Abstract

High-speed multi-user access with high spectral efficiency is one of the key challenges for band-limited visible light communication (VLC) systems. In this paper, we propose a novel scheme for effective multiple-access VLC systems based on multi-band, Nyquist-filtered pulse amplitude modulation (PAM)-8 modulation. Within this scenario, the spectral efficiency can be improved from 1.5 to 2.73 b/s/Hz by implementing an appropriate Nyquist filter to suppress spectral bandwidth. We experimentally demonstrate a multi-band VLC system at 1.2 Gb/s after 1 m indoor free space transmission. The system performances have also been thoroughly investigated for different sub-band numbers, utilizing a rectangular filter in the frequency domain and a Nyquist filter based on square root raised cosine. The results show that the Nyquist-filtered PAM-8 signal can outperform a rectangular filtered signal. The maximum improvement of system capacity is up to 1.67 times for the Nyquist-filtered multi-band system. The results clearly show the advantage and feasibility of multi-band Nyquist PAM for high-speed multiple-access VLC systems.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding

Nan Chi, Mengjie Zhang, Yingjun Zhou, and Jiaqi Zhao
Opt. Express 24(19) 21663-21673 (2016)

Visible light communications: multi-band super-Nyquist CAP modulation

P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh
Opt. Express 27(6) 8912-8919 (2019)

4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization

Yiguang Wang, Xingxing Huang, Li Tao, Jianyang Shi, and Nan Chi
Opt. Express 23(10) 13626-13633 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
    [Crossref]
  2. N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
    [Crossref]
  3. J. Zhang, J. Wang, M. Xu, F. Lu, L. Cheng, J. Yu, and G.-K. Chang, “Full-duplex asynchronous quasi-gapless carrier-aggregation using filter-bank multi-carrier in MMW radio-over-fiber heterogeneous mobile access networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Tu-2B.2.
  4. H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55, 1127–1134 (2009).
    [Crossref]
  5. F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and H. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1G.4.
  6. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1  Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57, 1620–1622 (2015).
    [Crossref]
  7. L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10  Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21, 6459–6465 (2013).
    [Crossref]
  8. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP, and DMT modulations in phosphorescent white LED transmission link,” IEEE Photon. J. 7, 1–8 (2015).
    [Crossref]
  9. L. F. Suhr, J. V. Olmos, and I. T. Monroy, “10-Gbps duobinary-4-PAM for high-performance access networks,” in Asia Communications and Photonics Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper ATh3A-161.
  10. M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, and N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.42.
  11. M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, M. I. Khalil, D. Guidotti, and G. Chang, “Orthogonal multiband CAP modulation based on offset-QAM and advanced filter design in spectral efficient MMW RoF systems,” J. Lightwave Technol. 35, 997–1005 (2017).
    [Crossref]
  12. P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
    [Crossref]
  13. P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
    [Crossref]
  14. C. H. Yeh, H. Y. Chen, C. W. Chow, and Y. L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC,” Opt. Express 23, 1133–1138 (2015).
    [Crossref]
  15. Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
    [Crossref]
  16. M. Zhang, Y. Wang, Z. Wang, J. Zhao, and N. Chi, “A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system,” in IEEE International Conference on Communications Workshops (ICC) (2016), pp. 321–325.
  17. A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photon. Technol. Lett. 23, 1547–1549 (2011).
    [Crossref]
  18. J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3  Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21, 18842–18848 (2013).
    [Crossref]
  19. X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2G.1.
  20. Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
    [Crossref]
  21. N. Chi, M. Zhang, Y. Zhou, and J. Zhao, “3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding,” Opt. Express 24, 21663–21673 (2016).
    [Crossref]

2017 (1)

2016 (1)

2015 (7)

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP, and DMT modulations in phosphorescent white LED transmission link,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref]

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

C. H. Yeh, H. Y. Chen, C. W. Chow, and Y. L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC,” Opt. Express 23, 1133–1138 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1  Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57, 1620–1622 (2015).
[Crossref]

2014 (1)

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
[Crossref]

2013 (2)

2011 (1)

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photon. Technol. Lett. 23, 1547–1549 (2011).
[Crossref]

2009 (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55, 1127–1134 (2009).
[Crossref]

2008 (1)

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Bentley, E.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

Brink, S.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photon. Technol. Lett. 23, 1547–1549 (2011).
[Crossref]

Burton, A.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

Canyelles-Pericas, P.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Chang, G.

Chang, G.-K.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Cheng, J. Yu, and G.-K. Chang, “Full-duplex asynchronous quasi-gapless carrier-aggregation using filter-bank multi-carrier in MMW radio-over-fiber heterogeneous mobile access networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Tu-2B.2.

Chen, C.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and H. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1G.4.

Chen, H. Y.

Chen, Z.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and H. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1G.4.

Cheng, L.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, M. I. Khalil, D. Guidotti, and G. Chang, “Orthogonal multiband CAP modulation based on offset-QAM and advanced filter design in spectral efficient MMW RoF systems,” J. Lightwave Technol. 35, 997–1005 (2017).
[Crossref]

J. Zhang, J. Wang, M. Xu, F. Lu, L. Cheng, J. Yu, and G.-K. Chang, “Full-duplex asynchronous quasi-gapless carrier-aggregation using filter-bank multi-carrier in MMW radio-over-fiber heterogeneous mobile access networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Tu-2B.2.

Chi, N.

N. Chi, M. Zhang, Y. Zhou, and J. Zhao, “3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding,” Opt. Express 24, 21663–21673 (2016).
[Crossref]

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10  Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21, 6459–6465 (2013).
[Crossref]

J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3  Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21, 18842–18848 (2013).
[Crossref]

M. Zhang, Y. Wang, Z. Wang, J. Zhao, and N. Chi, “A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system,” in IEEE International Conference on Communications Workshops (ICC) (2016), pp. 321–325.

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2G.1.

M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, and N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.42.

Chow, C. W.

Chvojka, P.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

Darwazeh, I.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Dong, Z.

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55, 1127–1134 (2009).
[Crossref]

Faulkner, G.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Gao, Y.

Ghassemlooy, Z.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Giacoumidis, E.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Guidotti, D.

Haas, H.

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55, 1127–1134 (2009).
[Crossref]

Haigh, P. A.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Huang, H.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and H. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1G.4.

Huang, X.

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref]

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2G.1.

Huang, X. L.

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

Idler, W.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photon. Technol. Lett. 23, 1547–1549 (2011).
[Crossref]

Jung, D.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Kanesan, T.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Kavehrad, M.

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

Khalil, M. I.

Lau, A. P. T.

Le, S. T.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Lee, K.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Leven, A.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photon. Technol. Lett. 23, 1547–1549 (2011).
[Crossref]

Li, F.

Li, J.

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2G.1.

Li, X.

Lin, C.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and H. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1G.4.

Little, T. D.

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

Liu, Y. L.

Lu, C.

Lu, F.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, M. I. Khalil, D. Guidotti, and G. Chang, “Orthogonal multiband CAP modulation based on offset-QAM and advanced filter design in spectral efficient MMW RoF systems,” J. Lightwave Technol. 35, 997–1005 (2017).
[Crossref]

J. Zhang, J. Wang, M. Xu, F. Lu, L. Cheng, J. Yu, and G.-K. Chang, “Full-duplex asynchronous quasi-gapless carrier-aggregation using filter-bank multi-carrier in MMW radio-over-fiber heterogeneous mobile access networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Tu-2B.2.

Luo, P.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Maksymiuk, L.

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1  Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57, 1620–1622 (2015).
[Crossref]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP, and DMT modulations in phosphorescent white LED transmission link,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55, 1127–1134 (2009).
[Crossref]

Mihn, H. L.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Minh, H. L.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Monroy, I. T.

L. F. Suhr, J. V. Olmos, and I. T. Monroy, “10-Gbps duobinary-4-PAM for high-performance access networks,” in Asia Communications and Photonics Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper ATh3A-161.

O’Brien, D.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Oh, Y.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Olmos, J. V.

L. F. Suhr, J. V. Olmos, and I. T. Monroy, “10-Gbps duobinary-4-PAM for high-performance access networks,” in Asia Communications and Photonics Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper ATh3A-161.

Papakonstantinou, I.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Papakonstantinous, I.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

Popoola, W.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Popoola, W. O.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

Rajbandari, S.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Schmalen, L.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photon. Technol. Lett. 23, 1547–1549 (2011).
[Crossref]

Shi, J.

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref]

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2G.1.

Shi, M.

M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, and N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.42.

Siuzdak, J.

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP, and DMT modulations in phosphorescent white LED transmission link,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1  Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57, 1620–1622 (2015).
[Crossref]

Stepniak, G.

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP, and DMT modulations in phosphorescent white LED transmission link,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1  Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57, 1620–1622 (2015).
[Crossref]

Suhr, L. F.

L. F. Suhr, J. V. Olmos, and I. T. Monroy, “10-Gbps duobinary-4-PAM for high-performance access networks,” in Asia Communications and Photonics Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper ATh3A-161.

Tao, L.

Vacondio, F.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photon. Technol. Lett. 23, 1547–1549 (2011).
[Crossref]

Wang, F.

M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, and N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.42.

Wang, J.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, M. I. Khalil, D. Guidotti, and G. Chang, “Orthogonal multiband CAP modulation based on offset-QAM and advanced filter design in spectral efficient MMW RoF systems,” J. Lightwave Technol. 35, 997–1005 (2017).
[Crossref]

J. Zhang, J. Wang, M. Xu, F. Lu, L. Cheng, J. Yu, and G.-K. Chang, “Full-duplex asynchronous quasi-gapless carrier-aggregation using filter-bank multi-carrier in MMW radio-over-fiber heterogeneous mobile access networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Tu-2B.2.

Wang, Y.

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23, 13626–13633 (2015).
[Crossref]

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
[Crossref]

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10  Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21, 6459–6465 (2013).
[Crossref]

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2G.1.

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2G.1.

M. Zhang, Y. Wang, Z. Wang, J. Zhao, and N. Chi, “A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system,” in IEEE International Conference on Communications Workshops (ICC) (2016), pp. 321–325.

Wang, Z.

M. Zhang, Y. Wang, Z. Wang, J. Zhao, and N. Chi, “A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system,” in IEEE International Conference on Communications Workshops (ICC) (2016), pp. 321–325.

M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, and N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.42.

Wei, C.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and H. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1G.4.

Werfli, K.

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

Won, E. T.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Wu, F.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and H. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1G.4.

Xu, M.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, M. I. Khalil, D. Guidotti, and G. Chang, “Orthogonal multiband CAP modulation based on offset-QAM and advanced filter design in spectral efficient MMW RoF systems,” J. Lightwave Technol. 35, 997–1005 (2017).
[Crossref]

J. Zhang, J. Wang, M. Xu, F. Lu, L. Cheng, J. Yu, and G.-K. Chang, “Full-duplex asynchronous quasi-gapless carrier-aggregation using filter-bank multi-carrier in MMW radio-over-fiber heterogeneous mobile access networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Tu-2B.2.

Xu, T.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

Yeh, C. H.

Yu, J.

J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3  Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21, 18842–18848 (2013).
[Crossref]

J. Zhang, J. Wang, M. Xu, F. Lu, L. Cheng, J. Yu, and G.-K. Chang, “Full-duplex asynchronous quasi-gapless carrier-aggregation using filter-bank multi-carrier in MMW radio-over-fiber heterogeneous mobile access networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Tu-2B.2.

Zeng, L.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Zhang, J.

Zhang, M.

N. Chi, M. Zhang, Y. Zhou, and J. Zhao, “3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding,” Opt. Express 24, 21663–21673 (2016).
[Crossref]

M. Zhang, Y. Wang, Z. Wang, J. Zhao, and N. Chi, “A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system,” in IEEE International Conference on Communications Workshops (ICC) (2016), pp. 321–325.

M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, and N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.42.

Zhao, J.

N. Chi, M. Zhang, Y. Zhou, and J. Zhao, “3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding,” Opt. Express 24, 21663–21673 (2016).
[Crossref]

M. Zhang, Y. Wang, Z. Wang, J. Zhao, and N. Chi, “A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system,” in IEEE International Conference on Communications Workshops (ICC) (2016), pp. 321–325.

M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, and N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.42.

Zhou, Y.

N. Chi, M. Zhang, Y. Zhou, and J. Zhao, “3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding,” Opt. Express 24, 21663–21673 (2016).
[Crossref]

M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, and N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.42.

Zvanovec, S.

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

IEEE Commun. Lett. (1)

Y. Wang, L. Tao, Y. Wang, and N. Chi, “High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization,” IEEE Commun. Lett. 18, 1719–1722 (2014).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, and S. Zvanovec, “A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency,” IEEE J. Sel. Areas Commun. 33, 1771–1779 (2015).
[Crossref]

IEEE Photon. J. (1)

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP, and DMT modulations in phosphorescent white LED transmission link,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photon. Technol. Lett. 23, 1547–1549 (2011).
[Crossref]

IEEE Trans. Consum. Electron. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55, 1127–1134 (2009).
[Crossref]

IEEE Wireless Commun. (2)

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. L. Huang, “Visible light communications: demand factors, benefits, and opportunities,” IEEE Wireless Commun. 22, 5–7 (2015).
[Crossref]

P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, and I. Darwazeh, “Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems,” IEEE Wireless Commun. 22, 46–53 (2015).
[Crossref]

J. Lightwave Technol. (1)

Microw. Opt. Technol. Lett. (1)

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1  Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57, 1620–1622 (2015).
[Crossref]

Opt. Express (5)

Proc. SPIE (1)

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Other (6)

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2G.1.

M. Zhang, Y. Wang, Z. Wang, J. Zhao, and N. Chi, “A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system,” in IEEE International Conference on Communications Workshops (ICC) (2016), pp. 321–325.

L. F. Suhr, J. V. Olmos, and I. T. Monroy, “10-Gbps duobinary-4-PAM for high-performance access networks,” in Asia Communications and Photonics Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper ATh3A-161.

M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, and N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.42.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Cheng, J. Yu, and G.-K. Chang, “Full-duplex asynchronous quasi-gapless carrier-aggregation using filter-bank multi-carrier in MMW radio-over-fiber heterogeneous mobile access networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Tu-2B.2.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and H. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1G.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic diagram of the multi-band Nyquist PAM-8 system.
Fig. 2.
Fig. 2. Spectra of Nyquist PAM compared with traditional PAM.
Fig. 3.
Fig. 3. Spectral shape of Nyquist PAM considering different roll-off factors.
Fig. 4.
Fig. 4. Experimental setup of the multi-band VLC system based on Nyquist PAM-8 modulation. (a) Measured electrical spectra without weighted pre-equalization; (b) measured electrical spectra with weighted pre-equalization; (c) experimental setup. Eq., pre-equalizer.
Fig. 5.
Fig. 5. Measured frequency response of the overall VLC system.
Fig. 6.
Fig. 6. BER performance versus the bandwidth of the guard band.
Fig. 7.
Fig. 7. Measured electrical spectra of received signal (a) without filters, (b) with the rectangular filter in frequency domain, and (c)–(h) with the Nyquist filter at different roll-off factors. BW, bandwidth.
Fig. 8.
Fig. 8. Measured results: (a)–(c) BER performance versus different filters for sub-bands 1–3. (d) Highest baud rate and spectral efficiency achieved for the system utilizing Nyquist filter with different roll-off factors.
Fig. 9.
Fig. 9. Measured electrical spectra with N = 1 6 sub-bands.
Fig. 10.
Fig. 10. Measured BER performance of each sub-band for different numbers of sub-bands.
Fig. 11.
Fig. 11. Total capacity of multi-band system for different numbers of sub-bands.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

h ( t ) = sin [ π t T s ( 1 α ) ] + 4 α t T s cos [ π t T s ( 1 + α ) ] π t T s [ 1 ( 4 α t T s ) 2 ] ,
h f p _ n ( t ) = h ( t ) · cos ( 2 π f n t ) ,
f n = ( 2 n 1 ) ( 1 + α ) 2 T s .
S ( t ) = n = 1 N [ A n · ( S n ( t ) h f p _ n ( t ) ) ] ,
= n = 1 N [ A n · S n ( t ) · cos ( 2 π f n t ) ] ,
R ( t ) = n = 1 N [ A n · S n ( t ) · cos ( 2 π f n t ) ] + N 0 ( t ) ,
R m ( t ) = { n = 1 N [ A n S n ( t ) cos ( 2 π f n t ) ] + N 0 ( t ) } · cos ( 2 π f m t ) ,
= A m S m ( t ) cos 2 ( 2 π f m t ) + I m , n ( t ) + I N ( t ) ,
= 1 2 A m S m ( t ) + 1 2 A m S m ( t ) cos ( 4 π f m t ) + I m , n ( t ) + I N ( t ) ,
I m , n ( t ) = n m N A n S n ( t ) cos ( 2 π f n t ) cos ( 2 π f m t ) ,
I N ( t ) = N 0 ( t ) cos ( 2 π f m t ) .
R m ( t ) = 1 2 A m S m ( t ) ,
H ( f ) = { 1 , | f | 1 + α 2 T s 0 , | f | > 1 + α 2 T s ,
H ( f ) = { 1 , | f | 1 T s 0 , | f | > 1 T s ,

Metrics