Abstract

Strong nonlinear, electro-optical, and thermo-optical properties of lithium niobate (LN) have gained much attention. However, the implementation of LiNbO3 in real devices is not a trivial task due to difficulties in manufacturing and handling thin-film LN. In this study, we investigate an optical device where the Bloch surface wave (BSW) propagates on the thin-film LN to unlock its properties. First, access to the LN film from air (or open space) is important to exploit its properties. Second, for sustaining the BSW, one-dimensional photonic crystal (1DPhC) is necessary to be fabricated under the thin-film LN. We consider two material platforms to realize such a device: bulk LN and commercial thin-film LN. Clear reflectance dips observed in far-field measurements demonstrate the propagation of BSWs on top of the LN surface of the designed 1DPhCs.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films

Tatiana Kovalevich, Abdoulaye Ndao, Miguel Suarez, Saulius Tumenas, Zigmas Balevicius, Arunas Ramanavicius, Ieva Baleviciute, Markus Häyrinen, Matthieu Roussey, Markku Kuittinen, Thierry Grosjean, and Maria-Pilar Bernal
Opt. Lett. 41(23) 5616-5619 (2016)

Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals

Emiliano Descrovi, Tristan Sfez, Lorenzo Dominici, Wataru Nakagawa, Francesco Michelotti, Fabrizio Giorgis, and Hans-Peter Herzig
Opt. Express 16(8) 5453-5464 (2008)

Polarization controlled directional propagation of Bloch surface wave

Tatiana Kovalevich, Philippe Boyer, Miguel Suarez, Roland Salut, Myun-Sik Kim, Hans Peter Herzig, Maria-Pilar Bernal, and Thierry Grosjean
Opt. Express 25(5) 5710-5715 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Toney, Lithium Niobate Photonics (Artech House, 2015).
  2. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, and H. Suche, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19(1), 24–31 (2008).
    [Crossref]
  3. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and R. P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
    [Crossref]
  4. P. Yeh, A. Yariv, L. Sun, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
    [Crossref]
  5. T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H. P. Herzig, and M. P. Bernal, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017).
    [Crossref]
  6. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
    [Crossref]
  7. R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 5 (2017).
    [Crossref]
  8. A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
    [Crossref]
  9. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
    [Crossref]
  10. F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
    [Crossref]
  11. A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39, 2947–2950 (2014).
    [Crossref]
  12. L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, e124 (2014).
    [Crossref]
  13. R. L. Puurunen, “A short history of atomic layer deposition: Tuomo Suntola’s atomic layer epitaxy,” Chem. Vap. Deposition 20, 332–344 (2014).
    [Crossref]
  14. N. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devices,” in Encyclopedia of Plasma Technology, J. Leon Shohet, ed. (Taylor & Francis/CRC Press, 2015).
  15. G. Lucovsky and D. V. Tsu, “Plasma enhanced chemical vapor deposition: differences between direct and remote plasma excitation,” J. Vac. Sci. Technol. A 5, 2231–2238 (1987).
    [Crossref]
  16. T. Kovalevich, A. Ndao, M. Suarez, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M. P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41, 5616–5619 (2016).
    [Crossref]
  17. M. Roussey, M. P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
    [Crossref]
  18. V. N. Konopsky, E. V. Alieva, S. T. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, “Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals,” Light Sci. Appl. 5, e16168 (2016).
    [Crossref]
  19. A. D. Bezpaly and V. M. Shandarov, “Optical formation of waveguide elements in photorefractive surface layer of a lithium niobate sample,” Phys. Procedia 86, 166–169 (2017).
    [Crossref]
  20. V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, and L. McCaughan, “New methods for fabricating patterned lithium niobate for photonic applications,” J. Cryst. Growth 259, 273–278 (2003).
    [Crossref]
  21. H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
    [Crossref]
  22. F. Bassignot, E. Courjon, S. Ballandras, J. M. Lesage, and R. Petit, “Acoustic resonator based on periodically poled transducers: fabrication and characterization,” J. Appl. Phys. 112, 074108 (2012).
    [Crossref]
  23. C. B. Labelle, V. M. Donnelly, G. R. Bogart, R. L. Opila, and A. Kornblit, “Investigation of fluorocarbon plasma deposition from cC4F8 for use as passivation during deep silicon etching,” J. Vac. Sci. Technol. A 22, 2500–2507 (2004).
    [Crossref]
  24. F. Laermer and A. Schilp, “Method of anisotropically etching silicon,” U.S. patent5,501,893 (March26, 1996).
  25. V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12, 093006 (2010).
    [Crossref]
  26. R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
    [Crossref]

2017 (3)

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 5 (2017).
[Crossref]

A. D. Bezpaly and V. M. Shandarov, “Optical formation of waveguide elements in photorefractive surface layer of a lithium niobate sample,” Phys. Procedia 86, 166–169 (2017).
[Crossref]

T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H. P. Herzig, and M. P. Bernal, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017).
[Crossref]

2016 (3)

2015 (1)

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

2014 (4)

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, e124 (2014).
[Crossref]

R. L. Puurunen, “A short history of atomic layer deposition: Tuomo Suntola’s atomic layer epitaxy,” Chem. Vap. Deposition 20, 332–344 (2014).
[Crossref]

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39, 2947–2950 (2014).
[Crossref]

2012 (1)

F. Bassignot, E. Courjon, S. Ballandras, J. M. Lesage, and R. Petit, “Acoustic resonator based on periodically poled transducers: fabrication and characterization,” J. Appl. Phys. 112, 074108 (2012).
[Crossref]

2010 (3)

V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12, 093006 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

2008 (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, and H. Suche, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

2007 (2)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and R. P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

2006 (1)

M. Roussey, M. P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

2004 (1)

C. B. Labelle, V. M. Donnelly, G. R. Bogart, R. L. Opila, and A. Kornblit, “Investigation of fluorocarbon plasma deposition from cC4F8 for use as passivation during deep silicon etching,” J. Vac. Sci. Technol. A 22, 2500–2507 (2004).
[Crossref]

2003 (1)

V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, and L. McCaughan, “New methods for fabricating patterned lithium niobate for photonic applications,” J. Cryst. Growth 259, 273–278 (2003).
[Crossref]

1987 (1)

G. Lucovsky and D. V. Tsu, “Plasma enhanced chemical vapor deposition: differences between direct and remote plasma excitation,” J. Vac. Sci. Technol. A 5, 2231–2238 (1987).
[Crossref]

1977 (1)

Agranovich, V. M.

V. N. Konopsky, E. V. Alieva, S. T. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, “Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals,” Light Sci. Appl. 5, e16168 (2016).
[Crossref]

Alieva, E. V.

V. N. Konopsky, E. V. Alieva, S. T. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, “Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals,” Light Sci. Appl. 5, e16168 (2016).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

Alyatkin, S. T.

V. N. Konopsky, E. V. Alieva, S. T. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, “Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals,” Light Sci. Appl. 5, e16168 (2016).
[Crossref]

Anopchenko, A.

Baida, F. I.

M. Roussey, M. P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Ballandras, S.

F. Bassignot, E. Courjon, S. Ballandras, J. M. Lesage, and R. Petit, “Acoustic resonator based on periodically poled transducers: fabrication and characterization,” J. Appl. Phys. 112, 074108 (2012).
[Crossref]

Barakat, B.

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, e124 (2014).
[Crossref]

Barakat, E.

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 5 (2017).
[Crossref]

R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

Barolo, C.

Bassignot, F.

F. Bassignot, E. Courjon, S. Ballandras, J. M. Lesage, and R. Petit, “Acoustic resonator based on periodically poled transducers: fabrication and characterization,” J. Appl. Phys. 112, 074108 (2012).
[Crossref]

Bera, A.

N. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devices,” in Encyclopedia of Plasma Technology, J. Leon Shohet, ed. (Taylor & Francis/CRC Press, 2015).

Bernal, M. P.

T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H. P. Herzig, and M. P. Bernal, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017).
[Crossref]

T. Kovalevich, A. Ndao, M. Suarez, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M. P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41, 5616–5619 (2016).
[Crossref]

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

M. Roussey, M. P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Bezpaly, A. D.

A. D. Bezpaly and V. M. Shandarov, “Optical formation of waveguide elements in photorefractive surface layer of a lithium niobate sample,” Phys. Procedia 86, 166–169 (2017).
[Crossref]

Bogart, G. R.

C. B. Labelle, V. M. Donnelly, G. R. Bogart, R. L. Opila, and A. Kornblit, “Investigation of fluorocarbon plasma deposition from cC4F8 for use as passivation during deep silicon etching,” J. Vac. Sci. Technol. A 22, 2500–2507 (2004).
[Crossref]

Boyer, P.

Brunazzo, D.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

Cai, L.

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

Chekalin, S. V.

V. N. Konopsky, E. V. Alieva, S. T. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, “Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals,” Light Sci. Appl. 5, e16168 (2016).
[Crossref]

Courjal, N.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

M. Roussey, M. P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Courjon, E.

F. Bassignot, E. Courjon, S. Ballandras, J. M. Lesage, and R. Petit, “Acoustic resonator based on periodically poled transducers: fabrication and characterization,” J. Appl. Phys. 112, 074108 (2012).
[Crossref]

Danz, N.

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and R. P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Descrovi, E.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Di Francesco, J.

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, e124 (2014).
[Crossref]

Dominici, L.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

Donnelly, V. M.

C. B. Labelle, V. M. Donnelly, G. R. Bogart, R. L. Opila, and A. Kornblit, “Investigation of fluorocarbon plasma deposition from cC4F8 for use as passivation during deep silicon etching,” J. Vac. Sci. Technol. A 22, 2500–2507 (2004).
[Crossref]

Dovidenko, K.

V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, and L. McCaughan, “New methods for fabricating patterned lithium niobate for photonic applications,” J. Cryst. Growth 259, 273–278 (2003).
[Crossref]

Dubey, R.

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 5 (2017).
[Crossref]

R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

Fieramosca, A.

Geobaldo, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Gerthoffer, A.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Giorgis, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

Grosjean, T.

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and R. P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Gunter, R. P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and R. P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Guyot, C.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Han, H.

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

Häyrinen, M.

Häyrinen, N.

N. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devices,” in Encyclopedia of Plasma Technology, J. Leon Shohet, ed. (Taylor & Francis/CRC Press, 2015).

Herrmann, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, and H. Suche, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Herzig, H. P.

T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H. P. Herzig, and M. P. Bernal, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017).
[Crossref]

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 5 (2017).
[Crossref]

R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, e124 (2014).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

Hong, C. S.

Honkanen, S.

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 5 (2017).
[Crossref]

N. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devices,” in Encyclopedia of Plasma Technology, J. Leon Shohet, ed. (Taylor & Francis/CRC Press, 2015).

Hu, H.

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, and H. Suche, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Hvozdara, L.

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, e124 (2014).
[Crossref]

Joshkin, V.

V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, and L. McCaughan, “New methods for fabricating patterned lithium niobate for photonic applications,” J. Cryst. Growth 259, 273–278 (2003).
[Crossref]

Kim, M.-S.

Konopsky, V. N.

V. N. Konopsky, E. V. Alieva, S. T. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, “Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals,” Light Sci. Appl. 5, e16168 (2016).
[Crossref]

V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12, 093006 (2010).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

Kornblit, A.

C. B. Labelle, V. M. Donnelly, G. R. Bogart, R. L. Opila, and A. Kornblit, “Investigation of fluorocarbon plasma deposition from cC4F8 for use as passivation during deep silicon etching,” J. Vac. Sci. Technol. A 22, 2500–2507 (2004).
[Crossref]

Kovalevich, T.

Kuech, T.

V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, and L. McCaughan, “New methods for fabricating patterned lithium niobate for photonic applications,” J. Cryst. Growth 259, 273–278 (2003).
[Crossref]

Kuittinen, M.

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 5 (2017).
[Crossref]

T. Kovalevich, A. Ndao, M. Suarez, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M. P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41, 5616–5619 (2016).
[Crossref]

R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

N. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devices,” in Encyclopedia of Plasma Technology, J. Leon Shohet, ed. (Taylor & Francis/CRC Press, 2015).

Labelle, C. B.

C. B. Labelle, V. M. Donnelly, G. R. Bogart, R. L. Opila, and A. Kornblit, “Investigation of fluorocarbon plasma deposition from cC4F8 for use as passivation during deep silicon etching,” J. Vac. Sci. Technol. A 22, 2500–2507 (2004).
[Crossref]

Laermer, F.

F. Laermer and A. Schilp, “Method of anisotropically etching silicon,” U.S. patent5,501,893 (March26, 1996).

Lesage, J. M.

F. Bassignot, E. Courjon, S. Ballandras, J. M. Lesage, and R. Petit, “Acoustic resonator based on periodically poled transducers: fabrication and characterization,” J. Appl. Phys. 112, 074108 (2012).
[Crossref]

Lucovsky, G.

G. Lucovsky and D. V. Tsu, “Plasma enhanced chemical vapor deposition: differences between direct and remote plasma excitation,” J. Vac. Sci. Technol. A 5, 2231–2238 (1987).
[Crossref]

Magistris, C.

Martin, O.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

McCaughan, L.

V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, and L. McCaughan, “New methods for fabricating patterned lithium niobate for photonic applications,” J. Cryst. Growth 259, 273–278 (2003).
[Crossref]

Melnikov, A. A.

V. N. Konopsky, E. V. Alieva, S. T. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, “Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals,” Light Sci. Appl. 5, e16168 (2016).
[Crossref]

Michelotti, F.

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39, 2947–2950 (2014).
[Crossref]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

Munzert, P.

Ndao, A.

T. Kovalevich, A. Ndao, M. Suarez, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M. P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41, 5616–5619 (2016).
[Crossref]

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Oktyabrsky, S.

V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, and L. McCaughan, “New methods for fabricating patterned lithium niobate for photonic applications,” J. Cryst. Growth 259, 273–278 (2003).
[Crossref]

Opila, R. L.

C. B. Labelle, V. M. Donnelly, G. R. Bogart, R. L. Opila, and A. Kornblit, “Investigation of fluorocarbon plasma deposition from cC4F8 for use as passivation during deep silicon etching,” J. Vac. Sci. Technol. A 22, 2500–2507 (2004).
[Crossref]

Petit, R.

F. Bassignot, E. Courjon, S. Ballandras, J. M. Lesage, and R. Petit, “Acoustic resonator based on periodically poled transducers: fabrication and characterization,” J. Appl. Phys. 112, 074108 (2012).
[Crossref]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and R. P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Puurunen, R. L.

R. L. Puurunen, “A short history of atomic layer deposition: Tuomo Suntola’s atomic layer epitaxy,” Chem. Vap. Deposition 20, 332–344 (2014).
[Crossref]

Qiu, W.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Quaglio, M.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, and H. Suche, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and R. P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

Ricken, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, and H. Suche, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Rizzo, R.

Roussey, M.

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 5 (2017).
[Crossref]

R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

T. Kovalevich, A. Ndao, M. Suarez, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M. P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41, 5616–5619 (2016).
[Crossref]

M. Roussey, M. P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

N. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devices,” in Encyclopedia of Plasma Technology, J. Leon Shohet, ed. (Taylor & Francis/CRC Press, 2015).

Salut, R.

T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H. P. Herzig, and M. P. Bernal, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017).
[Crossref]

M. Roussey, M. P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Saulys, D.

V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, and L. McCaughan, “New methods for fabricating patterned lithium niobate for photonic applications,” J. Cryst. Growth 259, 273–278 (2003).
[Crossref]

Schilp, A.

F. Laermer and A. Schilp, “Method of anisotropically etching silicon,” U.S. patent5,501,893 (March26, 1996).

Sciacca, B.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Sfez, T.

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, e124 (2014).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

Shandarov, V. M.

A. D. Bezpaly and V. M. Shandarov, “Optical formation of waveguide elements in photorefractive surface layer of a lithium niobate sample,” Phys. Procedia 86, 166–169 (2017).
[Crossref]

Sinibaldi, A.

Sohler, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, and H. Suche, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Suarez, M.

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, and H. Suche, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Sun, L.

Toney, J. E.

J. E. Toney, Lithium Niobate Photonics (Artech House, 2015).

Tsu, D. V.

G. Lucovsky and D. V. Tsu, “Plasma enhanced chemical vapor deposition: differences between direct and remote plasma excitation,” J. Vac. Sci. Technol. A 5, 2231–2238 (1987).
[Crossref]

Van Labeke, D.

M. Roussey, M. P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, and H. Suche, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Vosoughi Lahijani, B.

Yariv, A.

Yeh, P.

Yu, L.

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, e124 (2014).
[Crossref]

Anal. Chem. (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

Appl. Phys. Lett. (1)

M. Roussey, M. P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Chem. Vap. Deposition (1)

R. L. Puurunen, “A short history of atomic layer deposition: Tuomo Suntola’s atomic layer epitaxy,” Chem. Vap. Deposition 20, 332–344 (2014).
[Crossref]

J. Appl. Phys. (1)

F. Bassignot, E. Courjon, S. Ballandras, J. M. Lesage, and R. Petit, “Acoustic resonator based on periodically poled transducers: fabrication and characterization,” J. Appl. Phys. 112, 074108 (2012).
[Crossref]

J. Cryst. Growth (1)

V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, and L. McCaughan, “New methods for fabricating patterned lithium niobate for photonic applications,” J. Cryst. Growth 259, 273–278 (2003).
[Crossref]

J. Eur. Opt. Soc. (1)

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 5 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (2)

G. Lucovsky and D. V. Tsu, “Plasma enhanced chemical vapor deposition: differences between direct and remote plasma excitation,” J. Vac. Sci. Technol. A 5, 2231–2238 (1987).
[Crossref]

C. B. Labelle, V. M. Donnelly, G. R. Bogart, R. L. Opila, and A. Kornblit, “Investigation of fluorocarbon plasma deposition from cC4F8 for use as passivation during deep silicon etching,” J. Vac. Sci. Technol. A 22, 2500–2507 (2004).
[Crossref]

Light Sci. Appl. (2)

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, e124 (2014).
[Crossref]

V. N. Konopsky, E. V. Alieva, S. T. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, “Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals,” Light Sci. Appl. 5, e16168 (2016).
[Crossref]

Nano Lett. (1)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and R. P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[Crossref]

New J. Phys. (1)

V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12, 093006 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (2)

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Opt. Photon. News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, and H. Suche, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Phys. Chem. Chem. Phys. (1)

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Phys. Procedia (1)

A. D. Bezpaly and V. M. Shandarov, “Optical formation of waveguide elements in photorefractive surface layer of a lithium niobate sample,” Phys. Procedia 86, 166–169 (2017).
[Crossref]

Other (3)

N. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devices,” in Encyclopedia of Plasma Technology, J. Leon Shohet, ed. (Taylor & Francis/CRC Press, 2015).

J. E. Toney, Lithium Niobate Photonics (Artech House, 2015).

F. Laermer and A. Schilp, “Method of anisotropically etching silicon,” U.S. patent5,501,893 (March26, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Thickness profile of the TFLN.
Fig. 2.
Fig. 2. Schematic of the membrane-based 1DPhC fabrication process: (a) bonding of bulk LiNbO3 to Si with Cr and Au, (b) LiNbO3 polishing, (c) photoresist deposition, (d) UV lithography of the photoresist, (e) DRIE etching of Si and wet etching of Cr and Au, (f) photoresist removal, and (g) multilayer deposition.
Fig. 3.
Fig. 3. (a) Microscope images of the membranes. (b) Microscope images of the membranes after multilayer deposition.
Fig. 4.
Fig. 4. (a) FIB-SEM image of the membrane. (b) FIB-SEM image of the 1DPhC (suspended membrane).
Fig. 5.
Fig. 5. Schematic of the on-glass 1DPhC fabrication process: (a) obtaining TFLN with smart cut technology, (b) multilayer deposition, (c) UV glue bonding to the glass substrate, (d) protection of the sample with photoresist, (e) DRIE etching of Si and RIE etching of SiO2, and (f) photoresist removal.
Fig. 6.
Fig. 6. (a) Dispersion curves for the on-membrane 1DPhC. (b) Dispersion curves for the on-glass 1DPhC.
Fig. 7.
Fig. 7. (a) Experimental setup for the on-membrane 1DPhC. (b) Experimental setup for the on-glass 1DPhC.
Fig. 8.
Fig. 8. (a) Camera image intensity profile of the BWS-related reflectance dip for the membrane-based sample. (b) Camera image intensity profile of the BWS-related reflectance dip for the on-glass sample.

Metrics