Abstract

We report on broadly wavelength-tunable passive mode-locking with high power operating at the 2 μm water absorption band in a Tm:CYA crystal laser. With a simple quartz plate, stable mode-locking wavelengths can be tuned from 1874 to 1973 nm, with a tunable wavelength range up to 100  nm and maximum output power up to 1.35 W. The bandwidth is narrow as 6  GHz, corresponding to a high coherence. To our knowledge, this is the first demonstration of wavelength-tunable mode-locking with watt-level in the 2 μm water absorption band. The high temporal coherent laser can be further applied in spectroscopy, the efficient excitation of molecules, sensing, and quantum optics.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Stable passively harmonic mode-locking dissipative pulses in 2µm solid-state laser

Wei Zhou, Xuliang Fan, Hao Xue, Rui Xu, Yongguang Zhao, Xiaodong Xu, Dingyuan Tang, and Deyuan Shen
Opt. Express 25(3) 1815-1823 (2017)

State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm

Hongyu Luo, Jianfeng Li, Yongchen Hai, Xue Lai, and Yong Liu
Opt. Express 26(1) 63-79 (2018)

Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm

A.A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett
Opt. Express 19(10) 9995-10000 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
    [Crossref]
  2. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050  nm window,” Opt. Express 21, 26450–26455 (2013).
    [Crossref]
  3. E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005  μm,” Appl. Phys. B 85, 257–263 (2006).
    [Crossref]
  4. W. Q. Yang, B. Zhang, G. H. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
    [Crossref]
  5. A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2  μm,” Opt. Express 19, 9995–10000 (2011).
    [Crossref]
  6. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm: Lu2O3 ceramic laser operating around 2070  nm,” Opt. Express 20, 19349–19354 (2012).
    [Crossref]
  7. T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
    [Crossref]
  8. A. A. Lagatsky, F. Fusari, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Passive mode locking of a Tm, Ho:KY(WO4)2 laser around 2  μm,” Opt. Lett. 34, 2587–2589 (2009).
    [Crossref]
  9. Y. C. Wang, R. J. Lan, X. Mateso, J. Li, C. Hu, C. Y. Li, S. Suomalainen, A. HÄrkÖnen, M. Guina, V. Petrov, and W. Gribner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1  μm,” Opt. Express 24, 18003–18012 (2016).
    [Crossref]
  10. C. Luan, K. Yand, J. Zhao, S. Zhao, T. Li, H. Zhang, J. He, L. Song, T. Dekorsy, M. Guina, and L. Zheng, “Diode-pumped mode-locked Tm:LuAG laser at 2  μm based on GaSb-SESAM,” Opt. Lett. 42, 839–842 (2017).
    [Crossref]
  11. A. Godard, “Infrared (2-12  μm) solid-state laser sources: a review,” C. R. Physique 8, 1100–1128 (2007).
    [Crossref]
  12. B. M. Walsh, “Review of Tm and Ho materials: spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
    [Crossref]
  13. F. M. P. Leclère, M. Schoofs, F. Auger, B. B. Ing, and S. R. Mordon, “Blood flow assessment with magnetic resonance imaging after 1.9  μm diode laser-assisted microvascular anastomosis,” Lasers Surg. Med. 42, 299–305 (2010).
    [Crossref]
  14. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
    [Crossref]
  15. X. Y. Chen, Q. Gao, X. L. Wang, and X. D. Li, “Experimental design and parameter optimization for laser three-dimensional (3-D) printing,” Laser Eng. 33, 189–196 (2016).
  16. M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
    [Crossref]
  17. F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
    [Crossref]
  18. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
    [Crossref]
  19. N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101, 75–78 (2010).
    [Crossref]
  20. S. F. Gao, Z. Y. You, J. L. Xu, Y. J. Sun, and C. Y. Tu, “Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals,” Mater. Lett. 141, 59–62 (2015).
    [Crossref]
  21. L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40, 356–358 (2015).
    [Crossref]
  22. J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
    [Crossref]
  23. W. Zhou, X. L. Fan, H. Xue, R. Xu, Y. G. Zhao, X. D. Xu, D. Y. Tang, and D. Y. Shen, “Stable passively harmonic mode-locking dissipative pulses in 2  μm solid-state laser,” Opt. Express 25, 1815–1823 (2017).
    [Crossref]
  24. http://hitran.iao.ru/molecule .
  25. N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm: GdLiF4 laser at 1.9  μm,” Opt. Lett. 34, 3559–3561 (2009).
    [Crossref]
  26. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990).
    [Crossref]
  27. L. A. Zenteno, H. Po, and N. M. Cho, “All-solid-state passively Q-switched mode-locked Nd-doped fiber laser,” Opt. Lett. 15, 115–117 (1990).
    [Crossref]
  28. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
    [Crossref]
  29. Y. B. Liao, Polarization Optics (Science Publishing, 2003).

2017 (4)

C. Luan, K. Yand, J. Zhao, S. Zhao, T. Li, H. Zhang, J. He, L. Song, T. Dekorsy, M. Guina, and L. Zheng, “Diode-pumped mode-locked Tm:LuAG laser at 2  μm based on GaSb-SESAM,” Opt. Lett. 42, 839–842 (2017).
[Crossref]

F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
[Crossref]

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

W. Zhou, X. L. Fan, H. Xue, R. Xu, Y. G. Zhao, X. D. Xu, D. Y. Tang, and D. Y. Shen, “Stable passively harmonic mode-locking dissipative pulses in 2  μm solid-state laser,” Opt. Express 25, 1815–1823 (2017).
[Crossref]

2016 (3)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

X. Y. Chen, Q. Gao, X. L. Wang, and X. D. Li, “Experimental design and parameter optimization for laser three-dimensional (3-D) printing,” Laser Eng. 33, 189–196 (2016).

Y. C. Wang, R. J. Lan, X. Mateso, J. Li, C. Hu, C. Y. Li, S. Suomalainen, A. HÄrkÖnen, M. Guina, V. Petrov, and W. Gribner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1  μm,” Opt. Express 24, 18003–18012 (2016).
[Crossref]

2015 (3)

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

S. F. Gao, Z. Y. You, J. L. Xu, Y. J. Sun, and C. Y. Tu, “Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals,” Mater. Lett. 141, 59–62 (2015).
[Crossref]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40, 356–358 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (1)

2011 (1)

2010 (3)

M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
[Crossref]

F. M. P. Leclère, M. Schoofs, F. Auger, B. B. Ing, and S. R. Mordon, “Blood flow assessment with magnetic resonance imaging after 1.9  μm diode laser-assisted microvascular anastomosis,” Lasers Surg. Med. 42, 299–305 (2010).
[Crossref]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101, 75–78 (2010).
[Crossref]

2009 (4)

2007 (1)

A. Godard, “Infrared (2-12  μm) solid-state laser sources: a review,” C. R. Physique 8, 1100–1128 (2007).
[Crossref]

2006 (1)

E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005  μm,” Appl. Phys. B 85, 257–263 (2006).
[Crossref]

1990 (2)

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[Crossref]

Aguiló, M.

Alam, S. U.

Antipov, O. L.

Arpin, P.

M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
[Crossref]

Auger, F.

F. M. P. Leclère, M. Schoofs, F. Auger, B. B. Ing, and S. R. Mordon, “Blood flow assessment with magnetic resonance imaging after 1.9  μm diode laser-assisted microvascular anastomosis,” Lasers Surg. Med. 42, 299–305 (2010).
[Crossref]

Brown, C. T. A.

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Cai, Z. P.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

Calvez, S.

Carvajal, J. J.

Casa, G.

E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005  μm,” Appl. Phys. B 85, 257–263 (2006).
[Crossref]

Chen, M. C.

M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
[Crossref]

Chen, N.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

Chen, X. Y.

X. Y. Chen, Q. Gao, X. L. Wang, and X. D. Li, “Experimental design and parameter optimization for laser three-dimensional (3-D) printing,” Laser Eng. 33, 189–196 (2016).

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Cho, N. M.

Cho, W. B.

Choi, S. Y.

Coluccelli, N.

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101, 75–78 (2010).
[Crossref]

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm: GdLiF4 laser at 1.9  μm,” Opt. Lett. 34, 3559–3561 (2009).
[Crossref]

Cornacchia, F.

Daniel, J. M. O.

Dawson, M. D.

De Tommasi, E.

E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005  μm,” Appl. Phys. B 85, 257–263 (2006).
[Crossref]

Dekorsy, T.

C. Luan, K. Yand, J. Zhao, S. Zhao, T. Li, H. Zhang, J. He, L. Song, T. Dekorsy, M. Guina, and L. Zheng, “Diode-pumped mode-locked Tm:LuAG laser at 2  μm based on GaSb-SESAM,” Opt. Lett. 42, 839–842 (2017).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Di Lieto, A.

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101, 75–78 (2010).
[Crossref]

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm: GdLiF4 laser at 1.9  μm,” Opt. Lett. 34, 3559–3561 (2009).
[Crossref]

Díaz, F.

Ding, M. M.

F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
[Crossref]

Esterowitz, L.

Fan, X. L.

Feng, T.

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Fusari, F.

Galzerano, G.

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101, 75–78 (2010).
[Crossref]

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm: GdLiF4 laser at 1.9  μm,” Opt. Lett. 34, 3559–3561 (2009).
[Crossref]

Gao, Q.

X. Y. Chen, Q. Gao, X. L. Wang, and X. D. Li, “Experimental design and parameter optimization for laser three-dimensional (3-D) printing,” Laser Eng. 33, 189–196 (2016).

Gao, S. F.

S. F. Gao, Z. Y. You, J. L. Xu, Y. J. Sun, and C. Y. Tu, “Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals,” Mater. Lett. 141, 59–62 (2015).
[Crossref]

Gatti, D.

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101, 75–78 (2010).
[Crossref]

Gerrity, M.

M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
[Crossref]

Gianfrani, L.

E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005  μm,” Appl. Phys. B 85, 257–263 (2006).
[Crossref]

Godard, A.

A. Godard, “Infrared (2-12  μm) solid-state laser sources: a review,” C. R. Physique 8, 1100–1128 (2007).
[Crossref]

Gribner, W.

Griebner, U.

Guina, M.

Gupta, J. A.

HÄrkÖnen, A.

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

He, J.

C. Luan, K. Yand, J. Zhao, S. Zhao, T. Li, H. Zhang, J. He, L. Song, T. Dekorsy, M. Guina, and L. Zheng, “Diode-pumped mode-locked Tm:LuAG laser at 2  μm based on GaSb-SESAM,” Opt. Lett. 42, 839–842 (2017).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Heidt, A. M.

Hou, J.

Hu, C.

Ing, B. B.

F. M. P. Leclère, M. Schoofs, F. Auger, B. B. Ing, and S. R. Mordon, “Blood flow assessment with magnetic resonance imaging after 1.9  μm diode laser-assisted microvascular anastomosis,” Lasers Surg. Med. 42, 299–305 (2010).
[Crossref]

Jung, Y.

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Kapteyn, H. C.

M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
[Crossref]

Kisel, V. E.

Kong, L. C.

Kuleshov, N. V.

Lagatsky, A. A.

Lan, J. L.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

Lan, R. J.

Laporta, P.

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101, 75–78 (2010).
[Crossref]

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm: GdLiF4 laser at 1.9  μm,” Opt. Lett. 34, 3559–3561 (2009).
[Crossref]

Leclère, F. M. P.

F. M. P. Leclère, M. Schoofs, F. Auger, B. B. Ing, and S. R. Mordon, “Blood flow assessment with magnetic resonance imaging after 1.9  μm diode laser-assisted microvascular anastomosis,” Lasers Surg. Med. 42, 299–305 (2010).
[Crossref]

Lee, S.

Li, C. Y.

Li, J.

Li, T.

C. Luan, K. Yand, J. Zhao, S. Zhao, T. Li, H. Zhang, J. He, L. Song, T. Dekorsy, M. Guina, and L. Zheng, “Diode-pumped mode-locked Tm:LuAG laser at 2  μm based on GaSb-SESAM,” Opt. Lett. 42, 839–842 (2017).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Li, X. D.

X. Y. Chen, Q. Gao, X. L. Wang, and X. D. Li, “Experimental design and parameter optimization for laser three-dimensional (3-D) printing,” Laser Eng. 33, 189–196 (2016).

Li, Z.

Liao, Y. B.

Y. B. Liao, Polarization Optics (Science Publishing, 2003).

Liu, Q. Y.

F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
[Crossref]

Luan, C.

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Mateos, X.

Mateso, X.

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Moncorgé, R.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

Mordon, S. R.

F. M. P. Leclère, M. Schoofs, F. Auger, B. B. Ing, and S. R. Mordon, “Blood flow assessment with magnetic resonance imaging after 1.9  μm diode laser-assisted microvascular anastomosis,” Lasers Surg. Med. 42, 299–305 (2010).
[Crossref]

Murnane, M. M.

M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
[Crossref]

Petrov, V.

Po, H.

Popmintchev, D.

M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
[Crossref]

Popmintchev, T.

M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
[Crossref]

Pujol, M. C.

Qian, L. J.

Qiao, W.

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Qin, Z. P.

Richardson, D. J.

Rotermund, F.

Schmidt, A.

Schoofs, M.

F. M. P. Leclère, M. Schoofs, F. Auger, B. B. Ing, and S. R. Mordon, “Blood flow assessment with magnetic resonance imaging after 1.9  μm diode laser-assisted microvascular anastomosis,” Lasers Surg. Med. 42, 299–305 (2010).
[Crossref]

Seaberg, M.

M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
[Crossref]

Shen, D. Y.

F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
[Crossref]

W. Zhou, X. L. Fan, H. Xue, R. Xu, Y. G. Zhao, X. D. Xu, D. Y. Tang, and D. Y. Shen, “Stable passively harmonic mode-locking dissipative pulses in 2  μm solid-state laser,” Opt. Express 25, 1815–1823 (2017).
[Crossref]

Sibbett, W.

Simakov, N.

Song, L.

Soulard, R.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

Steinmeyer, G.

Stoneman, R. C.

Su, L.

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Sun, Y. J.

S. F. Gao, Z. Y. You, J. L. Xu, Y. J. Sun, and C. Y. Tu, “Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals,” Mater. Lett. 141, 59–62 (2015).
[Crossref]

Suomalainen, S.

Tang, D. Y.

Tonelli, M.

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101, 75–78 (2010).
[Crossref]

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm: GdLiF4 laser at 1.9  μm,” Opt. Lett. 34, 3559–3561 (2009).
[Crossref]

Tu, C. Y.

S. F. Gao, Z. Y. You, J. L. Xu, Y. J. Sun, and C. Y. Tu, “Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals,” Mater. Lett. 141, 59–62 (2015).
[Crossref]

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[Crossref]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials: spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[Crossref]

Wang, J.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

Wang, Q.

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Wang, X. L.

X. Y. Chen, Q. Gao, X. L. Wang, and X. D. Li, “Experimental design and parameter optimization for laser three-dimensional (3-D) printing,” Laser Eng. 33, 189–196 (2016).

Wang, Y. C.

Wu, F.

F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
[Crossref]

Xia, H. T.

F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
[Crossref]

Xie, G. Q.

Xu, B.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

Xu, H. Y.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

Xu, J.

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40, 356–358 (2015).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Xu, J. L.

S. F. Gao, Z. Y. You, J. L. Xu, Y. J. Sun, and C. Y. Tu, “Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals,” Mater. Lett. 141, 59–62 (2015).
[Crossref]

Xu, R.

Xu, X.

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Xu, X. D.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
[Crossref]

W. Zhou, X. L. Fan, H. Xue, R. Xu, Y. G. Zhao, X. D. Xu, D. Y. Tang, and D. Y. Shen, “Stable passively harmonic mode-locking dissipative pulses in 2  μm solid-state laser,” Opt. Express 25, 1815–1823 (2017).
[Crossref]

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40, 356–358 (2015).
[Crossref]

Xue, G. H.

Xue, H.

Yand, K.

Yang, K.

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Yang, W. Q.

Yao, W. C.

F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
[Crossref]

Yim, J. H.

Yin, K.

You, Z. Y.

S. F. Gao, Z. Y. You, J. L. Xu, Y. J. Sun, and C. Y. Tu, “Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals,” Mater. Lett. 141, 59–62 (2015).
[Crossref]

Yuan, P.

Zenteno, L. A.

Zhang, B.

W. Q. Yang, B. Zhang, G. H. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
[Crossref]

M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
[Crossref]

Zhang, H.

Zhang, X. Y.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

Zhao, J.

C. Luan, K. Yand, J. Zhao, S. Zhao, T. Li, H. Zhang, J. He, L. Song, T. Dekorsy, M. Guina, and L. Zheng, “Diode-pumped mode-locked Tm:LuAG laser at 2  μm based on GaSb-SESAM,” Opt. Lett. 42, 839–842 (2017).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Zhao, S.

C. Luan, K. Yand, J. Zhao, S. Zhao, T. Li, H. Zhang, J. He, L. Song, T. Dekorsy, M. Guina, and L. Zheng, “Diode-pumped mode-locked Tm:LuAG laser at 2  μm based on GaSb-SESAM,” Opt. Lett. 42, 839–842 (2017).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Zhao, Y. G.

F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
[Crossref]

W. Zhou, X. L. Fan, H. Xue, R. Xu, Y. G. Zhao, X. D. Xu, D. Y. Tang, and D. Y. Shen, “Stable passively harmonic mode-locking dissipative pulses in 2  μm solid-state laser,” Opt. Express 25, 1815–1823 (2017).
[Crossref]

Zheng, L.

C. Luan, K. Yand, J. Zhao, S. Zhao, T. Li, H. Zhang, J. He, L. Song, T. Dekorsy, M. Guina, and L. Zheng, “Diode-pumped mode-locked Tm:LuAG laser at 2  μm based on GaSb-SESAM,” Opt. Lett. 42, 839–842 (2017).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Zhou, W.

F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
[Crossref]

W. Zhou, X. L. Fan, H. Xue, R. Xu, Y. G. Zhao, X. D. Xu, D. Y. Tang, and D. Y. Shen, “Stable passively harmonic mode-locking dissipative pulses in 2  μm solid-state laser,” Opt. Express 25, 1815–1823 (2017).
[Crossref]

Zhou, Z. Y.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Appl. Phys. B (3)

E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005  μm,” Appl. Phys. B 85, 257–263 (2006).
[Crossref]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101, 75–78 (2010).
[Crossref]

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[Crossref]

C. R. Physique (1)

A. Godard, “Infrared (2-12  μm) solid-state laser sources: a review,” C. R. Physique 8, 1100–1128 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 515–518 (2017).
[Crossref]

Laser Eng. (1)

X. Y. Chen, Q. Gao, X. L. Wang, and X. D. Li, “Experimental design and parameter optimization for laser three-dimensional (3-D) printing,” Laser Eng. 33, 189–196 (2016).

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials: spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[Crossref]

Lasers Surg. Med. (1)

F. M. P. Leclère, M. Schoofs, F. Auger, B. B. Ing, and S. R. Mordon, “Blood flow assessment with magnetic resonance imaging after 1.9  μm diode laser-assisted microvascular anastomosis,” Lasers Surg. Med. 42, 299–305 (2010).
[Crossref]

Light Sci. Appl. (2)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Mater. Lett. (1)

S. F. Gao, Z. Y. You, J. L. Xu, Y. J. Sun, and C. Y. Tu, “Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals,” Mater. Lett. 141, 59–62 (2015).
[Crossref]

Opt. Express (7)

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2  μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref]

W. Zhou, X. L. Fan, H. Xue, R. Xu, Y. G. Zhao, X. D. Xu, D. Y. Tang, and D. Y. Shen, “Stable passively harmonic mode-locking dissipative pulses in 2  μm solid-state laser,” Opt. Express 25, 1815–1823 (2017).
[Crossref]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050  nm window,” Opt. Express 21, 26450–26455 (2013).
[Crossref]

A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2  μm,” Opt. Express 19, 9995–10000 (2011).
[Crossref]

A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm: Lu2O3 ceramic laser operating around 2070  nm,” Opt. Express 20, 19349–19354 (2012).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21  W passively mode-locked Tm:LuAG laser,” Opt. Express 23, 11815–11825 (2015).
[Crossref]

Y. C. Wang, R. J. Lan, X. Mateso, J. Li, C. Hu, C. Y. Li, S. Suomalainen, A. HÄrkÖnen, M. Guina, V. Petrov, and W. Gribner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1  μm,” Opt. Express 24, 18003–18012 (2016).
[Crossref]

Opt. Lett. (7)

Opt. Mater. Express (1)

F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2  μm,” Opt. Mater. Express 7, 1290–1294 (2017).
[Crossref]

Phys. Rev. Lett. (1)

M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
[Crossref]

Other (2)

http://hitran.iao.ru/molecule .

Y. B. Liao, Polarization Optics (Science Publishing, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the Tm:CYA laser. L1 and L2 are the pump collimating and focusing lens ( f = 100    mm ), M1 and M2 are the highly reflective concave mirrors with the radius of curvature (ROC) of 100 mm, and the M2 is also the output coupler (OC) with output ratio of 10%, M3 is the highly reflective concave mirror, with the ROC of 200 mm, DM is the dichroic mirror (HR 2000 nm/AR 790 nm). L3 is a quartz-crystal-plate filter. α is the tilted angle, which equals the incidence angle of the ray between the plate surface and laser propagation direction. The effective output is the total of the three output ports (Output1, Output2, and Output3).
Fig. 2.
Fig. 2. Measured emission spectrums of Tm:CYA crystal and the calculated corresponding water absorption lines [24].
Fig. 3.
Fig. 3. Output power of tunable mode-locked Tm:CYA lasers with the quartz plate filter in the cavity at different OC mirrors of 10%, 2%, and 0.4%.
Fig. 4.
Fig. 4. Typical wavelength-tunable mode-locked optical spectrums at (a) 1874, (b) 1890, (c) 1949, and (d) 1973 nm.
Fig. 5.
Fig. 5. Typical mode-locked pulses at 1890 nm. (a) Intensity trace of a real-time measurement showing 39 pulses with RMS noise below 0.3%; (b) measured single pulse; (c) RF spectrum with large span of 3 GHz; (d) RF spectrum with short span of 30 kHz.
Fig. 6.
Fig. 6. Autocorrelation traces of ML at (a) typical 1890 and (b) 1950 nm.
Fig. 7.
Fig. 7. Wavelength shift of ML with the tilted angle of the quartz plate at the typical 10% output ratio.

Metrics