Abstract

In this paper, we have shown that perfect absorption at terahertz frequencies can be achieved by using a composite structure where graphene is coated on one-dimensional photonic crystal (1DPC) separated by a dielectric. Due to the excitation of optical Tamm states (OTSs) at the interface between the graphene and 1DPC, a strong absorption phenomenon occurs induced by the coupling of the incident light and OTSs. Although the perfect absorption produced by a metal–distributed Bragg reflector structure has been researched extensively, it is generally at a fixed frequency and not tunable. Here, we show that the perfect absorption at terahertz frequency not only can be tuned to different frequencies but also exhibits a high absorption over a wide angle range. In addition, the absorption of the proposed structure is insensitive to the polarization, and multichannel absorption can be realized by controlling the thickness of the top layer.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tunable terahertz metamaterial absorber based on Dirac semimetal films

Tongling Wang, Maoyong Cao, Huiyun Zhang, and Yuping Zhang
Appl. Opt. 57(32) 9555-9561 (2018)

Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies

Leyong Jiang, Jiao Tang, Jiao Xu, Zhiwei Zheng, Jun Dong, Jun Guo, Shengyou Qian, Xiaoyu Dai, and Yuanjiang Xiang
Opt. Mater. Express 9(1) 139-150 (2019)

Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

Andrei Andryieuski and Andrei V. Lavrinenko
Opt. Express 21(7) 9144-9155 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
    [Crossref]
  2. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
    [Crossref]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  4. S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
    [Crossref]
  5. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
    [Crossref]
  6. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
    [Crossref]
  7. H. Wu, F. Shi, and Y. Chen, “Broadband terahertz absorption enabled by coating an ultrathin antireflection film on doped semiconductor,” Opt. Express 24, 20663–20671 (2016).
    [Crossref]
  8. J. Zhou, K. Bhattarai, S. Silva, J. Jeon, and J. Kim, “A THz plasmonics perfect absorber and Fabry–Perot cavity mechanism (Conference Presentation),” Proc. SPIE 9956, 99560H (2016).
    [Crossref]
  9. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
    [Crossref]
  10. T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
    [Crossref]
  11. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
    [Crossref]
  12. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
    [Crossref]
  13. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
    [Crossref]
  14. S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B 79, 085416 (2009).
    [Crossref]
  15. X. F. Chen, S. J. Li, and Y. Zhang, “The wide-angle perfect absorption based on the optical Tamm states,” Optoelectron. Lett. 10, 317–320 (2014).
  16. S. Lu, X. Chao, X. Chen, and B. Tang, “TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure,” Acta Opt. Sin. 35, 289–294 (2015).
  17. M. S. Fang, F. H. Shi, and Y. H. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2015).
    [Crossref]
  18. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  19. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
    [Crossref]
  20. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  21. G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5, 1353–1368 (2013).
    [Crossref]
  22. P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
    [Crossref]
  23. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22, 31511–31519 (2014).
    [Crossref]
  24. J. Guo, Y. Sun, Y. Zhang, H. Li, H. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
    [Crossref]
  25. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
    [Crossref]
  26. M. Tamagnone, J. S. Gomez-Diaz, and J. R. Mosig, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys. 112, 114915 (2012).
    [Crossref]
  27. B. Auguié, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17, 035003 (2015).
    [Crossref]
  28. K. Bliokh, Y. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Unusual resonators: plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201–1213 (2008).
    [Crossref]
  29. T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. 25, 215301 (2013).
    [Crossref]
  30. N. Nagai and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388, 479–482 (2004).
    [Crossref]
  31. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351, 3341–3346 (2005).
    [Crossref]
  32. C. M. Randall and R. D. Rawcliffe, “Refractive indices of germanium, silicon, and fused quartz in the far infrared,” Appl. Opt. 6, 1889–1895 (1967).
    [Crossref]
  33. X. L. Cheng, X. Chen, and Z. Y. Zhu, “THz-TDS spectra study of polymer materials with different polarity,” J. Infrared Millimeter Waves 32, 150–153 (2013).
    [Crossref]

2016 (2)

J. Zhou, K. Bhattarai, S. Silva, J. Jeon, and J. Kim, “A THz plasmonics perfect absorber and Fabry–Perot cavity mechanism (Conference Presentation),” Proc. SPIE 9956, 99560H (2016).
[Crossref]

H. Wu, F. Shi, and Y. Chen, “Broadband terahertz absorption enabled by coating an ultrathin antireflection film on doped semiconductor,” Opt. Express 24, 20663–20671 (2016).
[Crossref]

2015 (3)

B. Auguié, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17, 035003 (2015).
[Crossref]

S. Lu, X. Chao, X. Chen, and B. Tang, “TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure,” Acta Opt. Sin. 35, 289–294 (2015).

M. S. Fang, F. H. Shi, and Y. H. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2015).
[Crossref]

2014 (3)

X. F. Chen, S. J. Li, and Y. Zhang, “The wide-angle perfect absorption based on the optical Tamm states,” Optoelectron. Lett. 10, 317–320 (2014).

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22, 31511–31519 (2014).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

2013 (3)

X. L. Cheng, X. Chen, and Z. Y. Zhu, “THz-TDS spectra study of polymer materials with different polarity,” J. Infrared Millimeter Waves 32, 150–153 (2013).
[Crossref]

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. 25, 215301 (2013).
[Crossref]

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5, 1353–1368 (2013).
[Crossref]

2012 (4)

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

M. Tamagnone, J. S. Gomez-Diaz, and J. R. Mosig, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys. 112, 114915 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

2011 (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

2010 (3)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

2009 (3)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]

S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B 79, 085416 (2009).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

2008 (4)

K. Bliokh, Y. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Unusual resonators: plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201–1213 (2008).
[Crossref]

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[Crossref]

J. Guo, Y. Sun, Y. Zhang, H. Li, H. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

2007 (3)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

2005 (2)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[Crossref]

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

2004 (1)

N. Nagai and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388, 479–482 (2004).
[Crossref]

1967 (1)

Abdelsalam, M.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[Crossref]

Abram, R. A.

S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B 79, 085416 (2009).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Aközbek, N.

Auguié, B.

B. Auguié, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17, 035003 (2015).
[Crossref]

Bartlett, P. N.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[Crossref]

Baumberg, J. J.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[Crossref]

Bhattarai, K.

J. Zhou, K. Bhattarai, S. Silva, J. Jeon, and J. Kim, “A THz plasmonics perfect absorber and Fabry–Perot cavity mechanism (Conference Presentation),” Proc. SPIE 9956, 99560H (2016).
[Crossref]

Bianco, G. V.

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]

Bliokh, K.

K. Bliokh, Y. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Unusual resonators: plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201–1213 (2008).
[Crossref]

Bliokh, Y.

K. Bliokh, Y. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Unusual resonators: plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201–1213 (2008).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Borisov, A. G.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[Crossref]

Brand, S.

S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B 79, 085416 (2009).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Bruchhausen, A.

B. Auguié, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17, 035003 (2015).
[Crossref]

Bruno, G.

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Chao, X.

S. Lu, X. Chao, X. Chen, and B. Tang, “TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure,” Acta Opt. Sin. 35, 289–294 (2015).

Chen, H.

J. Guo, Y. Sun, Y. Zhang, H. Li, H. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[Crossref]

Chen, J.

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5, 1353–1368 (2013).
[Crossref]

Chen, X.

S. Lu, X. Chao, X. Chen, and B. Tang, “TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure,” Acta Opt. Sin. 35, 289–294 (2015).

X. L. Cheng, X. Chen, and Z. Y. Zhu, “THz-TDS spectra study of polymer materials with different polarity,” J. Infrared Millimeter Waves 32, 150–153 (2013).
[Crossref]

Chen, X. F.

X. F. Chen, S. J. Li, and Y. Zhang, “The wide-angle perfect absorption based on the optical Tamm states,” Optoelectron. Lett. 10, 317–320 (2014).

Chen, Y.

Chen, Y. H.

M. S. Fang, F. H. Shi, and Y. H. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2015).
[Crossref]

Cheng, X. L.

X. L. Cheng, X. Chen, and Z. Y. Zhu, “THz-TDS spectra study of polymer materials with different polarity,” J. Infrared Millimeter Waves 32, 150–153 (2013).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

D’Orazio, A.

Dai, X.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Dai, Y.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. 25, 215301 (2013).
[Crossref]

de Abajo, F. J. G.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[Crossref]

de Ceglia, D.

De Vittorio, M.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

Egorov, A. Y.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Fainstein, A.

B. Auguié, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17, 035003 (2015).
[Crossref]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Fang, M. S.

M. S. Fang, F. H. Shi, and Y. H. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2015).
[Crossref]

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
[Crossref]

Feng, Y.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Freilikher, V.

K. Bliokh, Y. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Unusual resonators: plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201–1213 (2008).
[Crossref]

Fukasawa, R.

N. Nagai and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388, 479–482 (2004).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Gomez-Diaz, J. S.

M. Tamagnone, J. S. Gomez-Diaz, and J. R. Mosig, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys. 112, 114915 (2012).
[Crossref]

Grande, M.

Guo, J.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

J. Guo, Y. Sun, Y. Zhang, H. Li, H. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Huang, C.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Jeon, J.

J. Zhou, K. Bhattarai, S. Silva, J. Jeon, and J. Kim, “A THz plasmonics perfect absorber and Fabry–Perot cavity mechanism (Conference Presentation),” Proc. SPIE 9956, 99560H (2016).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Jiang, H.

J. Guo, Y. Sun, Y. Zhang, H. Li, H. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[Crossref]

Jiang, T.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]

Kafesaki, M.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Kaliteevski, M. A.

S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B 79, 085416 (2009).
[Crossref]

Kalitteevski, M. A.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Kavokin, A. V.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

Kim, J.

J. Zhou, K. Bhattarai, S. Silva, J. Jeon, and J. Kim, “A THz plasmonics perfect absorber and Fabry–Perot cavity mechanism (Conference Presentation),” Proc. SPIE 9956, 99560H (2016).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

Koschny, T.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]

Li, H.

J. Guo, Y. Sun, Y. Zhang, H. Li, H. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[Crossref]

Li, S. J.

X. F. Chen, S. J. Li, and Y. Zhang, “The wide-angle perfect absorption based on the optical Tamm states,” Optoelectron. Lett. 10, 317–320 (2014).

Liu, X.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. 25, 215301 (2013).
[Crossref]

Lu, G.

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5, 1353–1368 (2013).
[Crossref]

Lu, S.

S. Lu, X. Chao, X. Chen, and B. Tang, “TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure,” Acta Opt. Sin. 35, 289–294 (2015).

Malpuech, G.

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[Crossref]

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
[Crossref]

Mosig, J. R.

M. Tamagnone, J. S. Gomez-Diaz, and J. R. Mosig, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys. 112, 114915 (2012).
[Crossref]

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[Crossref]

Nagai, N.

N. Nagai and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388, 479–482 (2004).
[Crossref]

Nori, F.

K. Bliokh, Y. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Unusual resonators: plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201–1213 (2008).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Padilla, W. J.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]

Petruzzelli, V.

Randall, C. M.

Rawcliffe, R. D.

Sasin, M. E.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Savel’ev, S.

K. Bliokh, Y. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Unusual resonators: plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201–1213 (2008).
[Crossref]

Scalora, M.

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

Shi, F.

Shi, F. H.

M. S. Fang, F. H. Shi, and Y. H. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2015).
[Crossref]

Shi, X.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. 25, 215301 (2013).
[Crossref]

Silva, S.

J. Zhou, K. Bhattarai, S. Silva, J. Jeon, and J. Kim, “A THz plasmonics perfect absorber and Fabry–Perot cavity mechanism (Conference Presentation),” Proc. SPIE 9956, 99560H (2016).
[Crossref]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]

Soukoulis, C. M.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

Stomeo, T.

Sugawara, Y.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[Crossref]

Sun, Y.

J. Guo, Y. Sun, Y. Zhang, H. Li, H. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Tamagnone, M.

M. Tamagnone, J. S. Gomez-Diaz, and J. R. Mosig, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys. 112, 114915 (2012).
[Crossref]

Tang, B.

S. Lu, X. Chao, X. Chen, and B. Tang, “TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure,” Acta Opt. Sin. 35, 289–294 (2015).

Tang, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Tassin, P.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

Teperik, T. V.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]

Vasilev, A. P.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Vincenti, M. A.

Wang, Z.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Wen, S.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Wen, Z.

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5, 1353–1368 (2013).
[Crossref]

Wu, H.

Xiang, Y.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Yu, K.

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5, 1353–1368 (2013).
[Crossref]

Zhan, T.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. 25, 215301 (2013).
[Crossref]

Zhang, H.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Zhang, Y.

X. F. Chen, S. J. Li, and Y. Zhang, “The wide-angle perfect absorption based on the optical Tamm states,” Optoelectron. Lett. 10, 317–320 (2014).

J. Guo, Y. Sun, Y. Zhang, H. Li, H. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[Crossref]

Zhao, J.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Zhou, J.

J. Zhou, K. Bhattarai, S. Silva, J. Jeon, and J. Kim, “A THz plasmonics perfect absorber and Fabry–Perot cavity mechanism (Conference Presentation),” Proc. SPIE 9956, 99560H (2016).
[Crossref]

Zhu, B.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Zhu, Z. Y.

X. L. Cheng, X. Chen, and Z. Y. Zhu, “THz-TDS spectra study of polymer materials with different polarity,” J. Infrared Millimeter Waves 32, 150–153 (2013).
[Crossref]

Zi, J.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. 25, 215301 (2013).
[Crossref]

Acta Opt. Sin. (1)

S. Lu, X. Chao, X. Chen, and B. Tang, “TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure,” Acta Opt. Sin. 35, 289–294 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Chem. Phys. Lett. (1)

N. Nagai and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388, 479–482 (2004).
[Crossref]

J. Appl. Phys. (2)

M. Tamagnone, J. S. Gomez-Diaz, and J. R. Mosig, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys. 112, 114915 (2012).
[Crossref]

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
[Crossref]

J. Infrared Millimeter Waves (1)

X. L. Cheng, X. Chen, and Z. Y. Zhu, “THz-TDS spectra study of polymer materials with different polarity,” J. Infrared Millimeter Waves 32, 150–153 (2013).
[Crossref]

J. Non-Cryst. Solids (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351, 3341–3346 (2005).
[Crossref]

J. Opt. (1)

B. Auguié, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17, 035003 (2015).
[Crossref]

J. Phys. (1)

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. 25, 215301 (2013).
[Crossref]

Laser Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Nanoscale (1)

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5, 1353–1368 (2013).
[Crossref]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nat. Photonics (4)

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Nature (1)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012).
[Crossref]

Opt. Express (2)

Optoelectron. Lett. (1)

X. F. Chen, S. J. Li, and Y. Zhang, “The wide-angle perfect absorption based on the optical Tamm states,” Optoelectron. Lett. 10, 317–320 (2014).

Phys. Rev. B (5)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009).
[Crossref]

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B 79, 085416 (2009).
[Crossref]

Phys. Rev. E (1)

J. Guo, Y. Sun, Y. Zhang, H. Li, H. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008).
[Crossref]

Phys. Rev. Lett. (1)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

Plasmonics (1)

M. S. Fang, F. H. Shi, and Y. H. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2015).
[Crossref]

Proc. SPIE (1)

J. Zhou, K. Bhattarai, S. Silva, J. Jeon, and J. Kim, “A THz plasmonics perfect absorber and Fabry–Perot cavity mechanism (Conference Presentation),” Proc. SPIE 9956, 99560H (2016).
[Crossref]

Prog. Electromagn. Res. (1)

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Rev. Mod. Phys. (1)

K. Bliokh, Y. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Unusual resonators: plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201–1213 (2008).
[Crossref]

Sci. Rep. (1)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Perfect absorber based on the graphene–1DPC composite structure, and (b) a dissymmetric cavity, enclosed by a sheet of graphene and a DBR.
Fig. 2.
Fig. 2. (a) Absorption of the graphene–1DPC configuration (red line is the absorption of our structure without graphene), (b) the phase of rGra (black dotted line), rDBR (red dot-dashed line), and rGrarDBRexp(2iϕ) (blue line) as a function of frequency, and (c) reflection coefficient rGra for a graphene–top-layer interface (black line), and reflection coefficient rDBR for a top-layer–1DPC interface (red line), as a function of frequency.
Fig. 3.
Fig. 3. (a) Normalized electric field profile distributions in the multilayer configuration without the covering of graphene, and (b) normalized electric field profile distributions in the multilayer configuration with the covering of single-layer graphene.
Fig. 4.
Fig. 4. (a) Absorption as a function of frequency at different Fermi energies in the graphene–1DPC composite configuration; the tunability of our absorber based on changing (b) the dielectric constant and (c) thickness of the top layer when EF=0.85  eV; (d) the tunability based on changing the dielectric constant and thickness of the top layer at the same time.
Fig. 5.
Fig. 5. Simulated absorption spectra for (a) TE and (b) TM wave as a function of incident angle and frequency. Here, EF=0.85  eV, ds=λc/(4ns).
Fig. 6.
Fig. 6. (a) Three and four perfect absorption peaks at the same time; (b) two absorption peaks (red line) and the phase of rGRarDBRexp(2iϕ) (blue line) as a function of frequency.
Fig. 7.
Fig. 7. (a) Absorption as a function of frequency when the top layer is chosen as fused quartz, da=51.75  μm, ds=db=38.34  μm, and the other parameters are the same as in Fig. 2; (b) the manipulation of our absorber based on changing the thickness of the top layer made up of fused quartz; (c) the manipulation of our absorber based on using fused quartz, PTFE, PP, and PET as the top layer, where the thicknesses of these materials are 32, 40, 32, and 24 μm, respectively, and the other parameters are the same as in (a); (d) multichannel absorption when the top layer is chosen as PTFE.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ(ω)=ie2kBTgπ2(ω+i/τ)[EFkBTg+2ln(eEFkBTg+1)],
A(1rGra)=(exp(iδ)00exp(iδ))(rDBR1),
rGrarDBRexp(2iδ)1.
Dp=12(1+ηp+ξp1ηpξp1ηp+ξp1+ηpξp),
Ds=12(1+ηs+ξs1ηsξs1ηs+ξs1+ηsξs),
|rGra||rDBR|1,
Arg[rGrarDBRexp(2iϕ)]0.
ϵ(ω)=ϵ+ϵsϵ1+iωτ,

Metrics