Abstract

ZnO films containing Er and Ge nanocrystals (nc-Ge) were synthesized and their photoluminescence (PL) properties were studied. Visible and near-infrared PL intensities are found to be greatly increased in nc-Ge-containing film. Er-related 1.54 μm emission has been investigated under several excitation conditions upon different kinds of Ge, Er codoped ZnO thin films. 1.54 μm PL enhancement accompanied by the appearance of nc-Ge implies a significant correlation between nc-Ge and PL emission of Er3+. The increased intensity of 1.54 μm in Ge:Er:ZnO film is considered to come from the joint effect of the local potential distortion around Er3+ and the possible energy transfer from nc-Ge to Er3+.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic evidence of the multiple-site structure of Eu3+ ions incorporated in ZnO nanocrystals

Yongsheng Liu, Wenqin Luo, Renfu Li, and Xueyuan Chen
Opt. Lett. 32(5) 566-568 (2007)

Enhanced near-infrared emission from erbium and cerium oxide codoped silica nanocomposite

Xiaoyan Li, Yunlong Yu, Peihui Luo, Weilong Zhang, Zhengang Guo, and Xiangfeng Guan
Opt. Mater. Express 7(3) 1007-1013 (2017)

Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters

A. S. Kuznetsov, Y-G. Lu, S. Turner, M. V. Shestakov, V. K. Tikhomirov, D. Kirilenko, J. Verbeeck, A. N. Baranov, and V. V. Moshchalkov
Opt. Mater. Express 2(6) 723-734 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Yang, Y. Li, L. Xiang, X. Ma, and D. Yang, “Low-voltage driven ∼1.54  μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: energy transfer from ZnO host to erbium ions,” Appl. Phys. Lett. 102, 181111 (2013).
    [Crossref]
  2. R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
    [Crossref]
  3. Y. Chen, Y. Lin, Y. Zou, Z. Luo, and Y. Huang, “Passively Q-switched 1.5–1.6  μm Er:Yb:LuAl3(BO3)4 laser with Co2+:Mg0.4Al2.4O4 saturable absorber,” Opt. Express 20, 9940–9947 (2012).
    [Crossref]
  4. A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, and C. E. Bonner, “Pulsed-laser deposited Er:ZnO films for 1.54  μm emission,” Appl. Phys. Lett. 90, 072108 (2007).
    [Crossref]
  5. L. Honglin, L. Yingbo, L. Jinzhu, and Y. Ke, “Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO,” J. Alloys Comp. 617, 102–107 (2014).
    [Crossref]
  6. H. Krzyzanowska, Y. Fu, K. S. Ni, and P. M. Fauchet, “Efficient energy transfer between Si nanostructures and Er located at a controlled distance,” ACS Photon. 3, 564–570 (2016).
    [Crossref]
  7. N. Fukata, H. Morihiro, R. Shirakawa, K. Murakami, M. Mitome, and Y. Bando, “Formation of Si nanocrystallites observed by in situ transmission electron microscopy and their effect on the enhancement of Er photoluminescence in Er-doped SiO2,” J. Appl. Phys. 102, 114309 (2007).
    [Crossref]
  8. I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. Moskalenko, A. A. Prokofiev, I. N. Yassievich, and M. Fujii, “Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. B 78, 035327 (2008).
    [Crossref]
  9. L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 92, 181105 (2008).
    [Crossref]
  10. Y.-W. Lu, C. Huang, J.-G. Cheng, and A. N. Larsen, “High Er3+ luminescent efficiency in Er-doped SiOx films containing amorphous Si nanodots,” J. Alloys Comp. 676, 428–431 (2016).
    [Crossref]
  11. Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
    [Crossref]
  12. A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
    [Crossref]
  13. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59, 3168–3170 (1991).
    [Crossref]
  14. Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism,” Phys. Rev. B 51, 1658–1670 (1995).
    [Crossref]
  15. L. Brus, “Zero-dimensional ‘excitons’ in semiconductor clusters,” IEEE J. Quantum Electron. 22, 1909–1914 (1986).
    [Crossref]
  16. F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO–SiO2 composites,” J. Phys. Chem. C 116, 13458–13462 (2012).
    [Crossref]
  17. S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54  μm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76, 3935–3937 (2000).
    [Crossref]
  18. Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54  μm photoemission,” Appl. Phys. Lett. 87, 091109 (2005).
    [Crossref]
  19. R. Zamiri, A. Rebelo, H. A. Ahangar, M. S. Belsley, and J. M. F. Ferreir, “Enhancement of near infrared emission in La co-doped ZnO/Er nanoplates,” Ceram. Int. 40, 12947–12951 (2014).
    [Crossref]
  20. T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B 46, 15578–15581 (1992).
    [Crossref]

2017 (1)

Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
[Crossref]

2016 (3)

Y.-W. Lu, C. Huang, J.-G. Cheng, and A. N. Larsen, “High Er3+ luminescent efficiency in Er-doped SiOx films containing amorphous Si nanodots,” J. Alloys Comp. 676, 428–431 (2016).
[Crossref]

R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
[Crossref]

H. Krzyzanowska, Y. Fu, K. S. Ni, and P. M. Fauchet, “Efficient energy transfer between Si nanostructures and Er located at a controlled distance,” ACS Photon. 3, 564–570 (2016).
[Crossref]

2014 (2)

L. Honglin, L. Yingbo, L. Jinzhu, and Y. Ke, “Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO,” J. Alloys Comp. 617, 102–107 (2014).
[Crossref]

R. Zamiri, A. Rebelo, H. A. Ahangar, M. S. Belsley, and J. M. F. Ferreir, “Enhancement of near infrared emission in La co-doped ZnO/Er nanoplates,” Ceram. Int. 40, 12947–12951 (2014).
[Crossref]

2013 (1)

Y. Yang, Y. Li, L. Xiang, X. Ma, and D. Yang, “Low-voltage driven ∼1.54  μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: energy transfer from ZnO host to erbium ions,” Appl. Phys. Lett. 102, 181111 (2013).
[Crossref]

2012 (2)

Y. Chen, Y. Lin, Y. Zou, Z. Luo, and Y. Huang, “Passively Q-switched 1.5–1.6  μm Er:Yb:LuAl3(BO3)4 laser with Co2+:Mg0.4Al2.4O4 saturable absorber,” Opt. Express 20, 9940–9947 (2012).
[Crossref]

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO–SiO2 composites,” J. Phys. Chem. C 116, 13458–13462 (2012).
[Crossref]

2008 (2)

I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. Moskalenko, A. A. Prokofiev, I. N. Yassievich, and M. Fujii, “Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. B 78, 035327 (2008).
[Crossref]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 92, 181105 (2008).
[Crossref]

2007 (2)

N. Fukata, H. Morihiro, R. Shirakawa, K. Murakami, M. Mitome, and Y. Bando, “Formation of Si nanocrystallites observed by in situ transmission electron microscopy and their effect on the enhancement of Er photoluminescence in Er-doped SiO2,” J. Appl. Phys. 102, 114309 (2007).
[Crossref]

A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, and C. E. Bonner, “Pulsed-laser deposited Er:ZnO films for 1.54  μm emission,” Appl. Phys. Lett. 90, 072108 (2007).
[Crossref]

2005 (1)

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54  μm photoemission,” Appl. Phys. Lett. 87, 091109 (2005).
[Crossref]

2004 (1)

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

2000 (1)

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54  μm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76, 3935–3937 (2000).
[Crossref]

1995 (1)

Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism,” Phys. Rev. B 51, 1658–1670 (1995).
[Crossref]

1992 (1)

T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B 46, 15578–15581 (1992).
[Crossref]

1991 (1)

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59, 3168–3170 (1991).
[Crossref]

1986 (1)

L. Brus, “Zero-dimensional ‘excitons’ in semiconductor clusters,” IEEE J. Quantum Electron. 22, 1909–1914 (1986).
[Crossref]

Ahangar, H. A.

R. Zamiri, A. Rebelo, H. A. Ahangar, M. S. Belsley, and J. M. F. Ferreir, “Enhancement of near infrared emission in La co-doped ZnO/Er nanoplates,” Ceram. Int. 40, 12947–12951 (2014).
[Crossref]

Aoyagi, Y.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54  μm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76, 3935–3937 (2000).
[Crossref]

Ayukawa, T.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54  μm photoemission,” Appl. Phys. Lett. 87, 091109 (2005).
[Crossref]

Balda, R.

R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
[Crossref]

Bando, Y.

N. Fukata, H. Morihiro, R. Shirakawa, K. Murakami, M. Mitome, and Y. Bando, “Formation of Si nanocrystallites observed by in situ transmission electron microscopy and their effect on the enhancement of Er photoluminescence in Er-doped SiO2,” J. Appl. Phys. 102, 114309 (2007).
[Crossref]

Basu, S. N.

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 92, 181105 (2008).
[Crossref]

Belsley, M. S.

R. Zamiri, A. Rebelo, H. A. Ahangar, M. S. Belsley, and J. M. F. Ferreir, “Enhancement of near infrared emission in La co-doped ZnO/Er nanoplates,” Ceram. Int. 40, 12947–12951 (2014).
[Crossref]

Bonner, C. E.

A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, and C. E. Bonner, “Pulsed-laser deposited Er:ZnO films for 1.54  μm emission,” Appl. Phys. Lett. 90, 072108 (2007).
[Crossref]

Brus, L.

L. Brus, “Zero-dimensional ‘excitons’ in semiconductor clusters,” IEEE J. Quantum Electron. 22, 1909–1914 (1986).
[Crossref]

Chan, W. K.

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

Cheah, K. W.

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

Chen, R.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO–SiO2 composites,” J. Phys. Chem. C 116, 13458–13462 (2012).
[Crossref]

Chen, Y.

Cheng, J.-G.

Y.-W. Lu, C. Huang, J.-G. Cheng, and A. N. Larsen, “High Er3+ luminescent efficiency in Er-doped SiOx films containing amorphous Si nanodots,” J. Alloys Comp. 676, 428–431 (2016).
[Crossref]

Choy, W. C. H.

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

Dal Negro, L.

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 92, 181105 (2008).
[Crossref]

Djurisic, A. B.

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

Dong, Z. L.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO–SiO2 composites,” J. Phys. Chem. C 116, 13458–13462 (2012).
[Crossref]

Douglas, L.

A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, and C. E. Bonner, “Pulsed-laser deposited Er:ZnO films for 1.54  μm emission,” Appl. Phys. Lett. 90, 072108 (2007).
[Crossref]

Fauchet, P. M.

H. Krzyzanowska, Y. Fu, K. S. Ni, and P. M. Fauchet, “Efficient energy transfer between Si nanostructures and Er located at a controlled distance,” ACS Photon. 3, 564–570 (2016).
[Crossref]

Fernandez, J.

R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
[Crossref]

Fernandez, T. T.

R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
[Crossref]

Ferreir, J. M. F.

R. Zamiri, A. Rebelo, H. A. Ahangar, M. S. Belsley, and J. M. F. Ferreir, “Enhancement of near infrared emission in La co-doped ZnO/Er nanoplates,” Ceram. Int. 40, 12947–12951 (2014).
[Crossref]

Ferrer, F. J.

R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
[Crossref]

Fu, Y.

H. Krzyzanowska, Y. Fu, K. S. Ni, and P. M. Fauchet, “Efficient energy transfer between Si nanostructures and Er located at a controlled distance,” ACS Photon. 3, 564–570 (2016).
[Crossref]

Fujii, M.

I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. Moskalenko, A. A. Prokofiev, I. N. Yassievich, and M. Fujii, “Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. B 78, 035327 (2008).
[Crossref]

Fukata, N.

N. Fukata, H. Morihiro, R. Shirakawa, K. Murakami, M. Mitome, and Y. Bando, “Formation of Si nanocrystallites observed by in situ transmission electron microscopy and their effect on the enhancement of Er photoluminescence in Er-doped SiO2,” J. Appl. Phys. 102, 114309 (2007).
[Crossref]

Gonzalo, J.

R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
[Crossref]

Gregorkiewicz, T.

I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. Moskalenko, A. A. Prokofiev, I. N. Yassievich, and M. Fujii, “Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. B 78, 035327 (2008).
[Crossref]

Gundu Rao, T. K.

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

Honglin, L.

L. Honglin, L. Yingbo, L. Jinzhu, and Y. Ke, “Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO,” J. Alloys Comp. 617, 102–107 (2014).
[Crossref]

Huang, C.

Y.-W. Lu, C. Huang, J.-G. Cheng, and A. N. Larsen, “High Er3+ luminescent efficiency in Er-doped SiOx films containing amorphous Si nanodots,” J. Alloys Comp. 676, 428–431 (2016).
[Crossref]

Huang, Y.

Hunter, D.

A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, and C. E. Bonner, “Pulsed-laser deposited Er:ZnO films for 1.54  μm emission,” Appl. Phys. Lett. 90, 072108 (2007).
[Crossref]

Isshiki, H.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54  μm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76, 3935–3937 (2000).
[Crossref]

Izeddin, I.

I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. Moskalenko, A. A. Prokofiev, I. N. Yassievich, and M. Fujii, “Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. B 78, 035327 (2008).
[Crossref]

Jiang, Z.

Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
[Crossref]

Jinzhu, L.

L. Honglin, L. Yingbo, L. Jinzhu, and Y. Ke, “Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO,” J. Alloys Comp. 617, 102–107 (2014).
[Crossref]

Kanemitsu, Y.

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59, 3168–3170 (1991).
[Crossref]

Katsumata, T.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54  μm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76, 3935–3937 (2000).
[Crossref]

Ke, Y.

L. Honglin, L. Yingbo, L. Jinzhu, and Y. Ke, “Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO,” J. Alloys Comp. 617, 102–107 (2014).
[Crossref]

Koizumi, A.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54  μm photoemission,” Appl. Phys. Lett. 87, 091109 (2005).
[Crossref]

Komori, T.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54  μm photoemission,” Appl. Phys. Lett. 87, 091109 (2005).
[Crossref]

Komuro, S.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54  μm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76, 3935–3937 (2000).
[Crossref]

Krzyzanowska, H.

H. Krzyzanowska, Y. Fu, K. S. Ni, and P. M. Fauchet, “Efficient energy transfer between Si nanostructures and Er located at a controlled distance,” ACS Photon. 3, 564–570 (2016).
[Crossref]

Kwong, C. Y.

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

Larsen, A. N.

Y.-W. Lu, C. Huang, J.-G. Cheng, and A. N. Larsen, “High Er3+ luminescent efficiency in Er-doped SiOx films containing amorphous Si nanodots,” J. Alloys Comp. 676, 428–431 (2016).
[Crossref]

Leung, Y. H.

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

Li, D. H.

Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
[Crossref]

Li, R.

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 92, 181105 (2008).
[Crossref]

Li, Y.

Y. Yang, Y. Li, L. Xiang, X. Ma, and D. Yang, “Low-voltage driven ∼1.54  μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: energy transfer from ZnO host to erbium ions,” Appl. Phys. Lett. 102, 181111 (2013).
[Crossref]

Lin, D.

Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
[Crossref]

Lin, Y.

Liu, T.

Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
[Crossref]

Lu, Y.-W.

Y.-W. Lu, C. Huang, J.-G. Cheng, and A. N. Larsen, “High Er3+ luminescent efficiency in Er-doped SiOx films containing amorphous Si nanodots,” J. Alloys Comp. 676, 428–431 (2016).
[Crossref]

Lui, H. F.

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

Luo, Z.

Ma, X.

Y. Yang, Y. Li, L. Xiang, X. Ma, and D. Yang, “Low-voltage driven ∼1.54  μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: energy transfer from ZnO host to erbium ions,” Appl. Phys. Lett. 102, 181111 (2013).
[Crossref]

Maeda, Y.

Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism,” Phys. Rev. B 51, 1658–1670 (1995).
[Crossref]

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59, 3168–3170 (1991).
[Crossref]

Maffiotte, C.

R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
[Crossref]

Masumoto, Y.

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59, 3168–3170 (1991).
[Crossref]

Maté, B.

R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
[Crossref]

Miguel, A.

R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
[Crossref]

Mitome, M.

N. Fukata, H. Morihiro, R. Shirakawa, K. Murakami, M. Mitome, and Y. Bando, “Formation of Si nanocrystallites observed by in situ transmission electron microscopy and their effect on the enhancement of Er photoluminescence in Er-doped SiO2,” J. Appl. Phys. 102, 114309 (2007).
[Crossref]

Morea, R.

R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
[Crossref]

Morihiro, H.

N. Fukata, H. Morihiro, R. Shirakawa, K. Murakami, M. Mitome, and Y. Bando, “Formation of Si nanocrystallites observed by in situ transmission electron microscopy and their effect on the enhancement of Er photoluminescence in Er-doped SiO2,” J. Appl. Phys. 102, 114309 (2007).
[Crossref]

Morikawa, T.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54  μm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76, 3935–3937 (2000).
[Crossref]

Morinaga, M.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54  μm photoemission,” Appl. Phys. Lett. 87, 091109 (2005).
[Crossref]

Moskalenko, A. S.

I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. Moskalenko, A. A. Prokofiev, I. N. Yassievich, and M. Fujii, “Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. B 78, 035327 (2008).
[Crossref]

Mundle, R.

A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, and C. E. Bonner, “Pulsed-laser deposited Er:ZnO films for 1.54  μm emission,” Appl. Phys. Lett. 90, 072108 (2007).
[Crossref]

Murakami, K.

N. Fukata, H. Morihiro, R. Shirakawa, K. Murakami, M. Mitome, and Y. Bando, “Formation of Si nanocrystallites observed by in situ transmission electron microscopy and their effect on the enhancement of Er photoluminescence in Er-doped SiO2,” J. Appl. Phys. 102, 114309 (2007).
[Crossref]

Mustafa, H.

A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, and C. E. Bonner, “Pulsed-laser deposited Er:ZnO films for 1.54  μm emission,” Appl. Phys. Lett. 90, 072108 (2007).
[Crossref]

Ni, K. S.

H. Krzyzanowska, Y. Fu, K. S. Ni, and P. M. Fauchet, “Efficient energy transfer between Si nanostructures and Er located at a controlled distance,” ACS Photon. 3, 564–570 (2016).
[Crossref]

Pradhan, A. K.

A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, and C. E. Bonner, “Pulsed-laser deposited Er:ZnO films for 1.54  μm emission,” Appl. Phys. Lett. 90, 072108 (2007).
[Crossref]

Prokofiev, A. A.

I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. Moskalenko, A. A. Prokofiev, I. N. Yassievich, and M. Fujii, “Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. B 78, 035327 (2008).
[Crossref]

Rebelo, A.

R. Zamiri, A. Rebelo, H. A. Ahangar, M. S. Belsley, and J. M. F. Ferreir, “Enhancement of near infrared emission in La co-doped ZnO/Er nanoplates,” Ceram. Int. 40, 12947–12951 (2014).
[Crossref]

Roy, V. A. L.

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

Shen, Y. Q.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO–SiO2 composites,” J. Phys. Chem. C 116, 13458–13462 (2012).
[Crossref]

Shirakawa, R.

N. Fukata, H. Morihiro, R. Shirakawa, K. Murakami, M. Mitome, and Y. Bando, “Formation of Si nanocrystallites observed by in situ transmission electron microscopy and their effect on the enhancement of Er photoluminescence in Er-doped SiO2,” J. Appl. Phys. 102, 114309 (2007).
[Crossref]

Sun, H. D.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO–SiO2 composites,” J. Phys. Chem. C 116, 13458–13462 (2012).
[Crossref]

Surya, C.

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

Takagahara, T.

T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B 46, 15578–15581 (1992).
[Crossref]

Takeda, K.

T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B 46, 15578–15581 (1992).
[Crossref]

Takeda, Y.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54  μm photoemission,” Appl. Phys. Lett. 87, 091109 (2005).
[Crossref]

Timmerman, D.

I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. Moskalenko, A. A. Prokofiev, I. N. Yassievich, and M. Fujii, “Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. B 78, 035327 (2008).
[Crossref]

Tsukamoto, N.

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59, 3168–3170 (1991).
[Crossref]

Wang, H. H.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO–SiO2 composites,” J. Phys. Chem. C 116, 13458–13462 (2012).
[Crossref]

Wang, S.

Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
[Crossref]

Wang, Z.

Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
[Crossref]

Warga, J.

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 92, 181105 (2008).
[Crossref]

Xiang, L.

Y. Yang, Y. Li, L. Xiang, X. Ma, and D. Yang, “Low-voltage driven ∼1.54  μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: energy transfer from ZnO host to erbium ions,” Appl. Phys. Lett. 102, 181111 (2013).
[Crossref]

Xiao, F.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO–SiO2 composites,” J. Phys. Chem. C 116, 13458–13462 (2012).
[Crossref]

Yang, D.

Y. Yang, Y. Li, L. Xiang, X. Ma, and D. Yang, “Low-voltage driven ∼1.54  μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: energy transfer from ZnO host to erbium ions,” Appl. Phys. Lett. 102, 181111 (2013).
[Crossref]

Yang, X.

Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
[Crossref]

Yang, Y.

Y. Yang, Y. Li, L. Xiang, X. Ma, and D. Yang, “Low-voltage driven ∼1.54  μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: energy transfer from ZnO host to erbium ions,” Appl. Phys. Lett. 102, 181111 (2013).
[Crossref]

Yassievich, I. N.

I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. Moskalenko, A. A. Prokofiev, I. N. Yassievich, and M. Fujii, “Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. B 78, 035327 (2008).
[Crossref]

Yazawa, Y.

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59, 3168–3170 (1991).
[Crossref]

Yin, Y.

Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
[Crossref]

Yingbo, L.

L. Honglin, L. Yingbo, L. Jinzhu, and Y. Ke, “Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO,” J. Alloys Comp. 617, 102–107 (2014).
[Crossref]

Yukawa, H.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54  μm photoemission,” Appl. Phys. Lett. 87, 091109 (2005).
[Crossref]

Zamiri, R.

R. Zamiri, A. Rebelo, H. A. Ahangar, M. S. Belsley, and J. M. F. Ferreir, “Enhancement of near infrared emission in La co-doped ZnO/Er nanoplates,” Ceram. Int. 40, 12947–12951 (2014).
[Crossref]

Zhang, Q. Y.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO–SiO2 composites,” J. Phys. Chem. C 116, 13458–13462 (2012).
[Crossref]

Zhao, X.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54  μm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76, 3935–3937 (2000).
[Crossref]

Zhong, Z.

Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
[Crossref]

Zhou, Z.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54  μm photoemission,” Appl. Phys. Lett. 87, 091109 (2005).
[Crossref]

Zou, Y.

ACS Photon. (1)

H. Krzyzanowska, Y. Fu, K. S. Ni, and P. M. Fauchet, “Efficient energy transfer between Si nanostructures and Er located at a controlled distance,” ACS Photon. 3, 564–570 (2016).
[Crossref]

Adv. Funct. Mater. (1)

A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14, 856–864 (2004).
[Crossref]

Appl. Phys. Lett. (6)

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59, 3168–3170 (1991).
[Crossref]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 92, 181105 (2008).
[Crossref]

A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, and C. E. Bonner, “Pulsed-laser deposited Er:ZnO films for 1.54  μm emission,” Appl. Phys. Lett. 90, 072108 (2007).
[Crossref]

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54  μm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76, 3935–3937 (2000).
[Crossref]

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54  μm photoemission,” Appl. Phys. Lett. 87, 091109 (2005).
[Crossref]

Y. Yang, Y. Li, L. Xiang, X. Ma, and D. Yang, “Low-voltage driven ∼1.54  μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: energy transfer from ZnO host to erbium ions,” Appl. Phys. Lett. 102, 181111 (2013).
[Crossref]

Ceram. Int. (1)

R. Zamiri, A. Rebelo, H. A. Ahangar, M. S. Belsley, and J. M. F. Ferreir, “Enhancement of near infrared emission in La co-doped ZnO/Er nanoplates,” Ceram. Int. 40, 12947–12951 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Brus, “Zero-dimensional ‘excitons’ in semiconductor clusters,” IEEE J. Quantum Electron. 22, 1909–1914 (1986).
[Crossref]

J. Alloys Comp. (2)

L. Honglin, L. Yingbo, L. Jinzhu, and Y. Ke, “Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO,” J. Alloys Comp. 617, 102–107 (2014).
[Crossref]

Y.-W. Lu, C. Huang, J.-G. Cheng, and A. N. Larsen, “High Er3+ luminescent efficiency in Er-doped SiOx films containing amorphous Si nanodots,” J. Alloys Comp. 676, 428–431 (2016).
[Crossref]

J. Appl. Phys. (1)

N. Fukata, H. Morihiro, R. Shirakawa, K. Murakami, M. Mitome, and Y. Bando, “Formation of Si nanocrystallites observed by in situ transmission electron microscopy and their effect on the enhancement of Er photoluminescence in Er-doped SiO2,” J. Appl. Phys. 102, 114309 (2007).
[Crossref]

J. Lumin. (1)

R. Morea, A. Miguel, T. T. Fernandez, B. Maté, F. J. Ferrer, C. Maffiotte, J. Fernandez, R. Balda, and J. Gonzalo, “Er3+-doped fluorotellurite thin film glasses with improved photoluminescence emissions at 1.53  μm,” J. Lumin. 170, 778–784 (2016).
[Crossref]

J. Phys. Chem. C (1)

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO–SiO2 composites,” J. Phys. Chem. C 116, 13458–13462 (2012).
[Crossref]

Nanotechnology (1)

Z. Wang, S. Wang, Y. Yin, T. Liu, D. Lin, D. H. Li, X. Yang, Z. Jiang, and Z. Zhong, “Promising features of low-temperature grown Ge nanostructures on Si (001) substrates,” Nanotechnology 28, 115701 (2017).
[Crossref]

Opt. Express (1)

Phys. Rev. B (3)

T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B 46, 15578–15581 (1992).
[Crossref]

Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism,” Phys. Rev. B 51, 1658–1670 (1995).
[Crossref]

I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. Moskalenko, A. A. Prokofiev, I. N. Yassievich, and M. Fujii, “Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. B 78, 035327 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Cross-section HRTEM image of well-grown nc-Ge 5 nm in size in 600°C annealed Ge:Er:ZnO (Er0.6 at. %) films. (b) HAADF image of the above film.
Fig. 2.
Fig. 2. Visible PL spectra of as-deposited, 600°C annealed Ge:Er:ZnO and 600°C annealed Er:ZnO films (all with Er0.6 at. %).
Fig. 3.
Fig. 3. 1.54 μm PL spectra of the as-deposited, 600°C annealed Ge:Er:ZnO and Er:ZnO films (all with Er0.6 at. %) under different excitation wavelengths. The arrows denoted in the diagram indicate each corresponding transition level to the ground state in Er3+ ions. The inset in (a) shows the energy diagram of Er3+ ions.
Fig. 4.
Fig. 4. (a) PLE spectra observed at 1.54 μm for 600°C annealed Ge:Er:ZnO and Er:ZnO (all with Er0.6 at. %) films. Arrows in the diagram indicate the different excitation ways of Er3+ ions. (b) Visible and NIR PL spectra of 600°C annealed Ge:Er:ZnO films containing nc-Ge with different Er concentrations (0.6 at. % and 0.3 at. %).

Metrics