Abstract

We propose and experimentally demonstrate a 2×2 thermo-optic (TO) crossbar switch implemented by dual photonic crystal nanobeam (PCN) cavities within a silicon-on-insulator (SOI) platform. By thermally tuning the refractive index of silicon, the resonance wavelength of the PCN cavities can be red-shifted. With the help of the ultrasmall mode volumes of the PCN cavities, only 0.16  mW power is needed to change the switching state. With a spectral passband of 0.09 nm at the 1583.75 nm operation wavelength, the insertion loss (IL) and crosstalk (CT) performances were measured as IL(bar)=0.2  dB, CT(bar)=15  dB, IL(cross)=1.5  dB, and CT(cross)=15  dB. Furthermore, the thermal tuning efficiency of the fabricated device is as high as 1.23 nm/mW.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater

Zhenzhen Xu, Ciyuan Qiu, Yuxing Yang, Qingming Zhu, Xinghong Jiang, Yong Zhang, Weilu Gao, and Yikai Su
Opt. Express 25(16) 19479-19486 (2017)

Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity

Ting Pan, Ciyuan Qiu, Jiayang Wu, Xinhong Jiang, Boyu Liu, Yuxing Yang, Huanying Zhou, Richard Soref, and Yikai Su
Opt. Express 23(18) 23357-23364 (2015)

Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides

Peng Sun and Ronald M. Reano
Opt. Express 18(8) 8406-8411 (2010)

References

  • View by:
  • |
  • |
  • |

  1. X. Wan, N. Hua, and X. P. Zheng, “Dynamic routing and spectrum assignment in spectrum-flexible transparent optical networks,” J. Opt. Commun. Netw. 4, 603–613 (2012).
    [Crossref]
  2. S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24, 4468–4492 (2006).
    [Crossref]
  3. Y. W. Yin, R. Proietti, X. H. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: an AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19, 3600409 (2013).
    [Crossref]
  4. K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. P. Zhang, X. T. Wen, and Y. Chen, “An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22, 498–511 (2014).
    [Crossref]
  5. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18, 9071–9075 (2010).
    [Crossref]
  6. L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8 × 8 broadband silicon optical switch,” Opt. Express 20, 18977–18985 (2012).
    [Crossref]
  7. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OTuM2.
  8. S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16 × 16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters,” Photon. Res. 4, 202–206 (2016).
    [Crossref]
  9. R. Yu, S. Cheung, and Y. Li, “A scalable silicon photonic chip-scale optical switch for high performance computing systems,” Opt. Express 21, 32655–32663 (2013).
    [Crossref]
  10. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-nonblocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
    [Crossref]
  11. T. Goh, M. Yasu, and K. Hattori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10, 810–812 (1998).
    [Crossref]
  12. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14, 9430–9435 (2006).
    [Crossref]
  13. R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
    [Crossref]
  14. M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
    [Crossref]
  15. I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18, 364–366 (2006).
    [Crossref]
  16. X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
    [Crossref]
  17. Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems,” Photon. Res. 3, B28–B45 (2015).
    [Crossref]
  18. W. Fegadolli, J. Oliveira, V. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21, 3861–3871 (2013).
    [Crossref]
  19. Q. Quan, D. Floyd, I. Burgess, P. Deotare, I. Frank, S. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21, 32225–32233 (2013).
    [Crossref]
  20. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
    [Crossref]
  21. C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popović, “Photonic crystal microcavities in a microelectronics 45  nm SOI CMOS Technology,” IEEE Photon. Technol. Lett. 27, 665–668 (2015).
    [Crossref]
  22. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
    [Crossref]
  23. X. Ge, Y. Shi, and S. He, “Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect,” Opt. Lett. 39, 6973–6976 (2014).
    [Crossref]
  24. H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.
  25. H. Zhou, C. Qiu, Z. Xu, X. Jiang, Y. Yang, L. Han, Y. Zhang, and Y. Su, “A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes,” in Proceedings of International Conference on Group IV Photonics (2016) paper WB5.
  26. C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
    [Crossref]
  27. C. V. Poulton, X. Zeng, M. T. Wade, and M. A. Popović, “Channel add-drop filter based on dual photonic crystal cavities in push-pull mode,” Opt. Lett. 40, 4206–4209 (2015).
    [Crossref]
  28. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach–Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
    [Crossref]
  29. Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, and T. B. Jones, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
    [Crossref]
  30. K. Suzuki, G. Cong, K. Tanizawa, S. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23, 9083–9092 (2015).
    [Crossref]
  31. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
    [Crossref]
  32. X. Zhang, S. Chakravarty, C. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 221104 (2015).
    [Crossref]
  33. K. Liu, C. Zhang, S. Mu, S. Wang, and V. J. Sorger, “Two-dimensional design and analysis of trench-coupler based Silicon Mach–Zehnder thermo-optic switch,” Opt. Express 24, 15845–15853 (2016).
    [Crossref]

2016 (2)

2015 (6)

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems,” Photon. Res. 3, B28–B45 (2015).
[Crossref]

C. V. Poulton, X. Zeng, M. T. Wade, and M. A. Popović, “Channel add-drop filter based on dual photonic crystal cavities in push-pull mode,” Opt. Lett. 40, 4206–4209 (2015).
[Crossref]

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, and T. B. Jones, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

K. Suzuki, G. Cong, K. Tanizawa, S. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23, 9083–9092 (2015).
[Crossref]

X. Zhang, S. Chakravarty, C. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 221104 (2015).
[Crossref]

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popović, “Photonic crystal microcavities in a microelectronics 45  nm SOI CMOS Technology,” IEEE Photon. Technol. Lett. 27, 665–668 (2015).
[Crossref]

2014 (3)

2013 (5)

2012 (2)

2011 (1)

2010 (3)

2008 (1)

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

2006 (3)

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18, 364–366 (2006).
[Crossref]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14, 9430–9435 (2006).
[Crossref]

S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24, 4468–4492 (2006).
[Crossref]

2004 (1)

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

2003 (1)

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

1998 (1)

T. Goh, M. Yasu, and K. Hattori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10, 810–812 (1998).
[Crossref]

Aalto, T.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

Akella, V.

Y. W. Yin, R. Proietti, X. H. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: an AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19, 3600409 (2013).
[Crossref]

Almeida, V.

Asghari, M.

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18, 364–366 (2006).
[Crossref]

Burgess, I.

Calhoun, D. M.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, and T. B. Jones, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Chakravarty, S.

X. Zhang, S. Chakravarty, C. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 221104 (2015).
[Crossref]

Chen, J.

Chen, K.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. P. Zhang, X. T. Wen, and Y. Chen, “An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22, 498–511 (2014).
[Crossref]

Chen, L.

Chen, R. T.

X. Zhang, S. Chakravarty, C. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 221104 (2015).
[Crossref]

Chen, Y.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. P. Zhang, X. T. Wen, and Y. Chen, “An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22, 498–511 (2014).
[Crossref]

Chen, Y. K.

Cheung, S.

Chiba, T.

Chung, C.

X. Zhang, S. Chakravarty, C. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 221104 (2015).
[Crossref]

Cong, G.

K. Suzuki, G. Cong, K. Tanizawa, S. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23, 9083–9092 (2015).
[Crossref]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-nonblocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

Cui, J.

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18, 364–366 (2006).
[Crossref]

Deng, Q.

Deotare, P.

DeRose, C.

Ding, R.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, and T. B. Jones, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Dong, P.

Espinola, R. L.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Fegadolli, W.

Feng, D.

Feng, N.

Floyd, D.

Frank, I.

Ge, X.

Goh, T.

T. Goh, M. Yasu, and K. Hattori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10, 810–812 (1998).
[Crossref]

Guo, Z.

Han, L.

H. Zhou, C. Qiu, Z. Xu, X. Jiang, Y. Yang, L. Han, Y. Zhang, and Y. Su, “A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes,” in Proceedings of International Conference on Group IV Photonics (2016) paper WB5.

Harjanne, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

Hasama, T.

Hattori, K.

T. Goh, M. Yasu, and K. Hattori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10, 810–812 (1998).
[Crossref]

Haus, H.

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

He, S.

Heimala, P.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

Hino, T.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OTuM2.

Hua, N.

Igarashi, Y.

Ikeda, K.

K. Suzuki, G. Cong, K. Tanizawa, S. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23, 9083–9092 (2015).
[Crossref]

Ilic, R.

Ishikawa, H.

Jiang, X.

H. Zhou, C. Qiu, Z. Xu, X. Jiang, Y. Yang, L. Han, Y. Zhang, and Y. Su, “A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes,” in Proceedings of International Conference on Group IV Photonics (2016) paper WB5.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

Joannopoulos, J.

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Jones, T. B.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, and T. B. Jones, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Kapulainen, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

Kawashima, H.

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Kim, S.

K. Suzuki, G. Cong, K. Tanizawa, S. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23, 9083–9092 (2015).
[Crossref]

Kim, S.-H.

Kintaka, K.

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18, 364–366 (2006).
[Crossref]

Krishnamoorthy, A. V.

Li, D.

Li, Q.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, and T. B. Jones, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Li, X.

Li, Y.

Liang, H.

Lipson, M.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14, 9430–9435 (2006).
[Crossref]

Liu, B.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

Liu, K.

Liu, R.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

Liu, Y.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, and T. B. Jones, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Lo, G.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OTuM2.

Loncar, M.

Lu, L.

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Martinez, J. A.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Masahara, M.

Matsukawa, T.

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Mu, S.

Nakamura, S.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OTuM2.

Namiki, S.

K. Suzuki, G. Cong, K. Tanizawa, S. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23, 9083–9092 (2015).
[Crossref]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-nonblocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

Nawrocka, M. S.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Nielson, G. N.

Nikolova, D.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, and T. B. Jones, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Nitta, C. J.

Y. W. Yin, R. Proietti, X. H. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: an AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19, 3600409 (2013).
[Crossref]

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Ohno, M.

Oliveira, J.

Orcutt, J. S.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popović, “Photonic crystal microcavities in a microelectronics 45  nm SOI CMOS Technology,” IEEE Photon. Technol. Lett. 27, 665–668 (2015).
[Crossref]

Osgood, R. M.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

Pan, Z.

X. Zhang, S. Chakravarty, C. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 221104 (2015).
[Crossref]

Panepucci, R. R.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Peng, J.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

Popovic, M. A.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popović, “Photonic crystal microcavities in a microelectronics 45  nm SOI CMOS Technology,” IEEE Photon. Technol. Lett. 27, 665–668 (2015).
[Crossref]

C. V. Poulton, X. Zeng, M. T. Wade, and M. A. Popović, “Channel add-drop filter based on dual photonic crystal cavities in push-pull mode,” Opt. Lett. 40, 4206–4209 (2015).
[Crossref]

Poulton, C. V.

C. V. Poulton, X. Zeng, M. T. Wade, and M. A. Popović, “Channel add-drop filter based on dual photonic crystal cavities in push-pull mode,” Opt. Lett. 40, 4206–4209 (2015).
[Crossref]

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popović, “Photonic crystal microcavities in a microelectronics 45  nm SOI CMOS Technology,” IEEE Photon. Technol. Lett. 27, 665–668 (2015).
[Crossref]

Proietti, R.

Y. W. Yin, R. Proietti, X. H. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: an AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19, 3600409 (2013).
[Crossref]

Qian, W.

Qiu, C.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

H. Zhou, C. Qiu, Z. Xu, X. Jiang, Y. Yang, L. Han, Y. Zhang, and Y. Su, “A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes,” in Proceedings of International Conference on Group IV Photonics (2016) paper WB5.

Quan, Q.

Ramachandran, K.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. P. Zhang, X. T. Wen, and Y. Chen, “An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22, 498–511 (2014).
[Crossref]

Sakauchi, M.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OTuM2.

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Scherer, A.

Schmidt, B.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14, 9430–9435 (2006).
[Crossref]

Shafiiha, R.

Shainline, J. M.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popović, “Photonic crystal microcavities in a microelectronics 45  nm SOI CMOS Technology,” IEEE Photon. Technol. Lett. 27, 665–668 (2015).
[Crossref]

Shakya, J.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14, 9430–9435 (2006).
[Crossref]

Shi, Y.

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Shoji, Y.

Singh, A.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. P. Zhang, X. T. Wen, and Y. Chen, “An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22, 498–511 (2014).
[Crossref]

Singla, A.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. P. Zhang, X. T. Wen, and Y. Chen, “An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22, 498–511 (2014).
[Crossref]

Soref, R.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

Sorger, V. J.

Su, Y.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

H. Zhou, C. Qiu, Z. Xu, X. Jiang, Y. Yang, L. Han, Y. Zhang, and Y. Su, “A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes,” in Proceedings of International Conference on Group IV Photonics (2016) paper WB5.

Suda, S.

Sun, J.

Suzuki, K.

K. Suzuki, G. Cong, K. Tanizawa, S. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23, 9083–9092 (2015).
[Crossref]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-nonblocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

Tadokoro, H.

Takahashi, S.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OTuM2.

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Tang, S.

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Tanizawa, K.

K. Suzuki, G. Cong, K. Tanizawa, S. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23, 9083–9092 (2015).
[Crossref]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-nonblocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

Trotter, D. C.

Tsai, M.-C.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

Villeneuve, P.

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Wade, M. T.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popović, “Photonic crystal microcavities in a microelectronics 45  nm SOI CMOS Technology,” IEEE Photon. Technol. Lett. 27, 665–668 (2015).
[Crossref]

C. V. Poulton, X. Zeng, M. T. Wade, and M. A. Popović, “Channel add-drop filter based on dual photonic crystal cavities in push-pull mode,” Opt. Lett. 40, 4206–4209 (2015).
[Crossref]

Wan, X.

Wang, S.

Wang, X.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Watts, M. R.

Wen, X. T.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. P. Zhang, X. T. Wen, and Y. Chen, “An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22, 498–511 (2014).
[Crossref]

Wu, J.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

Xu, L.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. P. Zhang, X. T. Wen, and Y. Chen, “An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22, 498–511 (2014).
[Crossref]

Xu, Q.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14, 9430–9435 (2006).
[Crossref]

Xu, Z.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

H. Zhou, C. Qiu, Z. Xu, X. Jiang, Y. Yang, L. Han, Y. Zhang, and Y. Su, “A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes,” in Proceedings of International Conference on Group IV Photonics (2016) paper WB5.

Yan, H.

X. Zhang, S. Chakravarty, C. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 221104 (2015).
[Crossref]

Yanagihara, M.

Yang, Y.

H. Zhou, C. Qiu, Z. Xu, X. Jiang, Y. Yang, L. Han, Y. Zhang, and Y. Su, “A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes,” in Proceedings of International Conference on Group IV Photonics (2016) paper WB5.

Yardley, J. T.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

Yasu, M.

T. Goh, M. Yasu, and K. Hattori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10, 810–812 (1998).
[Crossref]

Ye, X. H.

Y. W. Yin, R. Proietti, X. H. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: an AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19, 3600409 (2013).
[Crossref]

Yin, B.

Yin, Y. W.

Y. W. Yin, R. Proietti, X. H. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: an AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19, 3600409 (2013).
[Crossref]

Yoo, S. J. B.

Y. W. Yin, R. Proietti, X. H. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: an AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19, 3600409 (2013).
[Crossref]

S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24, 4468–4492 (2006).
[Crossref]

Young, R. W.

Yu, M.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OTuM2.

Yu, R.

Zeng, X.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popović, “Photonic crystal microcavities in a microelectronics 45  nm SOI CMOS Technology,” IEEE Photon. Technol. Lett. 27, 665–668 (2015).
[Crossref]

C. V. Poulton, X. Zeng, M. T. Wade, and M. A. Popović, “Channel add-drop filter based on dual photonic crystal cavities in push-pull mode,” Opt. Lett. 40, 4206–4209 (2015).
[Crossref]

Zhang, C.

Zhang, X.

X. Zhang, S. Chakravarty, C. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 221104 (2015).
[Crossref]

Zhang, Y.

H. Zhou, C. Qiu, Z. Xu, X. Jiang, Y. Yang, L. Han, Y. Zhang, and Y. Su, “A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes,” in Proceedings of International Conference on Group IV Photonics (2016) paper WB5.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

Zhang, Y. P.

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. P. Zhang, X. T. Wen, and Y. Chen, “An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22, 498–511 (2014).
[Crossref]

Zhao, S.

Zheng, X.

Zheng, X. P.

Zhou, H.

H. Zhou, C. Qiu, Z. Xu, X. Jiang, Y. Yang, L. Han, Y. Zhang, and Y. Su, “A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes,” in Proceedings of International Conference on Group IV Photonics (2016) paper WB5.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

Zhou, L.

Zhou, Z.

Appl. Phys. Lett. (1)

X. Zhang, S. Chakravarty, C. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 221104 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. W. Yin, R. Proietti, X. H. Ye, C. J. Nitta, V. Akella, and S. J. B. Yoo, “LIONS: an AWGR-based low-latency optical switch for high-performance computing and data centers,” IEEE J. Sel. Top. Quantum Electron. 19, 3600409 (2013).
[Crossref]

IEEE Photon. Technol. (1)

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18, 364–366 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (6)

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

T. Goh, M. Yasu, and K. Hattori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10, 810–812 (1998).
[Crossref]

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, and T. B. Jones, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popović, “Photonic crystal microcavities in a microelectronics 45  nm SOI CMOS Technology,” IEEE Photon. Technol. Lett. 27, 665–668 (2015).
[Crossref]

IEEE/ACM Trans. Netw. (1)

K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. P. Zhang, X. T. Wen, and Y. Chen, “An optical switching architecture for data center networks with unprecedented flexibility,” IEEE/ACM Trans. Netw. 22, 498–511 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Nat. Photonics (1)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Opt. Express (11)

K. Suzuki, G. Cong, K. Tanizawa, S. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23, 9083–9092 (2015).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
[Crossref]

K. Liu, C. Zhang, S. Mu, S. Wang, and V. J. Sorger, “Two-dimensional design and analysis of trench-coupler based Silicon Mach–Zehnder thermo-optic switch,” Opt. Express 24, 15845–15853 (2016).
[Crossref]

R. Yu, S. Cheung, and Y. Li, “A scalable silicon photonic chip-scale optical switch for high performance computing systems,” Opt. Express 21, 32655–32663 (2013).
[Crossref]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-nonblocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18, 9071–9075 (2010).
[Crossref]

L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8 × 8 broadband silicon optical switch,” Opt. Express 20, 18977–18985 (2012).
[Crossref]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14, 9430–9435 (2006).
[Crossref]

W. Fegadolli, J. Oliveira, V. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21, 3861–3871 (2013).
[Crossref]

Q. Quan, D. Floyd, I. Burgess, P. Deotare, I. Frank, S. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21, 32225–32233 (2013).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[Crossref]

Opt. Lett. (3)

Photon. Res. (2)

Other (3)

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OTuM2.

H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, and R. Soref, “2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2016), paper JTh2A.24.

H. Zhou, C. Qiu, Z. Xu, X. Jiang, Y. Yang, L. Han, Y. Zhang, and Y. Su, “A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes,” in Proceedings of International Conference on Group IV Photonics (2016) paper WB5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of the proposed 2 × 2 TO switch based on dual PCN cavities. The phase difference between the two arms ( Φ 1 Φ 2 ) is equal to π . (b) Cross-section view of the coupled region in one half of the proposed 2 × 2 TO switch.
Fig. 2.
Fig. 2. (a) Calculated electric field distribution of a single PCN 3W structure at the resonant wavelength based on 2.5D variational FDTD simulation. (b) Simulated transmission spectra of a single PCN 3W structure.
Fig. 3.
Fig. 3. (a) Micrograph of the fabricated 2 × 2 TO switch based on dual PCN 3W structures. (b) SEM image of the fabricated PCN 3W structure. (c) Device after wire bonding to a PCB.
Fig. 4.
Fig. 4. Transmission spectra of a fabricated single PCN 3W structure in through (red solid), drop (green solid), and add (blue dash) ports. Note that the transmissions are normalized to a reference waveguide and the same to the below measured transmission spectra.
Fig. 5.
Fig. 5. (a) Transmission spectra of the fabricated 2 × 2 TO switch based on dual PCN 3W structures with the unaligned wavelength state (solid lines) and the aligned wavelength state (lines with symbols). (b) Transmission spectra of the fabricated 2 × 2 TO switch based on dual PCN 3W structures with a π phase difference at through (red line)/drop (blue line)/add (green line) ports.
Fig. 6.
Fig. 6. (a) Transmission spectra of the fabricated 2 × 2 TO switch based on dual PCN 3W structures with various applied powers ( P 1 , P 2 , P 3 ) at the through ports (solid lines) and the drop ports (lines with symbols). (b) Fitting curve of the resonance wavelength shift of 2 × 2 TO switch based on dual PCN 3W structures as a function of the applied power.

Tables (1)

Tables Icon

Table 1. Comparisons of the Operation Performances of Various Silicon TO Switches

Metrics