Abstract

Conventional periodic structures usually have nontunable refractive indices and thus lead to immutable photonic bandgaps. A periodic structure created in an ultracold atoms ensemble by externally controlled light can overcome this disadvantage and enable lots of promising applications. Here, two novel types of optically induced square lattices, i.e., the amplitude and phase lattices, are proposed in an ultracold atoms ensemble by interfering four ordinary plane waves under different parameter conditions. We demonstrate that in the far-field regime, the atomic amplitude lattice with high transmissivity behaves similarly to an ideal pure sinusoidal amplitude lattice, whereas the atomic phase lattices capable of producing phase excursion across a weak probe beam along with high transmissivity remains equally ideal. Moreover, we identify that the quality of Talbot imaging about a phase lattice is greatly improved when compared with an amplitude lattice. Such an atomic lattice could find applications in all-optical switching at the few photons level and paves the way for imaging ultracold atoms or molecules both in the near-field and in the far-field with a nondestructive and lensless approach.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric light diffraction of an atomic grating with PT symmetry

Yi-Mou Liu, Feng Gao, Chu-Hui Fan, and Jin-Hui Wu
Opt. Lett. 42(21) 4283-4286 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref]
  3. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
    [Crossref]
  4. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref]
  5. C. Denz, S. Flach, and Y. S. Kivshar, Nonlinearities in Periodic Structures and Metamaterials (Springer, 2010), Vol. 150.
  6. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref]
  7. D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref]
  8. P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111, 133901 (2013).
    [Crossref]
  9. T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26, 1731–1734 (2014).
    [Crossref]
  10. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
    [Crossref]
  11. S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
    [Crossref]
  12. A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103, 143902 (2009).
    [Crossref]
  13. S. F. Mingaleev and Y. S. Kivshar, “Self-trapping and stable localized modes in nonlinear photonic crystals,” Phys. Rev. Lett. 86, 5474–5477 (2001).
    [Crossref]
  14. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  15. H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
    [Crossref]
  16. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
    [Crossref]
  17. A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005).
    [Crossref]
  18. N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
    [Crossref]
  19. A. Andre and M. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
    [Crossref]
  20. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
    [Crossref]
  21. G. Cardoso and J. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
    [Crossref]
  22. P.-W. Zhai, X.-M. Su, and J.-Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A 289, 27–33 (2001).
    [Crossref]
  23. J. Wen, Y.-H. Zhai, S. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A 82, 043814 (2010).
    [Crossref]
  24. L. Zhao, W. Duan, and S. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A 82, 013809 (2010).
    [Crossref]
  25. D. A. Steck, http://steck.us/alkalidata .
  26. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  27. F. Zhou, Y. Qi, H. Sun, D. Chen, J. Yang, Y. Niu, and S. Gong, “Electromagnetically induced grating in asymmetric quantum wells via Fano interference,” Opt. Express 21, 12249–12259 (2013).
    [Crossref]
  28. S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
    [Crossref]
  29. H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
    [Crossref]
  30. F. Wen, I. Ali, A. Hasan, C. Li, H. Tang, Y. Zhang, and Y. Zhang, “Ultrafast optical transistor and router of multi-order fluorescence and spontaneous parametric four-wave mixing in Pr3+:YSO,” Opt. Lett. 40, 4599–4602 (2015).
    [Crossref]
  31. Y. Q. Zhang, Y. V. Kartashov, F. Li, Z. Y. Zhang, Y. P. Zhang, M. R. Belić, and M. Xiao, “Edge states in dynamical superlattices,” ACS Photon. 4, 2250–2256 (2017).
    [Crossref]
  32. C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
    [Crossref]

2017 (2)

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

Y. Q. Zhang, Y. V. Kartashov, F. Li, Z. Y. Zhang, Y. P. Zhang, M. R. Belić, and M. Xiao, “Edge states in dynamical superlattices,” ACS Photon. 4, 2250–2256 (2017).
[Crossref]

2015 (3)

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

F. Wen, I. Ali, A. Hasan, C. Li, H. Tang, Y. Zhang, and Y. Zhang, “Ultrafast optical transistor and router of multi-order fluorescence and spontaneous parametric four-wave mixing in Pr3+:YSO,” Opt. Lett. 40, 4599–4602 (2015).
[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

2014 (1)

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26, 1731–1734 (2014).
[Crossref]

2013 (2)

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111, 133901 (2013).
[Crossref]

F. Zhou, Y. Qi, H. Sun, D. Chen, J. Yang, Y. Niu, and S. Gong, “Electromagnetically induced grating in asymmetric quantum wells via Fano interference,” Opt. Express 21, 12249–12259 (2013).
[Crossref]

2011 (1)

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

2010 (2)

J. Wen, Y.-H. Zhai, S. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A 82, 043814 (2010).
[Crossref]

L. Zhao, W. Duan, and S. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A 82, 013809 (2010).
[Crossref]

2009 (1)

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103, 143902 (2009).
[Crossref]

2006 (1)

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

2005 (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005).
[Crossref]

2004 (2)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

2003 (2)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[Crossref]

2002 (2)

G. Cardoso and J. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

A. Andre and M. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[Crossref]

2001 (2)

P.-W. Zhai, X.-M. Su, and J.-Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A 289, 27–33 (2001).
[Crossref]

S. F. Mingaleev and Y. S. Kivshar, “Self-trapping and stable localized modes in nonlinear photonic crystals,” Phys. Rev. Lett. 86, 5474–5477 (2001).
[Crossref]

1999 (1)

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[Crossref]

1998 (1)

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]

1990 (1)

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Ali, I.

Alù, A.

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103, 143902 (2009).
[Crossref]

Andre, A.

A. Andre and M. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Bai, X.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26, 1731–1734 (2014).
[Crossref]

Bajcsy, M.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[Crossref]

Bao, Q.

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Barnett, S. M.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

Belic, M. R.

Y. Q. Zhang, Y. V. Kartashov, F. Li, Z. Y. Zhang, Y. P. Zhang, M. R. Belić, and M. Xiao, “Edge states in dynamical superlattices,” ACS Photon. 4, 2250–2256 (2017).
[Crossref]

Bender, H.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

Brown, A. W.

Burokur, S. N.

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111, 133901 (2013).
[Crossref]

Cardoso, G.

G. Cardoso and J. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

Chen, D.

Chen, L.

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

Chen, S.

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Chen, X.

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Chen, Y.

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Clark, T. W.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

Cummer, S. A.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Datta, S.

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

de Lustrac, A.

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111, 133901 (2013).
[Crossref]

Denz, C.

C. Denz, S. Flach, and Y. S. Kivshar, Nonlinearities in Periodic Structures and Metamaterials (Springer, 2010), Vol. 150.

Du, S.

J. Wen, Y.-H. Zhai, S. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A 82, 043814 (2010).
[Crossref]

Duan, W.

L. Zhao, W. Duan, and S. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A 82, 013809 (2010).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103, 143902 (2009).
[Crossref]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]

Flach, S.

C. Denz, S. Flach, and Y. S. Kivshar, Nonlinearities in Periodic Structures and Metamaterials (Springer, 2010), Vol. 150.

Fleischer, M.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Franke-Arnold, S.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

Gao, J.-Y.

P.-W. Zhai, X.-M. Su, and J.-Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A 289, 27–33 (2001).
[Crossref]

Gong, S.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

Han, T.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26, 1731–1734 (2014).
[Crossref]

Hasan, A.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Imoto, N.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

John, S.

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[Crossref]

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Justice, B.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Kartashov, Y. V.

Y. Q. Zhang, Y. V. Kartashov, F. Li, Z. Y. Zhang, Y. P. Zhang, M. R. Belić, and M. Xiao, “Edge states in dynamical superlattices,” ACS Photon. 4, 2250–2256 (2017).
[Crossref]

Kern, D.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Kim, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Kivshar, Y. S.

S. F. Mingaleev and Y. S. Kivshar, “Self-trapping and stable localized modes in nonlinear photonic crystals,” Phys. Rev. Lett. 86, 5474–5477 (2001).
[Crossref]

C. Denz, S. Flach, and Y. S. Kivshar, Nonlinearities in Periodic Structures and Metamaterials (Springer, 2010), Vol. 150.

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Lee, Y.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Li, B.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26, 1731–1734 (2014).
[Crossref]

Li, C.

Li, F.

Y. Q. Zhang, Y. V. Kartashov, F. Li, Z. Y. Zhang, Y. P. Zhang, M. R. Belić, and M. Xiao, “Edge states in dynamical superlattices,” ACS Photon. 4, 2250–2256 (2017).
[Crossref]

Li, Y.

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Li, Y.-Q.

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

Ling, H. Y.

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

Liu, Y.

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Lukin, M.

A. Andre and M. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[Crossref]

Lukin, M. D.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Miao, L.

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Mingaleev, S. F.

S. F. Mingaleev and Y. S. Kivshar, “Self-trapping and stable localized modes in nonlinear photonic crystals,” Phys. Rev. Lett. 86, 5474–5477 (2001).
[Crossref]

Mitsunaga, M.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[Crossref]

Mock, J.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Niu, Y.

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Pendry, J. B.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Piccirillo, B.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

Qi, Y.

Qiu, C. W.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26, 1731–1734 (2014).
[Crossref]

Qiu, C.-W.

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111, 133901 (2013).
[Crossref]

Radwell, N.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

Schurig, D.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Slama, S.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

Smith, D.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Starr, A.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Stehle, C.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

Su, X.-M.

P.-W. Zhai, X.-M. Su, and J.-Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A 289, 27–33 (2001).
[Crossref]

Sun, H.

Tabosa, J.

G. Cardoso and J. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

Tang, H.

Tang, J.

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

Thong, J. T.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26, 1731–1734 (2014).
[Crossref]

Tichit, P.-H.

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111, 133901 (2013).
[Crossref]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]

Wang, J.

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[Crossref]

Wen, F.

Wen, J.

J. Wen, Y.-H. Zhai, S. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A 82, 043814 (2010).
[Crossref]

Wen, S.

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Wu, H.

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

Xiao, J.

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

Xiao, M.

Y. Q. Zhang, Y. V. Kartashov, F. Li, Z. Y. Zhang, Y. P. Zhang, M. R. Belić, and M. Xiao, “Edge states in dynamical superlattices,” ACS Photon. 4, 2250–2256 (2017).
[Crossref]

J. Wen, Y.-H. Zhai, S. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A 82, 043814 (2010).
[Crossref]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005).
[Crossref]

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Yang, J.

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Yelin, S.

L. Zhao, W. Duan, and S. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A 82, 013809 (2010).
[Crossref]

Yi, J.

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

Yu, Z.

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

Zhai, P.-W.

P.-W. Zhai, X.-M. Su, and J.-Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A 289, 27–33 (2001).
[Crossref]

Zhai, Y.-H.

J. Wen, Y.-H. Zhai, S. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A 82, 043814 (2010).
[Crossref]

Zhang, H.

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Zhang, Y.

Zhang, Y. P.

Y. Q. Zhang, Y. V. Kartashov, F. Li, Z. Y. Zhang, Y. P. Zhang, M. R. Belić, and M. Xiao, “Edge states in dynamical superlattices,” ACS Photon. 4, 2250–2256 (2017).
[Crossref]

Zhang, Y. Q.

Y. Q. Zhang, Y. V. Kartashov, F. Li, Z. Y. Zhang, Y. P. Zhang, M. R. Belić, and M. Xiao, “Edge states in dynamical superlattices,” ACS Photon. 4, 2250–2256 (2017).
[Crossref]

Zhang, Z. Y.

Y. Q. Zhang, Y. V. Kartashov, F. Li, Z. Y. Zhang, Y. P. Zhang, M. R. Belić, and M. Xiao, “Edge states in dynamical superlattices,” ACS Photon. 4, 2250–2256 (2017).
[Crossref]

Zhao, C.

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Zhao, L.

L. Zhao, W. Duan, and S. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A 82, 013809 (2010).
[Crossref]

Zhou, F.

Zibrov, A. S.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[Crossref]

Zimmermann, C.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

ACS Photon. (1)

Y. Q. Zhang, Y. V. Kartashov, F. Li, Z. Y. Zhang, Y. P. Zhang, M. R. Belić, and M. Xiao, “Edge states in dynamical superlattices,” ACS Photon. 4, 2250–2256 (2017).
[Crossref]

Adv. Mater. (1)

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26, 1731–1734 (2014).
[Crossref]

Adv. Opt. Mater. (1)

S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, and Y. Liu, “Few‐layer topological insulator for all‐optical signal processing using the nonlinear Kerr effect,” Adv. Opt. Mater. 3, 1769–1778 (2015).
[Crossref]

Nat. Photonics (1)

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5, 494–498 (2011).
[Crossref]

Nature (3)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Opt. Commun. (1)

H. Wu, J. Tang, Z. Yu, J. Yi, S. Chen, J. Xiao, C. Zhao, Y. Li, L. Chen, and S. Wen, “Electrically optical phase controlling for millimeter wave orbital angular momentum multi-modulation communication,” Opt. Commun. 393, 49–55 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Lett. A (1)

P.-W. Zhai, X.-M. Su, and J.-Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A 289, 27–33 (2001).
[Crossref]

Phys. Rev. A (5)

J. Wen, Y.-H. Zhai, S. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A 82, 043814 (2010).
[Crossref]

L. Zhao, W. Duan, and S. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A 82, 013809 (2010).
[Crossref]

G. Cardoso and J. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[Crossref]

Phys. Rev. Lett. (7)

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially dependent electromagnetically induced transparency,” Phys. Rev. Lett. 114, 123603 (2015).
[Crossref]

A. Andre and M. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[Crossref]

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[Crossref]

A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103, 143902 (2009).
[Crossref]

S. F. Mingaleev and Y. S. Kivshar, “Self-trapping and stable localized modes in nonlinear photonic crystals,” Phys. Rev. Lett. 86, 5474–5477 (2001).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111, 133901 (2013).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Science (3)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Other (4)

C. Denz, S. Flach, and Y. S. Kivshar, Nonlinearities in Periodic Structures and Metamaterials (Springer, 2010), Vol. 150.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

D. A. Steck, http://steck.us/alkalidata .

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Cascade-type three-level scheme with |a [5S1/2(F=3)], |b [5P3/2(F=3)], and |c (5D5/2) of Rb85 atoms [25], interacting with three laser beams: probe field EP and two lattice-forming fields E2(x) and E3(y). (b) The geometry of four laser beams applied upon a cold atoms ensemble along the z direction, and the corresponding near-field and far-field diffraction patterns of a probe field.
Fig. 2.
Fig. 2. (a) The periodical modulation of the lattice-forming laser due to the four-beam interference pattern with ΩC=8  MHz. The absorption spectrum and dispersion spectrum (b) at the nodes and (c) the antinodes of the lattice-forming laser.
Fig. 3.
Fig. 3. Amplitude-type lattice, with settings ΩC=15  MHz, Δ1=0  MHz, and Δ2=0  MHz. (a) The amplitude and (b) the phase of the transmission function T(x,y) plotted over four space periods along x and y. (c) The corresponding normalized diffraction intensity I(θx,θy) as a function of sinθx and sinθy. (d) 2D transverse patterns corresponding to (c). Other parameters are γab=1  MHz, γac=0.1  MHz, a/λP=b/λP=4, L=10, and P=Q=1.
Fig. 4.
Fig. 4. Phase-type lattice, with settings ΩC=15  MHz, Δ1=10  MHz, and Δ2=0  MHz. (a) The amplitude and (b) the phase of the transmission function T(x,y) plotted over four space periods along x and y. (c) The corresponding normalized diffraction intensity I(θx,θy) as a function of sinθx and sinθy. (d) 2D transverse patterns corresponding to (c). (e) The amplitude (solid curve) and the phase (dashed curve) of the transmission function T(x,y) as a function of x within a single space period. Other parameters are γab=1  MHz, γac=0.2  MHz, a/λP=b/λP=4, L=10, and P=Q=1.
Fig. 5.
Fig. 5. Normalized diffraction intensity IP(θx0,θy0) (solid line), IP(θx1,θy0) (dashed line), and IP(θx1,θy1) (dashed–dotted line) as a function of ΩC with (a) amplitude lattice with Δ1=0  MHz, and Δ2=0  MHz and (b) phase-type lattice Δ1=10  MHz, and Δ2=0  MHz. Other parameters are γab=1  MHz, γac=0.2  MHz, a/λP=b/λP=4, L=10, and P=Q=1.
Fig. 6.
Fig. 6. Near-field diffraction pattern in the case of (a) amplitude-type lattice and (b) phase-type lattice, and (a1)–(a4), (b1)–(b4) Talbot imaging at Z=0, zT/2, 2zT/3, and zT, respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H=GPeiΔPt|ab|+GeffeiΔ2t|bc|+h.c,
χ=iN|μab|22ϵ0γaciΔ12Geff2(x)+(γabiΔ1)(γaciΔ12),
EPz=(α/2+iσ)EP,
T(x,y)=exp[α(x,y)L2+iσ(x,y)L].
E(X,Y,Z)=dxdyT(x,y)exp[ikP(2Z+x2+y22ZxX+yY2Z+X2+Y22Z)],
T(x,y)=m,n=Cmnexp[i(2πmax+2πnby)],
Ψ(u1,u2;v1,v2)=C0n=cmn{exp[iπλPZ(m2a2+n2b2)]×exp[i2π(maX+nbY)]},
I(θx,θy)=|J(θx,θy)|2sin2[Pπasin(θx/λP)]P2sin2[πasin(θx/λP)]×sin2[Qπbsin(θy/λP)]Q2sin2[πbsin(θy/λP)],

Metrics