opt. Lett. 34, 389–391 (2009).
    [Crossref]
  21. M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82, 023817 (2010).
    [Crossref]
  22. A. Aiello, “Goos–Hänchen and Imbert–Fedorov shifts: a novel perspective,” New J. Phys. 14, 013058 (2012).
    [Crossref]
  23. Z. Xiao, H. Luo, and S. Wen, “Goos–Hänchen and Imbert–Fedorov shifts of vortex beams at air left-handed-material interfaces,” Phys. Rev. A 85, 33–35 (2012).
    [Crossref]
  24. X. Wang, H. Wang, and F. Zheng, “Properties of group delay for photon tunneling through dispersive metamaterial barriers,” Opt. Commun. 382, 371–376 (2017).
    [Crossref]
  25. J. Zhang, Z. Luo, H. Luo, and S. Wen, “Steering asymmetric spin splitting in photonic spin Hall effect by orbital angular momentum,” Acta Opt. Sin. 33, 1126002 (2013).
    [Crossref]
  26. X. Liu, Z. Chen, E. P. J. Parrott, B. S.-Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 3, 1600697 (2016).
    [Crossref]
  27. J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
    [Crossref]
  28. W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, and Z. Chen, “Large spatial and angular spin splitting in a thin anisotropic ϵ-near-zero metamaterial,” Opt. Express 25, 5196–5205 (2017).
    [Crossref]
  29. X. Qiu, Z. Zhang, L. Xie, J. Qiu, F. Gao, and J. Du, “Incident-polarization-sensitive and large in-plane-photonic-spin-splitting at the Brewster angle,” Opt. Lett. 40, 1018–1021 (2015).
    [Crossref]
  30. C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
    [Crossref]

2017 (4)

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, J. Zhang, Y. Luo, and Z. Chen, “The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass–air interface,” Sci. Rep. 7, 1150 (2017).
[Crossref]

X. Wang, H. Wang, and F. Zheng, “Properties of group delay for photon tunneling through dispersive metamaterial barriers,” Opt. Commun. 382, 371–376 (2017).
[Crossref]

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, and Z. Chen, “Large spatial and angular spin splitting in a thin anisotropic ϵ-near-zero metamaterial,” Opt. Express 25, 5196–5205 (2017).
[Crossref]

2016 (9)

X. Liu, Z. Chen, E. P. J. Parrott, B. S.-Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 3, 1600697 (2016).
[Crossref]

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref]

T. Q. Tran, S. Lee, H. Heo, and S. Kim, “Tunable wide-angle tunneling in graphene-assisted frustrated total internal reflection,” Sci. Rep. 6, 19975 (2016).
[Crossref]

N. Mohammadi Estakhri and A. Alù, “Wave-front transformation with gradient metasurfaces,” Phys. Rev. X 6, 41008 (2016).
[Crossref]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
[Crossref]

Y. Chang, C. Liu, C. Liu, S. Zhang, and S. R. Marder, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

X. Tan and X. Zhu, “Enhancing photonic spin Hall effect via long-range surface plasmon resonance,” Opt. Lett. 41, 2478–2481 (2016).
[Crossref]

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref]

2015 (5)

W. Zhu and W. She, “Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab,” Opt. Lett. 40, 2961–2964 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

X. Qiu, Z. Zhang, L. Xie, J. Qiu, F. Gao, and J. Du, “Incident-polarization-sensitive and large in-plane-photonic-spin-splitting at the Brewster angle,” Opt. Lett. 40, 1018–1021 (2015).
[Crossref]

J. L. Ren, B. Wang, Y. F. Xiao, Q. Gong, and Y. Li, “Direct observation of a resolvable spin separation in the spin Hall effect of light at an air–glass interface,” Appl. Phys. Lett. 107, 111105 (2015).
[Crossref]

2014 (2)

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
[Crossref]

2013 (2)

K. Y. Bliokh and A. Aiello, “Goos–Hänchen and Imbert–Fedorov beam shifts: an overview,” J. Opt. 15, 14001 (2013).
[Crossref]

J. Zhang, Z. Luo, H. Luo, and S. Wen, “Steering asymmetric spin splitting in photonic spin Hall effect by orbital angular momentum,” Acta Opt. Sin. 33, 1126002 (2013).
[Crossref]

2012 (2)

A. Aiello, “Goos–Hänchen and Imbert–Fedorov shifts: a novel perspective,” New J. Phys. 14, 013058 (2012).
[Crossref]

Z. Xiao, H. Luo, and S. Wen, “Goos–Hänchen and Imbert–Fedorov shifts of vortex beams at air left-handed-material interfaces,” Phys. Rev. A 85, 33–35 (2012).
[Crossref]

2011 (2)

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 43806 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García De Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

2010 (1)

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82, 023817 (2010).
[Crossref]

2009 (1)

2008 (1)

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

2005 (1)

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
[Crossref]

Aiello, A.

K. Y. Bliokh and A. Aiello, “Goos–Hänchen and Imbert–Fedorov beam shifts: an overview,” J. Opt. 15, 14001 (2013).
[Crossref]

A. Aiello, “Goos–Hänchen and Imbert–Fedorov shifts: a novel perspective,” New J. Phys. 14, 013058 (2012).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82, 023817 (2010).
[Crossref]

Alonso-González, P.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Alù, A.

N. Mohammadi Estakhri and A. Alù, “Wave-front transformation with gradient metasurfaces,” Phys. Rev. X 6, 41008 (2016).
[Crossref]

Andersen, T.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Basov, D. N.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh and A. Aiello, “Goos–Hänchen and Imbert–Fedorov beam shifts: an overview,” J. Opt. 15, 14001 (2013).
[Crossref]

K. Y. Bliokh, I. V. Shadrivov, and Y. S. Kivshar, “Goos–Hänchen and Imbert–Fedorov shifts of polarized vortex beams,” Opt. Lett. 34, 389–391 (2009).
[Crossref]

Carrega, M.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García De Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Chang, Y.

Y. Chang, C. Liu, C. Liu, S. Zhang, and S. R. Marder, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Chen, S.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Chen, Z.

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, J. Zhang, Y. Luo, and Z. Chen, “The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass–air interface,” Sci. Rep. 7, 1150 (2017).
[Crossref]

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, and Z. Chen, “Large spatial and angular spin splitting in a thin anisotropic ϵ-near-zero metamaterial,” Opt. Express 25, 5196–5205 (2017).
[Crossref]

X. Liu, Z. Chen, E. P. J. Parrott, B. S.-Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 3, 1600697 (2016).
[Crossref]

Cheng, H.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Dai, S.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Dennis, M. R.

J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
[Crossref]

Du, J.

Faist, J.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Fan, D.

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 43806 (2011).
[Crossref]

Fei, Z.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Fogler, M. M.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Gao, F.

Gao, P.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
[Crossref]

Gao, Y.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

García De Abajo, F. J.

F. H. L. Koppens, D. E. Chang, and F. J. García De Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Goldflam, M. D.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Gong, Q.

J. L. Ren, B. Wang, Y. F. Xiao, Q. Gong, and Y. Li, “Direct observation of a resolvable spin separation in the spin Hall effect of light at an air–glass interface,” Appl. Phys. Lett. 107, 111105 (2015).
[Crossref]

Götte, J. B.

J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
[Crossref]

Guan, H.

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, and Z. Chen, “Large spatial and angular spin splitting in a thin anisotropic ϵ-near-zero metamaterial,” Opt. Express 25, 5196–5205 (2017).
[Crossref]

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, J. Zhang, Y. Luo, and Z. Chen, “The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass–air interface,” Sci. Rep. 7, 1150 (2017).
[Crossref]

He, X.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
[Crossref]

Heo, H.

T. Q. Tran, S. Lee, H. Heo, and S. Kim, “Tunable wide-angle tunneling in graphene-assisted frustrated total internal reflection,” Sci. Rep. 6, 19975 (2016).
[Crossref]

Hermosa, N.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82, 023817 (2010).
[Crossref]

Hillenbrand, R.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Hone, J.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Janssen, G. C. A. M.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Jarillo-Herrero, P.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Keilmann, F.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Khanikaev, A. B.

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

Kim, S.

T. Q. Tran, S. Lee, H. Heo, and S. Kim, “Tunable wide-angle tunneling in graphene-assisted frustrated total internal reflection,” Sci. Rep. 6, 19975 (2016).
[Crossref]

Kivshar, Y. S.

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

K. Y. Bliokh, I. V. Shadrivov, and Y. S. Kivshar, “Goos–Hänchen and Imbert–Fedorov shifts of polarized vortex beams,” Opt. Lett. 34, 389–391 (2009).
[Crossref]

Koppens, F. H. L.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García De Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Kuzmenko, A. B.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Lee, S.

T. Q. Tran, S. Lee, H. Heo, and S. Kim, “Tunable wide-angle tunneling in graphene-assisted frustrated total internal reflection,” Sci. Rep. 6, 19975 (2016).
[Crossref]

Li, C.

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref]

Li, J.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Li, Y.

J. L. Ren, B. Wang, Y. F. Xiao, Q. Gong, and Y. Li, “Direct observation of a resolvable spin separation in the spin Hall effect of light at an air–glass interface,” Appl. Phys. Lett. 107, 111105 (2015).
[Crossref]

Li, Z.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Liu, C.

Y. Chang, C. Liu, C. Liu, S. Zhang, and S. R. Marder, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Y. Chang, C. Liu, C. Liu, S. Zhang, and S. R. Marder, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Liu, M. K.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Liu, P. Q.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Liu, W.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Liu, X.

X. Liu, Z. Chen, E. P. J. Parrott, B. S.-Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 3, 1600697 (2016).
[Crossref]

Löffler, W.

J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
[Crossref]

Lu, H.

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, J. Zhang, Y. Luo, and Z. Chen, “The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass–air interface,” Sci. Rep. 7, 1150 (2017).
[Crossref]

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, and Z. Chen, “Large spatial and angular spin splitting in a thin anisotropic ϵ-near-zero metamaterial,” Opt. Express 25, 5196–5205 (2017).
[Crossref]

Lundeberg, M. B.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Luo, H.

J. Zhang, Z. Luo, H. Luo, and S. Wen, “Steering asymmetric spin splitting in photonic spin Hall effect by orbital angular momentum,” Acta Opt. Sin. 33, 1126002 (2013).
[Crossref]

Z. Xiao, H. Luo, and S. Wen, “Goos–Hänchen and Imbert–Fedorov shifts of vortex beams at air left-handed-material interfaces,” Phys. Rev. A 85, 33–35 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 43806 (2011).
[Crossref]

Luo, L.

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref]

Luo, Y.

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, J. Zhang, Y. Luo, and Z. Chen, “The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass–air interface,” Sci. Rep. 7, 1150 (2017).
[Crossref]

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, and Z. Chen, “Large spatial and angular spin splitting in a thin anisotropic ϵ-near-zero metamaterial,” Opt. Express 25, 5196–5205 (2017).
[Crossref]

Luo, Z.

J. Zhang, Z. Luo, H. Luo, and S. Wen, “Steering asymmetric spin splitting in photonic spin Hall effect by orbital angular momentum,” Acta Opt. Sin. 33, 1126002 (2013).
[Crossref]

Ma, Q.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Marder, S. R.

Y. Chang, C. Liu, C. Liu, S. Zhang, and S. R. Marder, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Martin-Moreno, L.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Merano, M.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82, 023817 (2010).
[Crossref]

Mohammadi Estakhri, N.

N. Mohammadi Estakhri and A. Alù, “Wave-front transformation with gradient metasurfaces,” Phys. Rev. X 6, 41008 (2016).
[Crossref]

Mousavi, S. H.

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

Nikitin, A. Y.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Parrott, E. P. J.

X. Liu, Z. Chen, E. P. J. Parrott, B. S.-Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 3, 1600697 (2016).
[Crossref]

Paterson, C.

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
[Crossref]

Pickwell-MacPherson, E.

X. Liu, Z. Chen, E. P. J. Parrott, B. S.-Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 3, 1600697 (2016).
[Crossref]

Polini, M.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Poumirol, J.-M.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Principi, A.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Qin, S.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref]

Qiu, J.

Qiu, X.

Ren, J. L.

J. L. Ren, B. Wang, Y. F. Xiao, Q. Gong, and Y. Li, “Direct observation of a resolvable spin separation in the spin Hall effect of light at an air–glass interface,” Appl. Phys. Lett. 107, 111105 (2015).
[Crossref]

Shadrivov, I. V.

She, W.

Shi, W.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
[Crossref]

Shu, W.

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 43806 (2011).
[Crossref]

Slipchenko, T. M.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Smirnova, D.

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

Tan, X.

Tang, J.

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, and Z. Chen, “Large spatial and angular spin splitting in a thin anisotropic ϵ-near-zero metamaterial,” Opt. Express 25, 5196–5205 (2017).
[Crossref]

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, J. Zhang, Y. Luo, and Z. Chen, “The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass–air interface,” Sci. Rep. 7, 1150 (2017).
[Crossref]

Tang, T.

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref]

Taniguchi, T.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Thiemens, M.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Tian, J.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Tran, T. Q.

T. Q. Tran, S. Lee, H. Heo, and S. Kim, “Tunable wide-angle tunneling in graphene-assisted frustrated total internal reflection,” Sci. Rep. 6, 19975 (2016).
[Crossref]

Ung, B. S.-Y.

X. Liu, Z. Chen, E. P. J. Parrott, B. S.-Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 3, 1600697 (2016).
[Crossref]

Vignale, G.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Wagner, M.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Wang, B.

J. L. Ren, B. Wang, Y. F. Xiao, Q. Gong, and Y. Li, “Direct observation of a resolvable spin separation in the spin Hall effect of light at an air–glass interface,” Appl. Phys. Lett. 107, 111105 (2015).
[Crossref]

Wang, H.

X. Wang, H. Wang, and F. Zheng, “Properties of group delay for photon tunneling through dispersive metamaterial barriers,” Opt. Commun. 382, 371–376 (2017).
[Crossref]

Wang, X.

X. Wang, H. Wang, and F. Zheng, “Properties of group delay for photon tunneling through dispersive metamaterial barriers,” Opt. Commun. 382, 371–376 (2017).
[Crossref]

Wang, Z.

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

Watanabe, K.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Wen, S.

J. Zhang, Z. Luo, H. Luo, and S. Wen, “Steering asymmetric spin splitting in photonic spin Hall effect by orbital angular momentum,” Acta Opt. Sin. 33, 1126002 (2013).
[Crossref]

Z. Xiao, H. Luo, and S. Wen, “Goos–Hänchen and Imbert–Fedorov shifts of vortex beams at air left-handed-material interfaces,” Phys. Rev. A 85, 33–35 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 43806 (2011).
[Crossref]

Woerdman, J. P.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82, 023817 (2010).
[Crossref]

Woessner, A.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Xiao, Y. F.

J. L. Ren, B. Wang, Y. F. Xiao, Q. Gong, and Y. Li, “Direct observation of a resolvable spin separation in the spin Hall effect of light at an air–glass interface,” Appl. Phys. Lett. 107, 111105 (2015).
[Crossref]

Xiao, Z.

Z. Xiao, H. Luo, and S. Wen, “Goos–Hänchen and Imbert–Fedorov shifts of vortex beams at air left-handed-material interfaces,” Phys. Rev. A 85, 33–35 (2012).
[Crossref]

Xie, B.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Xie, L.

Xu, J.

X. Liu, Z. Chen, E. P. J. Parrott, B. S.-Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 3, 1600697 (2016).
[Crossref]

Yu, J.

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, and Z. Chen, “Large spatial and angular spin splitting in a thin anisotropic ϵ-near-zero metamaterial,” Opt. Express 25, 5196–5205 (2017).
[Crossref]

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, J. Zhang, Y. Luo, and Z. Chen, “The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass–air interface,” Sci. Rep. 7, 1150 (2017).
[Crossref]

Yu, P.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Yuan, X.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref]

Zhang, J.

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, J. Zhang, Y. Luo, and Z. Chen, “The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass–air interface,” Sci. Rep. 7, 1150 (2017).
[Crossref]

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref]

J. Zhang, Z. Luo, H. Luo, and S. Wen, “Steering asymmetric spin splitting in photonic spin Hall effect by orbital angular momentum,” Acta Opt. Sin. 33, 1126002 (2013).
[Crossref]

Zhang, S.

Y. Chang, C. Liu, C. Liu, S. Zhang, and S. R. Marder, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

Zhang, Z.

Zheng, F.

X. Wang, H. Wang, and F. Zheng, “Properties of group delay for photon tunneling through dispersive metamaterial barriers,” Opt. Commun. 382, 371–376 (2017).
[Crossref]

Zhou, X.

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 43806 (2011).
[Crossref]

Zhu, S.-E.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

Zhu, W.

Zhu, X.

Zhu, Z.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref]

ACS Photon. (1)

D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, “Trapping and guiding surface plasmons in curved graphene landscapes,” ACS Photon. 3, 875–880 (2016).
[Crossref]

Acta Opt. Sin. (1)

J. Zhang, Z. Luo, H. Luo, and S. Wen, “Steering asymmetric spin splitting in photonic spin Hall effect by orbital angular momentum,” Acta Opt. Sin. 33, 1126002 (2013).
[Crossref]

Adv. Opt. Mater. (2)

X. Liu, Z. Chen, E. P. J. Parrott, B. S.-Y. Ung, J. Xu, and E. Pickwell-MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 3, 1600697 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Appl. Phys. Lett. (1)

J. L. Ren, B. Wang, Y. F. Xiao, Q. Gong, and Y. Li, “Direct observation of a resolvable spin separation in the spin Hall effect of light at an air–glass interface,” Appl. Phys. Lett. 107, 111105 (2015).
[Crossref]

J. Opt. (1)

K. Y. Bliokh and A. Aiello, “Goos–Hänchen and Imbert–Fedorov beam shifts: an overview,” J. Opt. 15, 14001 (2013).
[Crossref]

Nano Lett. (1)

F. H. L. Koppens, D. E. Chang, and F. J. García De Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Nanoscale (1)

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8, 10388–10397 (2016).
[Crossref]

Nat. Commun. (2)

Y. Chang, C. Liu, C. Liu, S. Zhang, and S. R. Marder, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref]

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Nat. Mater. (1)

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).
[Crossref]

Nat. Nanotechnol. (1)

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015).
[Crossref]

New J. Phys. (1)

A. Aiello, “Goos–Hänchen and Imbert–Fedorov shifts: a novel perspective,” New J. Phys. 14, 013058 (2012).
[Crossref]

Opt. Commun. (1)

X. Wang, H. Wang, and F. Zheng, “Properties of group delay for photon tunneling through dispersive metamaterial barriers,” Opt. Commun. 382, 371–376 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (3)

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82, 023817 (2010).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 43806 (2011).
[Crossref]

Z. Xiao, H. Luo, and S. Wen, “Goos–Hänchen and Imbert–Fedorov shifts of vortex beams at air left-handed-material interfaces,” Phys. Rev. A 85, 33–35 (2012).
[Crossref]

Phys. Rev. Lett. (2)

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
[Crossref]

J. B. Götte, W. Löffler, and M. R. Dennis, “Eigenpolarizations for giant transverse optical beam shifts,” Phys. Rev. Lett. 112, 233901 (2014).
[Crossref]

Phys. Rev. X (1)

N. Mohammadi Estakhri and A. Alù, “Wave-front transformation with gradient metasurfaces,” Phys. Rev. X 6, 41008 (2016).
[Crossref]

Sci. Rep. (4)

T. Q. Tran, S. Lee, H. Heo, and S. Kim, “Tunable wide-angle tunneling in graphene-assisted frustrated total internal reflection,” Sci. Rep. 6, 19975 (2016).
[Crossref]

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref]

W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, J. Zhang, Y. Luo, and Z. Chen, “The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass–air interface,” Sci. Rep. 7, 1150 (2017).
[Crossref]

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6, 38086 (2016).
[Crossref]

Science (1)

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the OAM-dependent spin splitting. A vertically polarized LG beam is coupled into a graphene metamaterial slab through a CaF2 prism. The two opposite spin components of the transmitted beam will separate along the xt axis. (b) The intensity distributions of the RCP and LCP components of the incident and transmitted beams along the xi and xt axes, respectively. (c) The graphene metamaterial composed of alternating graphene sheets and Al2O3 layers.
Fig. 2.
Fig. 2. (a) Changes of the normalized OAM-dependent spin splitting Δ/Δup with the incident angle θi and thickness of metamaterial d when w0=180  μm. (b) The dependences of Δ/Δup on θi for w0=90  μm (red color), 225 μm (blue color), and 450 μm (green color). In our calculations, =1, EF=0.335  eV, d=7.5  μm, and λ=4.509  μm.
Fig. 3.
Fig. 3. (a) Changes of the spin splitting Δ (red dots) and its upper bounds Δup (blue dots) with the incident OAM for θi=33° and d=7.5  μm. (b) The normalized spin splitting Δ/Δup changing with the incident angle θi for OAM =±10 (red color), ±5 (blue color), ±1 (green color), and 0 (black color).
Fig. 4.
Fig. 4. (a) Dependences of the normalized spin splitting Δ/Δup on the Fermi energy EF for =3 and d=7.2  μm (red color), 8.3 μm (blue color), and 9.0 μm (green color). (b) The normalized intensities of the RCP (solid lines) and LCP (dotted lines) components of the transmitted beams along the xt axis for d=8.3  μm and EF=0.275  eV (red color), 0.299 eV (blue color), 0.318 eV (green color), 0.356 eV (pink color), and 0.4 eV (black color).
Fig. 5.
Fig. 5. Spin splitting Δ changing with the wavelength λ when EF=0.3  eV (red color), 0.335 eV (blue color), 0.38 eV (green color), and 0.45 eV (black color). The inset shows the real part of in-plane permittivity of the graphene metamaterial Re[ϵeff,//] changing with λ for different values of EF.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϵeff,//=ϵd+iσZ0λ2πd,
ϵeff,=ϵd,
σ=2e2kBTπ2iw+iτ1ln(2coshEF2kBT)+e24(12+1πtan1wEF2kBT)i2πln(w+2EF)2(w2EF)2+(2kBT)2.
E˜t=Atsk[w0(iηktx+skty)2]||exp[(η2ktx2+kty2)w024][δskty|H+(kiηXsktx)|V],
Et±=its2πw02||!exp[(xt2/η2+yt2)w02]{[1+Xsxt/η±δsytkw02/2][(xt/η+isyt)w0]||||[Xs±isδs]kw0[(xt/η+isyt)w0]|1|}|±.
Δ±=η[Re(Xs)±Im(δs)]k[1+(||+1)(|Xs|2+|δs|2)/k2w02].
Δup=ηw0||||+1.

Metrics