Abstract

We report on the operation of passively Q-switched waveguide lasers at 1 μm wavelength based on a graphene/WS2 heterostructure as a saturable absorber (SA). The gain medium is a crystalline Nd:YVO4 cladding waveguide produced by femtosecond laser writing. The nanosecond waveguide laser operation at 1064 nm has been realized with the maximum average output power of 275 mW and slope efficiency of 37%. In comparison with the systems based on single WS2 or graphene SA, the lasing Q-switched by a graphene/WS2 heterostructure SA possesses advantages of a higher pulse energy and enhanced slope efficiency, indicating the promising applications of van der Waals heterostructures for ultrafast photonic devices.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide

Chen Cheng, Hongliang Liu, Yang Tan, Javier R. Vázquez de Aldana, and Feng Chen
Opt. Express 24(10) 10385-10390 (2016)

Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene

Yang Tan, Chen Cheng, Shavkat Akhmadaliev, Shengqiang Zhou, and Feng Chen
Opt. Express 22(8) 9101-9106 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. J. Murphy, Integrated Optical Circuits and Components (Marcel Dekker, 1999).
  2. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
    [Crossref]
  3. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).
    [Crossref]
  4. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. 6, 622–640 (2012).
    [Crossref]
  5. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
    [Crossref]
  6. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref]
  7. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
    [Crossref]
  8. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [Crossref]
  9. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
    [Crossref]
  10. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2007).
    [Crossref]
  11. G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21, 17413–17420 (2013).
    [Crossref]
  12. T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21, 25501–25508 (2013).
    [Crossref]
  13. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. P. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5  GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
    [Crossref]
  14. C. Grivas, “Optically pumped planar waveguide lasers, Part I: fundamentals and fabrication techniques,” Prog. Quantum Electron. 35, 159–239 (2011).
    [Crossref]
  15. H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photon. Rev. 8, 847–864 (2014).
    [Crossref]
  16. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  17. J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
    [Crossref]
  18. W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
    [Crossref]
  19. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
    [Crossref]
  20. Y. Tan, H. Zhang, C. Zhao, S. Akhmadaliev, S. Zhou, and F. Chen, “Bi2Se3Q-switched Nd: YAG ceramic waveguide laser,” Opt. Lett. 40, 637–640 (2015).
    [Crossref]
  21. C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24, 10385–10390 (2016).
    [Crossref]
  22. C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as saturable absorber for passively Q-switched lasing,” Opt. Mater. Express 6, 367–373 (2016).
    [Crossref]
  23. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
    [Crossref]
  24. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  25. R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd: YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
    [Crossref]
  26. Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, and F. Chen, “Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous,” Opt. Express 24, 2858–2866 (2016).
    [Crossref]
  27. J. Liu, S. Wu, Q. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36, 4008–4010 (2011).
    [Crossref]
  28. J. Lin, Y. Hu, C. Chen, C. Gu, and L. Xu, “Wavelength-tunable Yb-doped passively Q-switching fiber laser based on WS2 saturable absorber,” Opt. Express 23, 29059–29064 (2015).
    [Crossref]
  29. Z. Li and F. Chen, “Ion beam modification of two-dimensional materials: characterization, properties, and applications,” Appl. Phys. Rev. 4, 011103 (2017).
    [Crossref]
  30. Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, and F. Chen, “Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications,” ACS Photon. 4, 1531–1538 (2017).
    [Crossref]
  31. C. R. Ryder, J. D. Wood, S. A. Wells, and M. C. Hersam, “Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus,” ACS Nano 10, 3900–3917 (2016).
    [Crossref]
  32. L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale (2017), doi: 10.1039/C7NR02025B.
    [Crossref]
  33. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, “2D materials and van der Waals heterostructures,” Science 353, aac9439 (2016).
    [Crossref]
  34. Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, “Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers,” Phys. Chem. Chem. Phys. 13, 15546–15553 (2011).
    [Crossref]
  35. T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
    [Crossref]
  36. J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
    [Crossref]
  37. E. C. T. O’Farrell, A. Avsar, J. Y. Tan, G. Eda, and B. Özyilmaz, “Quantum transport detected by strong proximity interaction at a graphene-WS2 van der Waals interface,” Nano Lett. 15, 5682–5688 (2015).
    [Crossref]
  38. S. Omar and B. J. van Wees, “Graphene-WS2 heterostructures for tunable spin injection and spin transport,” Phys. Rev. B 95, 081404 (2017).
    [Crossref]
  39. H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
    [Crossref]
  40. Z. Wang, H. Mu, J. Yuan, C. J. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 195–199 (2017).
    [Crossref]
  41. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
    [Crossref]
  42. A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
    [Crossref]
  43. S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
    [Crossref]
  44. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  45. X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
    [Crossref]

2017 (5)

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Z. Li and F. Chen, “Ion beam modification of two-dimensional materials: characterization, properties, and applications,” Appl. Phys. Rev. 4, 011103 (2017).
[Crossref]

Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, and F. Chen, “Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications,” ACS Photon. 4, 1531–1538 (2017).
[Crossref]

S. Omar and B. J. van Wees, “Graphene-WS2 heterostructures for tunable spin injection and spin transport,” Phys. Rev. B 95, 081404 (2017).
[Crossref]

Z. Wang, H. Mu, J. Yuan, C. J. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 195–199 (2017).
[Crossref]

2016 (7)

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

C. R. Ryder, J. D. Wood, S. A. Wells, and M. C. Hersam, “Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus,” ACS Nano 10, 3900–3917 (2016).
[Crossref]

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, “2D materials and van der Waals heterostructures,” Science 353, aac9439 (2016).
[Crossref]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as saturable absorber for passively Q-switched lasing,” Opt. Mater. Express 6, 367–373 (2016).
[Crossref]

Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, and F. Chen, “Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous,” Opt. Express 24, 2858–2866 (2016).
[Crossref]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24, 10385–10390 (2016).
[Crossref]

2015 (6)

Y. Tan, H. Zhang, C. Zhao, S. Akhmadaliev, S. Zhou, and F. Chen, “Bi2Se3Q-switched Nd: YAG ceramic waveguide laser,” Opt. Lett. 40, 637–640 (2015).
[Crossref]

J. Lin, Y. Hu, C. Chen, C. Gu, and L. Xu, “Wavelength-tunable Yb-doped passively Q-switching fiber laser based on WS2 saturable absorber,” Opt. Express 23, 29059–29064 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd: YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
[Crossref]

E. C. T. O’Farrell, A. Avsar, J. Y. Tan, G. Eda, and B. Özyilmaz, “Quantum transport detected by strong proximity interaction at a graphene-WS2 van der Waals interface,” Nano Lett. 15, 5682–5688 (2015).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

2014 (5)

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photon. Rev. 8, 847–864 (2014).
[Crossref]

2013 (5)

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. P. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5  GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[Crossref]

G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21, 17413–17420 (2013).
[Crossref]

T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21, 25501–25508 (2013).
[Crossref]

2012 (3)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. 6, 622–640 (2012).
[Crossref]

2011 (3)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: fundamentals and fabrication techniques,” Prog. Quantum Electron. 35, 159–239 (2011).
[Crossref]

Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, “Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers,” Phys. Chem. Chem. Phys. 13, 15546–15553 (2011).
[Crossref]

J. Liu, S. Wu, Q. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36, 4008–4010 (2011).
[Crossref]

2009 (1)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

2008 (1)

2007 (2)

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2007).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

1998 (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).
[Crossref]

1996 (2)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Akhmadaliev, S.

Ashrafi, M.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

Avsar, A.

E. C. T. O’Farrell, A. Avsar, J. Y. Tan, G. Eda, and B. Özyilmaz, “Quantum transport detected by strong proximity interaction at a graphene-WS2 van der Waals interface,” Nano Lett. 15, 5682–5688 (2015).
[Crossref]

Bao, Q.

Z. Wang, H. Mu, J. Yuan, C. J. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 195–199 (2017).
[Crossref]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Beecher, S. J.

Belle, B. D.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Bellus, M. Z.

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

Berkdemir, A.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Berner, N. C.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Blau, W. J.

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

Boettger, R.

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale (2017), doi: 10.1039/C7NR02025B.
[Crossref]

Botello-Mendez, A. R.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Britnell, L.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Brown, G.

Burghoff, J.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2007).
[Crossref]

Calmano, T.

Carvalho, A.

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, “2D materials and van der Waals heterostructures,” Science 353, aac9439 (2016).
[Crossref]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Charlier, J.-C.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Chen, C.

J. Lin, Y. Hu, C. Chen, C. Gu, and L. Xu, “Wavelength-tunable Yb-doped passively Q-switching fiber laser based on WS2 saturable absorber,” Opt. Express 23, 29059–29064 (2015).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Chen, F.

Z. Li and F. Chen, “Ion beam modification of two-dimensional materials: characterization, properties, and applications,” Appl. Phys. Rev. 4, 011103 (2017).
[Crossref]

Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, and F. Chen, “Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications,” ACS Photon. 4, 1531–1538 (2017).
[Crossref]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24, 10385–10390 (2016).
[Crossref]

Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, and F. Chen, “Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous,” Opt. Express 24, 2858–2866 (2016).
[Crossref]

C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as saturable absorber for passively Q-switched lasing,” Opt. Mater. Express 6, 367–373 (2016).
[Crossref]

R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd: YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
[Crossref]

Y. Tan, H. Zhang, C. Zhao, S. Akhmadaliev, S. Zhou, and F. Chen, “Bi2Se3Q-switched Nd: YAG ceramic waveguide laser,” Opt. Lett. 40, 637–640 (2015).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. 6, 622–640 (2012).
[Crossref]

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale (2017), doi: 10.1039/C7NR02025B.
[Crossref]

Chen, W. J.

Chen, Y.

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Chen, Z.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Cheng, C.

Chia, C.-I.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Chiu, H.-Y.

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Crespi, V. H.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Cui, Y.

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

Dai, Y.

Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, “Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers,” Phys. Chem. Chem. Phys. 13, 15546–15553 (2011).
[Crossref]

Davis, K. M.

Dhanabalan, S. C.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

Dong, N.

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Duesberg, G. S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Eaton, S. M.

Eaves, L.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Eda, G.

E. C. T. O’Farrell, A. Avsar, J. Y. Tan, G. Eda, and B. Özyilmaz, “Quantum transport detected by strong proximity interaction at a graphene-WS2 van der Waals interface,” Nano Lett. 15, 5682–5688 (2015).
[Crossref]

Elias, A. L.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Ferrari, A. C.

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. P. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5  GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Fuerbach, A.

Geim, A. K.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Georgiou, T.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Gholinia, A.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Ghorbani-Asl, M.

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale (2017), doi: 10.1039/C7NR02025B.
[Crossref]

Gorbachev, R. V.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: fundamentals and fabrication techniques,” Prog. Quantum Electron. 35, 159–239 (2011).
[Crossref]

Gross, S.

Gu, C.

Guo, M.

Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, “Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers,” Phys. Chem. Chem. Phys. 13, 15546–15553 (2011).
[Crossref]

Guo, Z.

Gutierrez, H. R.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Haigh, S. J.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Hartung, H.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2007).
[Crossref]

Hasan, T.

He, D.

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

He, J.

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

He, R.

R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd: YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
[Crossref]

He, Z.

Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, and F. Chen, “Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications,” ACS Photon. 4, 1531–1538 (2017).
[Crossref]

Herman, P. R.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Hersam, M. C.

C. R. Ryder, J. D. Wood, S. A. Wells, and M. C. Hersam, “Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus,” ACS Nano 10, 3900–3917 (2016).
[Crossref]

Hirao, K.

Ho, S.

Hu, Y.

Huang, B.

Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, “Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers,” Phys. Chem. Chem. Phys. 13, 15546–15553 (2011).
[Crossref]

Huang, J.

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

Huang, Z.

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale (2017), doi: 10.1039/C7NR02025B.
[Crossref]

Huber, G.

Jalil, R.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Jaque, D.

Ji, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kaminskii, A. A.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photon. Rev. 8, 847–864 (2014).
[Crossref]

Kar, A. K.

Kim, Y.-J.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kränkel, C.

Krasheninnikov, A. V.

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale (2017), doi: 10.1039/C7NR02025B.
[Crossref]

Kretschmer, S.

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale (2017), doi: 10.1039/C7NR02025B.
[Crossref]

Kumar, N.

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

Lancaster, D. G.

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Li, J. Z.

Li, P.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

Li, S.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

Li, Y.

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Li, Z.

Z. Li and F. Chen, “Ion beam modification of two-dimensional materials: characterization, properties, and applications,” Appl. Phys. Rev. 4, 011103 (2017).
[Crossref]

Lidorikis, E.

Lin, J.

Liu, H.

Liu, J.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photon. Rev. 8, 847–864 (2014).
[Crossref]

J. Liu, S. Wu, Q. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36, 4008–4010 (2011).
[Crossref]

Liu, X.

Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, and F. Chen, “Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications,” ACS Photon. 4, 1531–1538 (2017).
[Crossref]

Liu, Y.

Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, and F. Chen, “Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications,” ACS Photon. 4, 1531–1538 (2017).
[Crossref]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Lopez-Urias, F.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Lu, J.

Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, “Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers,” Phys. Chem. Chem. Phys. 13, 15546–15553 (2011).
[Crossref]

Ma, L.

Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, and F. Chen, “Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous,” Opt. Express 24, 2858–2866 (2016).
[Crossref]

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale (2017), doi: 10.1039/C7NR02025B.
[Crossref]

Ma, Y.

Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, “Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers,” Phys. Chem. Chem. Phys. 13, 15546–15553 (2011).
[Crossref]

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

Makarovsky, O.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Mary, R.

Matthews, J. C. F.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

McCoubrey, K.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

McEvoy, N.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Mei, L.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Milana, S.

Mishchenko, A.

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, “2D materials and van der Waals heterostructures,” Science 353, aac9439 (2016).
[Crossref]

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Miura, K.

Morozov, S. V.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Mu, H.

Z. Wang, H. Mu, J. Yuan, C. J. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 195–199 (2017).
[Crossref]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Müller, S.

Murphy, E. J.

E. J. Murphy, Integrated Optical Circuits and Components (Marcel Dekker, 1999).

Neto, A. H. C.

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, “2D materials and van der Waals heterostructures,” Science 353, aac9439 (2016).
[Crossref]

Ng, M. L.

Nie, W.

Niu, C.

Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, “Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers,” Phys. Chem. Chem. Phys. 13, 15546–15553 (2011).
[Crossref]

Nolte, S.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2007).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, “2D materials and van der Waals heterostructures,” Science 353, aac9439 (2016).
[Crossref]

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

O’Brien, J. L.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

O’Brien, M.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

O’Farrell, E. C. T.

E. C. T. O’Farrell, A. Avsar, J. Y. Tan, G. Eda, and B. Özyilmaz, “Quantum transport detected by strong proximity interaction at a graphene-WS2 van der Waals interface,” Nano Lett. 15, 5682–5688 (2015).
[Crossref]

Ohara, S.

Omar, S.

S. Omar and B. J. van Wees, “Graphene-WS2 heterostructures for tunable spin injection and spin transport,” Phys. Rev. B 95, 081404 (2017).
[Crossref]

Özyilmaz, B.

E. C. T. O’Farrell, A. Avsar, J. Y. Tan, G. Eda, and B. Özyilmaz, “Quantum transport detected by strong proximity interaction at a graphene-WS2 van der Waals interface,” Nano Lett. 15, 5682–5688 (2015).
[Crossref]

Palmer, G.

Paschke, A. G.

Perea-Lopez, N.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Politi, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

Ponomarenko, L. A.

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Ponraj, J. S.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

Popa, D.

Rabes, B. R.

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Ryder, C. R.

C. R. Ryder, J. D. Wood, S. A. Wells, and M. C. Hersam, “Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus,” ACS Nano 10, 3900–3917 (2016).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Selkirk, A.

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

Shang, Z.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Shi, J.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Song, J.

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Sugimoto, N.

Sun, Z. P.

Tan, J. Y.

E. C. T. O’Farrell, A. Avsar, J. Y. Tan, G. Eda, and B. Özyilmaz, “Quantum transport detected by strong proximity interaction at a graphene-WS2 van der Waals interface,” Nano Lett. 15, 5682–5688 (2015).
[Crossref]

Tan, Y.

Tao, W.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Terrones, H.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Terrones, M.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Thakur, S.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

Torrisi, F.

Tünnermann, A.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2007).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

van Wees, B. J.

S. Omar and B. J. van Wees, “Graphene-WS2 heterostructures for tunable spin injection and spin transport,” Phys. Rev. B 95, 081404 (2017).
[Crossref]

Vázquez de Aldana, J. R.

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24, 10385–10390 (2016).
[Crossref]

C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as saturable absorber for passively Q-switched lasing,” Opt. Mater. Express 6, 367–373 (2016).
[Crossref]

R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd: YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Wang, B.

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Wang, J.

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photon. Rev. 8, 847–864 (2014).
[Crossref]

Wang, P.

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Wang, Y.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

Wang, Z.

Z. Wang, H. Mu, J. Yuan, C. J. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 195–199 (2017).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photon. Rev. 8, 847–864 (2014).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Wells, S. A.

C. R. Ryder, J. D. Wood, S. A. Wells, and M. C. Hersam, “Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus,” ACS Nano 10, 3900–3917 (2016).
[Crossref]

Winters, S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Withford, M. J.

Wood, J. D.

C. R. Ryder, J. D. Wood, S. A. Wells, and M. C. Hersam, “Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus,” ACS Nano 10, 3900–3917 (2016).
[Crossref]

Wu, S.

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xiao, Q.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Xiao, S.

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Xie, Y.

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

Xu, L.

Xu, Z. Q.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

Xue, Y.

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Yang, Q.

Yim, C.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Yu, H.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photon. Rev. 8, 847–864 (2014).
[Crossref]

Yu, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Yuan, J.

Z. Wang, H. Mu, J. Yuan, C. J. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 195–199 (2017).
[Crossref]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Zeng, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Zhang, H.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, and F. Chen, “Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications,” ACS Photon. 4, 1531–1538 (2017).
[Crossref]

Z. Wang, H. Mu, J. Yuan, C. J. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 195–199 (2017).
[Crossref]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, and F. Chen, “Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous,” Opt. Express 24, 2858–2866 (2016).
[Crossref]

Y. Tan, H. Zhang, C. Zhao, S. Akhmadaliev, S. Zhou, and F. Chen, “Bi2Se3Q-switched Nd: YAG ceramic waveguide laser,” Opt. Lett. 40, 637–640 (2015).
[Crossref]

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photon. Rev. 8, 847–864 (2014).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
[Crossref]

Zhang, L.

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Zhang, S.

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Zhang, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Zhang, Y.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

Zhao, C.

Zhao, C. J.

Z. Wang, H. Mu, J. Yuan, C. J. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 195–199 (2017).
[Crossref]

Zhao, H.

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

Zhao, M.

Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, and F. Chen, “Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications,” ACS Photon. 4, 1531–1538 (2017).
[Crossref]

Zhou, S.

Zhu, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

ACS Nano (3)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

C. R. Ryder, J. D. Wood, S. A. Wells, and M. C. Hersam, “Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus,” ACS Nano 10, 3900–3917 (2016).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

ACS Photon. (2)

H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, “Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, and F. Chen, “Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications,” ACS Photon. 4, 1531–1538 (2017).
[Crossref]

Adv. Mater. (1)

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).
[Crossref]

Appl. Phys. A (1)

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A 86, 165–170 (2007).
[Crossref]

Appl. Phys. B (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).
[Crossref]

Appl. Phys. Rev. (1)

Z. Li and F. Chen, “Ion beam modification of two-dimensional materials: characterization, properties, and applications,” Appl. Phys. Rev. 4, 011103 (2017).
[Crossref]

Chemistry (1)

X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, and J. Wang, “MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance,” Chemistry 23, 3223 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Wang, H. Mu, J. Yuan, C. J. Zhao, Q. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 195–199 (2017).
[Crossref]

Laser Photon. Rev. (4)

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. 6, 622–640 (2012).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photon. Rev. 8, 847–864 (2014).
[Crossref]

Nano Lett. (1)

E. C. T. O’Farrell, A. Avsar, J. Y. Tan, G. Eda, and B. Özyilmaz, “Quantum transport detected by strong proximity interaction at a graphene-WS2 van der Waals interface,” Nano Lett. 15, 5682–5688 (2015).
[Crossref]

Nanotechnology (1)

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27, 462001 (2016).
[Crossref]

Nat. Commun. (1)

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nat. Nanotechnol. (2)

T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100–103 (2013).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Nat. Photonics (2)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

Opt. Express (7)

S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
[Crossref]

G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21, 17413–17420 (2013).
[Crossref]

T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21, 25501–25508 (2013).
[Crossref]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. P. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5  GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21, 7943–7950 (2013).
[Crossref]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24, 10385–10390 (2016).
[Crossref]

Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, and F. Chen, “Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous,” Opt. Express 24, 2858–2866 (2016).
[Crossref]

J. Lin, Y. Hu, C. Chen, C. Gu, and L. Xu, “Wavelength-tunable Yb-doped passively Q-switching fiber laser based on WS2 saturable absorber,” Opt. Express 23, 29059–29064 (2015).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (1)

R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd: YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, “Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers,” Phys. Chem. Chem. Phys. 13, 15546–15553 (2011).
[Crossref]

Phys. Rev. B (2)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

S. Omar and B. J. van Wees, “Graphene-WS2 heterostructures for tunable spin injection and spin transport,” Phys. Rev. B 95, 081404 (2017).
[Crossref]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: fundamentals and fabrication techniques,” Prog. Quantum Electron. 35, 159–239 (2011).
[Crossref]

Sci. Rep. (1)

A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Science (1)

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, “2D materials and van der Waals heterostructures,” Science 353, aac9439 (2016).
[Crossref]

Other (2)

L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale (2017), doi: 10.1039/C7NR02025B.
[Crossref]

E. J. Murphy, Integrated Optical Circuits and Components (Marcel Dekker, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of graphene/WS2 heterostructure on sapphire substrate. (b) Raman spectrum of the WS2 sample. (c) Raman spectra of monolayer graphene. (d) PL spectrum measured from graphene/WS2 heterostructure, WS2, and graphene excited by 532 nm solid-state laser at room temperature. (e) Typical open-aperture Z-scan curves with normalized transmission as a function of sample position Z.

Fig. 2.
Fig. 2.

Schematic of the experimental setup for Q-switched waveguide laser. Inset is an optical photograph of the graphene/WS2 heterostructure on sapphire substrate.

Fig. 3.
Fig. 3.

Efficient Q-switched Nd:YVO4 waveguide laser emission. (a) Emission spectrum of Q-switched waveguide laser modulated by graphene/WS2 heterostructure. Insert is the pulse trains of Q-switched pulsed laser. (b) Output power versus the launched power. Inset is the evolution of measured near-field modal profile of the graphene/WS2-based pulsed laser as the increase of launched power.

Fig. 4.
Fig. 4.

Comparison of the parameters of pulsed laser Q-switched by SAs of graphene/WS heterostructure, WS2, and graphene. (a) Repetition rate and pulse duration as a function of launched power. (b) Pulse energy and peak power as a function of launched power.

Metrics