Abstract

We theoretically design and experimentally realize a broadband ultrasmall microcavity for sensing a varying number of microparticles whose diameter is 2 μm in a freely suspended microfiber. The performance of the microcavity is predicted by the theory of one-dimensional photonic crystals and verified by the numerical simulation of finite-difference time domain and the experimental characterization of reflection and transmission spectra. A penetrating length into the reflectors as small as about four periods is demonstrated in the numerical simulation, giving rise to an ultrasmall effective mode volume that can increase the sensitivity and spatial resolution of sensing. Moreover, a reflection band as large as 150 nm from the reflectors of the microcavity has been realized in silica optical microfiber in the experiment, which highly expands the wavelength range of sensing. Our proposed microcavity integrated into a freely suspended optical fiber offers a convenient and stable method for long-distance sensing of microparticles without the need for complicated coupling systems and is free from the influence of substrates.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of broad photonic crystal stop band in a freely-suspended microfiber perforated by an array of rectangular holes

Yang Yu, Wei Ding, Lin Gan, Zhi-Yuan Li, Qiang Luo, and Steve Andrews
Opt. Express 22(3) 2528-2535 (2014)

Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing

Ningyu Liu, Lei Shi, Song Zhu, Xinbiao Xu, Shixing Yuan, and Xinliang Zhang
Opt. Express 26(1) 195-203 (2018)

High-Q, low-index-contrast photonic crystal nanofiber cavity for high sensitivity refractive index sensing

Daquan Yang, Xin Chen, Xuan Zhang, Chuwen Lan, and Ying Zhang
Appl. Opt. 57(24) 6958-6965 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, C. Aegerter, X. Xu, and J. J. Szykman, “Potential application of VIIRS day/night band for monitoring nighttime surface PM2.5 air quality from space,” Atmos. Environ. 124, 55–63 (2016).
    [Crossref]
  2. S. Weichenthal, E. Lavigne, G. Evans, K. Pollitt, and R. T. Burnett, “Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study,” Environ. Health 15, 46 (2016).
    [Crossref]
  3. C. Monn and S. Becker, “Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air,” Toxicol. Appl. Pharm. 155, 245–252 (1999).
    [Crossref]
  4. J. Su, A. F. G. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
    [Crossref]
  5. S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
    [Crossref]
  6. H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
    [Crossref]
  7. F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8  nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities,” ACS Photon. 2, 1692–1697 (2015).
    [Crossref]
  8. B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024012 (2016).
    [Crossref]
  9. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
    [Crossref]
  10. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  11. L. A. Tempelman, K. D. King, G. P. Anderson, and F. S. Ligler, “Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor,” Anal. Biochem. 233, 50–57 (1996).
    [Crossref]
  12. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36, 3753–3755 (2011).
    [Crossref]
  13. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry–Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20, 7112–7118 (2012).
    [Crossref]
  14. J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37, 2493–2495 (2012).
    [Crossref]
  15. J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express 19, 12418–12426 (2011).
    [Crossref]
  16. A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Ultrahigh-finesse, low-mode-volume Fabry–Perot microcavity,” Opt. Lett. 35, 2293–2295 (2010).
    [Crossref]
  17. Y. Wang, D. Wang, C. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry–Perot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett. 38, 269–271 (2013).
    [Crossref]
  18. Q. Zhang, L. Hu, Y. Qi, G. Liu, N. Ianno, and M. Han, “Fiber-optic refractometer based on a phase-shifted fiber Bragg grating on a side-hole fiber,” Opt. Express 23, 16750–16759 (2015).
    [Crossref]
  19. K. Zhou, Z. Yan, L. Zhang, and I. Bennion, “Refractometer based on fiber Bragg grating Fabry–Perot cavity embedded with a narrow microchannel,” Opt. Express 19, 11769–11779 (2011).
    [Crossref]
  20. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
    [Crossref]
  21. F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
    [Crossref]
  22. J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475, 210–213 (2011).
    [Crossref]
  23. K. O. Hill, B. Malo, F. Bilodeau, D. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
    [Crossref]
  24. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [Crossref]
  25. M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19, 15621–15626 (2011).
    [Crossref]
  26. W. Ding, R. J. Liu, and Z. Y. Li, “Reducing radiation losses of one-dimensional photonic-crystal reflectors on a silica waveguide,” Opt. Express 20, 28641–28654 (2012).
    [Crossref]
  27. P. Lalanne, S. Mias, and J. P. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004).
    [Crossref]
  28. Y. Yu, W. Ding, L. Gan, Z.-Y. Li, Q. Luo, and S. Andrews, “Demonstration of broad photonic crystal stop band in a freely-suspended microfiber perforated by an array of rectangular holes,” Opt. Express 22, 2528–2535 (2014).
    [Crossref]

2016 (4)

J. Wang, C. Aegerter, X. Xu, and J. J. Szykman, “Potential application of VIIRS day/night band for monitoring nighttime surface PM2.5 air quality from space,” Atmos. Environ. 124, 55–63 (2016).
[Crossref]

S. Weichenthal, E. Lavigne, G. Evans, K. Pollitt, and R. T. Burnett, “Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study,” Environ. Health 15, 46 (2016).
[Crossref]

J. Su, A. F. G. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
[Crossref]

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024012 (2016).
[Crossref]

2015 (2)

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8  nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities,” ACS Photon. 2, 1692–1697 (2015).
[Crossref]

Q. Zhang, L. Hu, Y. Qi, G. Liu, N. Ianno, and M. Han, “Fiber-optic refractometer based on a phase-shifted fiber Bragg grating on a side-hole fiber,” Opt. Express 23, 16750–16759 (2015).
[Crossref]

2014 (3)

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref]

Y. Yu, W. Ding, L. Gan, Z.-Y. Li, Q. Luo, and S. Andrews, “Demonstration of broad photonic crystal stop band in a freely-suspended microfiber perforated by an array of rectangular holes,” Opt. Express 22, 2528–2535 (2014).
[Crossref]

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (5)

2010 (3)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Ultrahigh-finesse, low-mode-volume Fabry–Perot microcavity,” Opt. Lett. 35, 2293–2295 (2010).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

2009 (1)

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[Crossref]

2008 (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

2004 (1)

1999 (1)

C. Monn and S. Becker, “Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air,” Toxicol. Appl. Pharm. 155, 245–252 (1999).
[Crossref]

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

1996 (1)

L. A. Tempelman, K. D. King, G. P. Anderson, and F. S. Ligler, “Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor,” Anal. Biochem. 233, 50–57 (1996).
[Crossref]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Aegerter, C.

J. Wang, C. Aegerter, X. Xu, and J. J. Szykman, “Potential application of VIIRS day/night band for monitoring nighttime surface PM2.5 air quality from space,” Atmos. Environ. 124, 55–63 (2016).
[Crossref]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Anderson, G. P.

L. A. Tempelman, K. D. King, G. P. Anderson, and F. S. Ligler, “Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor,” Anal. Biochem. 233, 50–57 (1996).
[Crossref]

Andrews, S.

Araujo, L.

Arnold, S.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Becker, S.

C. Monn and S. Becker, “Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air,” Toxicol. Appl. Pharm. 155, 245–252 (1999).
[Crossref]

Bennion, I.

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Bouwmans, G.

Brambilla, G.

Burnett, R. T.

S. Weichenthal, E. Lavigne, G. Evans, K. Pollitt, and R. T. Burnett, “Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study,” Environ. Health 15, 46 (2016).
[Crossref]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Colombe, Y.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Cunningham, B. T.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref]

Dai, J. Y.

Demirci, U.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref]

Deutsch, C.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Ding, M.

Ding, W.

Dubois, G.

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475, 210–213 (2011).
[Crossref]

Erickson, D.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[Crossref]

Estève, J.

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref]

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475, 210–213 (2011).
[Crossref]

Evans, G.

S. Weichenthal, E. Lavigne, G. Evans, K. Pollitt, and R. T. Burnett, “Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study,” Environ. Health 15, 46 (2016).
[Crossref]

Favero, F. C.

Finazzi, V.

Flagg, E. B.

Gan, L.

Gehr, R.

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref]

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475, 210–213 (2011).
[Crossref]

Goddard, J. M.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[Crossref]

Goldberg, A. F. G.

J. Su, A. F. G. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
[Crossref]

Gong, Q.

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024012 (2016).
[Crossref]

Guo, J.

Haas, F.

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref]

Han, M.

Hanhauser, E.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref]

Hänsch, T. W.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Henrich, T. J.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

K. O. Hill, B. Malo, F. Bilodeau, D. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Ho, H. L.

Hu, L.

Hu, T.

Hugonin, J. P.

Hunger, D.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Ianno, N.

Inci, F.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref]

Jahangir, M.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref]

Jiang, L.

Jin, L.

Jin, W.

Johnson, D.

K. O. Hill, B. Malo, F. Bilodeau, D. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Ju, J.

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Kim, D.

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024012 (2016).
[Crossref]

King, K. D.

L. A. Tempelman, K. D. King, G. P. Anderson, and F. S. Ligler, “Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor,” Anal. Biochem. 233, 50–57 (1996).
[Crossref]

Kuritzkes, D. R.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref]

Lalanne, P.

Lavigne, E.

S. Weichenthal, E. Lavigne, G. Evans, K. Pollitt, and R. T. Burnett, “Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study,” Environ. Health 15, 46 (2016).
[Crossref]

Lawall, J. R.

Li, B.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, Z. Y.

Li, Z.-Y.

Liang, F.

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8  nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities,” ACS Photon. 2, 1692–1697 (2015).
[Crossref]

Liao, C.

Lidstone, E. A.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref]

Ligler, F. S.

L. A. Tempelman, K. D. King, G. P. Anderson, and F. S. Ligler, “Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor,” Anal. Biochem. 233, 50–57 (1996).
[Crossref]

Liu, G.

Liu, R. J.

Luo, Q.

Ma, J.

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Mandal, S.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[Crossref]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Mias, S.

Monn, C.

C. Monn and S. Becker, “Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air,” Toxicol. Appl. Pharm. 155, 245–252 (1999).
[Crossref]

Muller, A.

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Pollitt, K.

S. Weichenthal, E. Lavigne, G. Evans, K. Pollitt, and R. T. Burnett, “Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study,” Environ. Health 15, 46 (2016).
[Crossref]

Pruneri, V.

Qi, Y.

Quan, Q.

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8  nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities,” ACS Photon. 2, 1692–1697 (2015).
[Crossref]

Reichel, J.

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref]

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475, 210–213 (2011).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Shafiee, H.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref]

Shen, B.-Q.

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024012 (2016).
[Crossref]

Solomon, G. S.

Steinmetz, T.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Stoltz, B. M.

J. Su, A. F. G. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
[Crossref]

Su, J.

J. Su, A. F. G. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
[Crossref]

Szykman, J. J.

J. Wang, C. Aegerter, X. Xu, and J. J. Szykman, “Potential application of VIIRS day/night band for monitoring nighttime surface PM2.5 air quality from space,” Atmos. Environ. 124, 55–63 (2016).
[Crossref]

Tempelman, L. A.

L. A. Tempelman, K. D. King, G. P. Anderson, and F. S. Ligler, “Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor,” Anal. Biochem. 233, 50–57 (1996).
[Crossref]

Villatoro, J.

Vollmer, F.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Volz, J.

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref]

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475, 210–213 (2011).
[Crossref]

Wang, D.

Wang, J.

J. Wang, C. Aegerter, X. Xu, and J. J. Szykman, “Potential application of VIIRS day/night band for monitoring nighttime surface PM2.5 air quality from space,” Atmos. Environ. 124, 55–63 (2016).
[Crossref]

Wang, L.

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024012 (2016).
[Crossref]

Wang, M.

Wang, S.

Wang, Y.

Wei, H.

Weichenthal, S.

S. Weichenthal, E. Lavigne, G. Evans, K. Pollitt, and R. T. Burnett, “Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study,” Environ. Health 15, 46 (2016).
[Crossref]

Xiao, Y.-F.

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024012 (2016).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Xu, X.

J. Wang, C. Aegerter, X. Xu, and J. J. Szykman, “Potential application of VIIRS day/night band for monitoring nighttime surface PM2.5 air quality from space,” Atmos. Environ. 124, 55–63 (2016).
[Crossref]

Yan, Z.

Yang, J.

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yu, X.-C.

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024012 (2016).
[Crossref]

Yu, Y.

Zervas, M. N.

Zhang, L.

Zhang, Q.

Zhi, Y.

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024012 (2016).
[Crossref]

Zhou, K.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

ACS Photon. (1)

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8  nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities,” ACS Photon. 2, 1692–1697 (2015).
[Crossref]

Anal. Biochem. (1)

L. A. Tempelman, K. D. King, G. P. Anderson, and F. S. Ligler, “Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor,” Anal. Biochem. 233, 50–57 (1996).
[Crossref]

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Atmos. Environ. (1)

J. Wang, C. Aegerter, X. Xu, and J. J. Szykman, “Potential application of VIIRS day/night band for monitoring nighttime surface PM2.5 air quality from space,” Atmos. Environ. 124, 55–63 (2016).
[Crossref]

Environ. Health (1)

S. Weichenthal, E. Lavigne, G. Evans, K. Pollitt, and R. T. Burnett, “Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study,” Environ. Health 15, 46 (2016).
[Crossref]

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Lab Chip (1)

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[Crossref]

Light Sci. Appl. (1)

J. Su, A. F. G. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
[Crossref]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Nature (1)

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475, 210–213 (2011).
[Crossref]

New J. Phys. (1)

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Opt. Express (8)

M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19, 15621–15626 (2011).
[Crossref]

W. Ding, R. J. Liu, and Z. Y. Li, “Reducing radiation losses of one-dimensional photonic-crystal reflectors on a silica waveguide,” Opt. Express 20, 28641–28654 (2012).
[Crossref]

P. Lalanne, S. Mias, and J. P. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004).
[Crossref]

Y. Yu, W. Ding, L. Gan, Z.-Y. Li, Q. Luo, and S. Andrews, “Demonstration of broad photonic crystal stop band in a freely-suspended microfiber perforated by an array of rectangular holes,” Opt. Express 22, 2528–2535 (2014).
[Crossref]

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry–Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20, 7112–7118 (2012).
[Crossref]

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express 19, 12418–12426 (2011).
[Crossref]

Q. Zhang, L. Hu, Y. Qi, G. Liu, N. Ianno, and M. Han, “Fiber-optic refractometer based on a phase-shifted fiber Bragg grating on a side-hole fiber,” Opt. Express 23, 16750–16759 (2015).
[Crossref]

K. Zhou, Z. Yan, L. Zhang, and I. Bennion, “Refractometer based on fiber Bragg grating Fabry–Perot cavity embedded with a narrow microchannel,” Opt. Express 19, 11769–11779 (2011).
[Crossref]

Opt. Lett. (4)

Phys. Rev. Appl. (1)

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024012 (2016).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Sci. Rep. (1)

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref]

Science (1)

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref]

Toxicol. Appl. Pharm. (1)

C. Monn and S. Becker, “Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air,” Toxicol. Appl. Pharm. 155, 245–252 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Dispersion relationship of a periodic stack with alternating quarter-wavelength SiO 2 slabs and air. The orange curve refers to the relationship between the frequency and the imaginary part of the dimensionless wave vector. It can be observed that the imaginary part of the dimensionless wave vector reaches its maximum at the center of the bandgap. The inset figure is the schematic diagram of the stack, and the shadow region is its bandgap range. (b) The upper panel is the schematic diagram of our proposed reflector, which is composed of a set of eleven through holes with length T , width t , and period Λ , respectively equal to 1.2, 0.3, and 0.66 μm. The diameter of the microfiber is 1.7 μm. The lower panel is the distribution of electric field magnitude of the proposed reflector at an incident wavelength of 1.55 μm. The red arrows indicate the position and incident direction of the optical source. (c) Transmission and reflection spectra of the proposed reflector, (d) variation of the electric field magnitude along the z axis at the center of the microfiber in the lower panel of (b).
Fig. 2.
Fig. 2. (a) SEM of the fabricated microcavity. Reflection and transmission spectra of the microcavity whose cavity length is 50 μm, acquired by (b) FDTD simulation and (c) experimental measurement.
Fig. 3.
Fig. 3. SEM images of FIB-fabricated ultrasmall microcavities with cavity lengths of (a) 0.92 μm and (b) 1.22 μm. (c), (d) Transmission and reflection spectra of the microcavities in (a) and (b), respectively, measured in the experiment. The resonant wavelengths and Q factors of the cavity modes are shown in the frames.
Fig. 4.
Fig. 4. (a) Distribution of the electric field magnitude, whose polarization is perpendicular to the direction of the through holes in our microcavity, (b) distribution of the electric field magnitude of the interaction between a single PS microparticle with a diameter of 2 μm and the evanescent field of the microcavity, (c) reflection spectra of the microcavity interacting with zero to five PS microparticles in the simulation, (d) redshift of the resonance dip of the microcavity for different numbers of PS microparticles in the simulation.
Fig. 5.
Fig. 5. (a) Schematic diagram of the spectra measurement system. An SLED whose band of output light ranges from 1250 to 1650 nm is implemented as the optical source. A PC is used to control the polarization of the input light. Two OSAs are employed to measure the reflection and transmission spectra, respectively. (b)–(f) Microscope images of the same microcavity with one to five PS microparticles adhered, respectively, which are used for spectra measurement and sensing characterization in the experiment.
Fig. 6.
Fig. 6. (a) Measured reflection spectra of the microcavity (colored solid lines) interacting with zero to five PS microparticles in the experiment. The dashed line indicates the shift of the resonance dip in the reflection spectrum with variation of the number of PS microparticles. (b) Measured redshift of the resonance dip of the microcavity for different numbers of PS microparticles in the experiment.

Metrics