Abstract

Through anisotropic Ag overgrowth on the surface of Au nanobipyramids (AuNBPs), high-purity and size-controlled Ag nanorods (Au/AgNRs) are obtained by a simplified purification process. The diameters of the Au/AgNRs are determined by the size of the as-prepared AuNBPs, and the lengths of the Au/AgNRs are tunable using different amounts of Ag precursor in the growth solution. Surface-enhanced Raman scattering (SERS) studies using Rhodamine-6G (R6G) as a test molecule indicate that the Au/AgNRs have excellent sensing potential. The tunable optical properties and strong electromagnetic effect of the Au/AgNRs, along with their superior SERS signal enhancement, show that Au/AgNRs are promising for further applications in plasmon sensing and biomolecular detection.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Alloyed Au-Ag nanorods with desired plasmonic properties and stability in harsh environments

Yuan Ni, Caixia Kan, Longbing He, Xingzhong Zhu, Mingming Jiang, and Daning Shi
Photon. Res. 7(5) 558-565 (2019)

Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy

Hua Zhang, Linlin Xu, Yue Tian, Ming Chen, Xiangdong Liu, and Feng Chen
Opt. Express 25(23) 29389-29400 (2017)

Stepwise synthesis of cubic Au-AgCdS core-shell nanostructures with tunable plasmon resonances and fluorescence

Xiao-Li Liu, Shan Liang, Fan Nan, Yue-Yue Pan, Jun-Jun Shi, Li Zhou, Shuang-Feng Jia, Jian-Bo Wang, Xue-Feng Yu, and Qu-Quan Wang
Opt. Express 21(21) 24793-24798 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22, 1805–1825 (2010).
    [Crossref]
  2. Y. Li, N. Koshizaki, H. Q. Wang, and Y. Shimizu, “Untraditional approach to complex hierarchical periodic arrays with trinary stepwise architectures of micro-, submicro-, and nanosized structures based on binary colloidal crystals and their fine structure enhanced properties,” ACS Nano 5, 9403–9412 (2011).
    [Crossref]
  3. M. R. Langille, M. L. Personick, and C. A. Mirkin, “Plasmon-mediated syntheses of metallic nanostructures,” Angew. Chem. Int. Ed. 52, 13910–13940 (2013).
    [Crossref]
  4. J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly (ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
    [Crossref]
  5. N. Goubet, H. Portales, C. Yan, I. Arfaoui, P. A. Albouy, A. Mermet, and M. P. Pileni, “Simultaneous growths of gold colloidal crystals,” J. Am. Chem. Soc. 134, 3714–3719 (2012).
    [Crossref]
  6. C. K. Kim, P. Ghosh, and V. M. Rotello, “Multimodal drug delivery using gold nanoparticles,” Nanoscale 1, 61–67 (2009).
    [Crossref]
  7. J. H. Lee, J. H. Hwang, and J. M. Nam, “DNA-tailored plasmonic nanoparticles for biosensing applications,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 96–109 (2013).
    [Crossref]
  8. C. B. Gao, Z. D. Lu, Y. Liu, Q. Zhang, M. F. Chi, Q. Cheng, and Y. D. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. 51, 5629–5633 (2012).
    [Crossref]
  9. Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524, 637–662 (2012).
    [Crossref]
  10. M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4, 1541–1545 (2013).
    [Crossref]
  11. E. B. Guidez and C. M. Aikens, “Diameter dependence of the excitation spectra of silver and gold nanorods,” J. Phys. Chem. C 117, 12325–12336 (2013).
    [Crossref]
  12. J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
    [Crossref]
  13. S. Mondal, U. Rana, and S. Malik, “Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate,” ACS Appl. Mater. Interface 7, 10457–10465 (2015).
    [Crossref]
  14. Z. D. Yan, W. Du, L. L. Tu, P. Gu, Z. Huang, P. Zhan, F. X. Liu, and Z. L. Wang, “A facile high-performance SERS substrate based on broadband near-perfect optical absorption,” J. Raman Spectrosc. 46, 795–801 (2015).
    [Crossref]
  15. E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci. 12, 724–739 (2012).
    [Crossref]
  16. A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22, 3558–3563 (2010).
    [Crossref]
  17. M. H. P. Reddy, J. F. Pierson, and S. Uthanna, “Structural, surface morphological, and optical properties of nanocrystalline Cu2O and CuO films formed by RF magnetron sputtering: oxygen partial pressure effect,” Phys. Status Solidi A 209, 1279–1286 (2012).
    [Crossref]
  18. R. B. Jiang, B. X. Li, C. H. Fang, and J. F. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
    [Crossref]
  19. S. W. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491–506 (2011).
    [Crossref]
  20. M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: Silver nanocubes,” J. Am. Chem. Soc. 134, 6434–6442 (2012).
    [Crossref]
  21. J. R. Matthews, C. M. Payne, and J. H. Hafner, “Analysis of phospholipid bilayers on gold nanorods by plasmon resonance sensing and surface-enhanced raman scattering,” Langmuir 31, 9893–9900 (2015).
    [Crossref]
  22. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles,” Nano Lett. 7, 2101–2107 (2007).
    [Crossref]
  23. C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, Z. S. Li, and D. N. Shi, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
    [Crossref]
  24. Y. Wang, D. Wan, S. Xie, X. Xia, C. Z. Huang, and Y. Xia, “Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth,” ACS Nano 7, 4586–4594 (2013).
    [Crossref]
  25. X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
    [Crossref]
  26. J. Zhang, M. R. Langille, and C. A. Mirkin, “Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds,” Nano Lett. 11, 2495–2498 (2011).
    [Crossref]
  27. X. C. Ye, C. Zheng, J. Chen, Y. Z. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13, 765–771 (2013).
    [Crossref]
  28. J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods,” Plasmonics 10, 117–124 (2015).
    [Crossref]
  29. Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
    [Crossref]
  30. J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
    [Crossref]
  31. S. H. Jeong, H. Choi, J. Y. Kim, and T. W. Lee, “Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics,” Part. Part. Syst. Charact. 32, 164–175 (2015).
    [Crossref]
  32. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617–618 (2001).
    [Crossref]
  33. C. Damm, D. Segets, G. A. Yang, B. F. Vieweg, E. Spiecker, and W. Peukert, “Shape transformation mechanism of silver nanorods in aqueous solution,” Small 7, 147–156 (2011).
    [Crossref]
  34. B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
    [Crossref]
  35. Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
    [Crossref]
  36. G. J. Zhou, Y. Yang, S. H. Han, W. Chen, Y. Z. Fu, C. Zou, L. J. Zhang, and S. M. Huang, “Growth of nanobipyramid by using large sized au decahedra as seeds,” ACS Appl. Mater. Interface 5, 13340–13352 (2013).
    [Crossref]
  37. Z. R. Guo, Y. Wan, M. Wang, L. Xu, X. Lu, G. Yang, K. Fang, and N. Gu, “High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route,” Colloids Surf. A 414, 492–497 (2012).
    [Crossref]
  38. J. H. Lee, K. J. Gibson, G. Chen, and Y. Weizmann, “Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals,” Nat. Commun. 6, 7571 (2015).
    [Crossref]
  39. Y. N. Rao, S. K. Das, and A. Saha, “Room temperature aqueous synthesis of bipyramidal silver nanostructures,” J. Nanosci. Nanotechnol. 12, 2014–2021 (2012).
    [Crossref]
  40. X. L. Zhuo, X. Z. Zhu, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-directed growth of length-variable silver nanorods with multipolar plasmon resonances,” ACS Nano 9, 7523–7535 (2015).
    [Crossref]
  41. V. Sharma, K. Park, and M. Srinivasarao, “Shape separation of gold nanorods using centrifugation,” Proc. Natl. Acad. Sci. U.S.A. 106, 4981–4985 (2009).
    [Crossref]
  42. Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
    [Crossref]
  43. L. H. Hong, C. X. Kan, C. S. Wang, B. Cong, Y. Ni, and D. N. Shi, “Synthesis of Ag nanostructures with controlled shapes by a polyvinylpyrrolidone-assisted hydrothermal method,” Acta Phys.-Chim. Sin. 30, 569–575 (2014).
    [Crossref]
  44. Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly-(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
    [Crossref]
  45. M. Z. Liu and P. Guyot-Sionnest, “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids,” J. Phys. Chem. B 109, 22192–22200 (2005).
    [Crossref]
  46. H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
    [Crossref]
  47. C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photon. 134, 507–513 (2016).
    [Crossref]
  48. X. Dong, J. F. Zhou, X. Y. Liu, D. L. Lin, and L. S. Zha, “Preparation of monodisperse bimetallic nanorods with gold nanorod core and silver shell and their plasmonic property and SERS efficiency,” J. Raman Spectrosc. 45, 431–437 (2014).
    [Crossref]
  49. Z. B. Li, G. W. Meng, Q. Huang, X. Y. Hu, X. He, H. B. Tang, Z. W. Wang, and F. D. Li, “Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates,” Small 11, 5452–5459 (2015).
    [Crossref]

2016 (2)

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photon. 134, 507–513 (2016).
[Crossref]

2015 (10)

Z. B. Li, G. W. Meng, Q. Huang, X. Y. Hu, X. He, H. B. Tang, Z. W. Wang, and F. D. Li, “Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates,” Small 11, 5452–5459 (2015).
[Crossref]

J. H. Lee, K. J. Gibson, G. Chen, and Y. Weizmann, “Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals,” Nat. Commun. 6, 7571 (2015).
[Crossref]

X. L. Zhuo, X. Z. Zhu, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-directed growth of length-variable silver nanorods with multipolar plasmon resonances,” ACS Nano 9, 7523–7535 (2015).
[Crossref]

J. R. Matthews, C. M. Payne, and J. H. Hafner, “Analysis of phospholipid bilayers on gold nanorods by plasmon resonance sensing and surface-enhanced raman scattering,” Langmuir 31, 9893–9900 (2015).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods,” Plasmonics 10, 117–124 (2015).
[Crossref]

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

S. H. Jeong, H. Choi, J. Y. Kim, and T. W. Lee, “Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics,” Part. Part. Syst. Charact. 32, 164–175 (2015).
[Crossref]

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

S. Mondal, U. Rana, and S. Malik, “Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate,” ACS Appl. Mater. Interface 7, 10457–10465 (2015).
[Crossref]

Z. D. Yan, W. Du, L. L. Tu, P. Gu, Z. Huang, P. Zhan, F. X. Liu, and Z. L. Wang, “A facile high-performance SERS substrate based on broadband near-perfect optical absorption,” J. Raman Spectrosc. 46, 795–801 (2015).
[Crossref]

2014 (5)

J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
[Crossref]

R. B. Jiang, B. X. Li, C. H. Fang, and J. F. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly (ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

L. H. Hong, C. X. Kan, C. S. Wang, B. Cong, Y. Ni, and D. N. Shi, “Synthesis of Ag nanostructures with controlled shapes by a polyvinylpyrrolidone-assisted hydrothermal method,” Acta Phys.-Chim. Sin. 30, 569–575 (2014).
[Crossref]

X. Dong, J. F. Zhou, X. Y. Liu, D. L. Lin, and L. S. Zha, “Preparation of monodisperse bimetallic nanorods with gold nanorod core and silver shell and their plasmonic property and SERS efficiency,” J. Raman Spectrosc. 45, 431–437 (2014).
[Crossref]

2013 (8)

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

X. C. Ye, C. Zheng, J. Chen, Y. Z. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13, 765–771 (2013).
[Crossref]

J. H. Lee, J. H. Hwang, and J. M. Nam, “DNA-tailored plasmonic nanoparticles for biosensing applications,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 96–109 (2013).
[Crossref]

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4, 1541–1545 (2013).
[Crossref]

E. B. Guidez and C. M. Aikens, “Diameter dependence of the excitation spectra of silver and gold nanorods,” J. Phys. Chem. C 117, 12325–12336 (2013).
[Crossref]

M. R. Langille, M. L. Personick, and C. A. Mirkin, “Plasmon-mediated syntheses of metallic nanostructures,” Angew. Chem. Int. Ed. 52, 13910–13940 (2013).
[Crossref]

G. J. Zhou, Y. Yang, S. H. Han, W. Chen, Y. Z. Fu, C. Zou, L. J. Zhang, and S. M. Huang, “Growth of nanobipyramid by using large sized au decahedra as seeds,” ACS Appl. Mater. Interface 5, 13340–13352 (2013).
[Crossref]

Y. Wang, D. Wan, S. Xie, X. Xia, C. Z. Huang, and Y. Xia, “Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth,” ACS Nano 7, 4586–4594 (2013).
[Crossref]

2012 (9)

M. H. P. Reddy, J. F. Pierson, and S. Uthanna, “Structural, surface morphological, and optical properties of nanocrystalline Cu2O and CuO films formed by RF magnetron sputtering: oxygen partial pressure effect,” Phys. Status Solidi A 209, 1279–1286 (2012).
[Crossref]

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: Silver nanocubes,” J. Am. Chem. Soc. 134, 6434–6442 (2012).
[Crossref]

Z. R. Guo, Y. Wan, M. Wang, L. Xu, X. Lu, G. Yang, K. Fang, and N. Gu, “High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route,” Colloids Surf. A 414, 492–497 (2012).
[Crossref]

Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
[Crossref]

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci. 12, 724–739 (2012).
[Crossref]

C. B. Gao, Z. D. Lu, Y. Liu, Q. Zhang, M. F. Chi, Q. Cheng, and Y. D. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. 51, 5629–5633 (2012).
[Crossref]

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524, 637–662 (2012).
[Crossref]

N. Goubet, H. Portales, C. Yan, I. Arfaoui, P. A. Albouy, A. Mermet, and M. P. Pileni, “Simultaneous growths of gold colloidal crystals,” J. Am. Chem. Soc. 134, 3714–3719 (2012).
[Crossref]

Y. N. Rao, S. K. Das, and A. Saha, “Room temperature aqueous synthesis of bipyramidal silver nanostructures,” J. Nanosci. Nanotechnol. 12, 2014–2021 (2012).
[Crossref]

2011 (5)

Y. Li, N. Koshizaki, H. Q. Wang, and Y. Shimizu, “Untraditional approach to complex hierarchical periodic arrays with trinary stepwise architectures of micro-, submicro-, and nanosized structures based on binary colloidal crystals and their fine structure enhanced properties,” ACS Nano 5, 9403–9412 (2011).
[Crossref]

S. W. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491–506 (2011).
[Crossref]

C. Damm, D. Segets, G. A. Yang, B. F. Vieweg, E. Spiecker, and W. Peukert, “Shape transformation mechanism of silver nanorods in aqueous solution,” Small 7, 147–156 (2011).
[Crossref]

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

J. Zhang, M. R. Langille, and C. A. Mirkin, “Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds,” Nano Lett. 11, 2495–2498 (2011).
[Crossref]

2010 (4)

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, Z. S. Li, and D. N. Shi, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22, 3558–3563 (2010).
[Crossref]

T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22, 1805–1825 (2010).
[Crossref]

Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
[Crossref]

2009 (2)

V. Sharma, K. Park, and M. Srinivasarao, “Shape separation of gold nanorods using centrifugation,” Proc. Natl. Acad. Sci. U.S.A. 106, 4981–4985 (2009).
[Crossref]

C. K. Kim, P. Ghosh, and V. M. Rotello, “Multimodal drug delivery using gold nanoparticles,” Nanoscale 1, 61–67 (2009).
[Crossref]

2007 (1)

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles,” Nano Lett. 7, 2101–2107 (2007).
[Crossref]

2005 (1)

M. Z. Liu and P. Guyot-Sionnest, “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids,” J. Phys. Chem. B 109, 22192–22200 (2005).
[Crossref]

2002 (1)

Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly-(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[Crossref]

2001 (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617–618 (2001).
[Crossref]

Adibi, A.

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: Silver nanocubes,” J. Am. Chem. Soc. 134, 6434–6442 (2012).
[Crossref]

Aikens, C. M.

E. B. Guidez and C. M. Aikens, “Diameter dependence of the excitation spectra of silver and gold nanorods,” J. Phys. Chem. C 117, 12325–12336 (2013).
[Crossref]

Albouy, P. A.

N. Goubet, H. Portales, C. Yan, I. Arfaoui, P. A. Albouy, A. Mermet, and M. P. Pileni, “Simultaneous growths of gold colloidal crystals,” J. Am. Chem. Soc. 134, 3714–3719 (2012).
[Crossref]

Arfaoui, I.

N. Goubet, H. Portales, C. Yan, I. Arfaoui, P. A. Albouy, A. Mermet, and M. P. Pileni, “Simultaneous growths of gold colloidal crystals,” J. Am. Chem. Soc. 134, 3714–3719 (2012).
[Crossref]

Bedford, E. E.

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci. 12, 724–739 (2012).
[Crossref]

Bergin, S. M.

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22, 3558–3563 (2010).
[Crossref]

Bian, Z. P.

Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
[Crossref]

Camden, J. P.

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Chamanzar, M.

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: Silver nanocubes,” J. Am. Chem. Soc. 134, 6434–6442 (2012).
[Crossref]

Chen, C. Y.

Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
[Crossref]

Chen, G.

J. H. Lee, K. J. Gibson, G. Chen, and Y. Weizmann, “Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals,” Nat. Commun. 6, 7571 (2015).
[Crossref]

Chen, H. J.

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Chen, J.

X. C. Ye, C. Zheng, J. Chen, Y. Z. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13, 765–771 (2013).
[Crossref]

Chen, W.

G. J. Zhou, Y. Yang, S. H. Han, W. Chen, Y. Z. Fu, C. Zou, L. J. Zhang, and S. M. Huang, “Growth of nanobipyramid by using large sized au decahedra as seeds,” ACS Appl. Mater. Interface 5, 13340–13352 (2013).
[Crossref]

Cheng, Q.

C. B. Gao, Z. D. Lu, Y. Liu, Q. Zhang, M. F. Chi, Q. Cheng, and Y. D. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. 51, 5629–5633 (2012).
[Crossref]

Chi, M. F.

C. B. Gao, Z. D. Lu, Y. Liu, Q. Zhang, M. F. Chi, Q. Cheng, and Y. D. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. 51, 5629–5633 (2012).
[Crossref]

Choi, H.

S. H. Jeong, H. Choi, J. Y. Kim, and T. W. Lee, “Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics,” Part. Part. Syst. Charact. 32, 164–175 (2015).
[Crossref]

Chowdhury, M. H.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles,” Nano Lett. 7, 2101–2107 (2007).
[Crossref]

Cong, B.

L. H. Hong, C. X. Kan, C. S. Wang, B. Cong, Y. Ni, and D. N. Shi, “Synthesis of Ag nanostructures with controlled shapes by a polyvinylpyrrolidone-assisted hydrothermal method,” Acta Phys.-Chim. Sin. 30, 569–575 (2014).
[Crossref]

Damm, C.

C. Damm, D. Segets, G. A. Yang, B. F. Vieweg, E. Spiecker, and W. Peukert, “Shape transformation mechanism of silver nanorods in aqueous solution,” Small 7, 147–156 (2011).
[Crossref]

Das, S. K.

Y. N. Rao, S. K. Das, and A. Saha, “Room temperature aqueous synthesis of bipyramidal silver nanostructures,” J. Nanosci. Nanotechnol. 12, 2014–2021 (2012).
[Crossref]

Dinh, X. Q.

S. W. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491–506 (2011).
[Crossref]

Dong, X.

X. Dong, J. F. Zhou, X. Y. Liu, D. L. Lin, and L. S. Zha, “Preparation of monodisperse bimetallic nanorods with gold nanorod core and silver shell and their plasmonic property and SERS efficiency,” J. Raman Spectrosc. 45, 431–437 (2014).
[Crossref]

Du, W.

Z. D. Yan, W. Du, L. L. Tu, P. Gu, Z. Huang, P. Zhan, F. X. Liu, and Z. L. Wang, “A facile high-performance SERS substrate based on broadband near-perfect optical absorption,” J. Raman Spectrosc. 46, 795–801 (2015).
[Crossref]

El-Sayed, M. A.

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4, 1541–1545 (2013).
[Crossref]

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: Silver nanocubes,” J. Am. Chem. Soc. 134, 6434–6442 (2012).
[Crossref]

Fan, X.

Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
[Crossref]

Fang, C. H.

R. B. Jiang, B. X. Li, C. H. Fang, and J. F. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

Fang, K.

Z. R. Guo, Y. Wan, M. Wang, L. Xu, X. Lu, G. Yang, K. Fang, and N. Gu, “High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route,” Colloids Surf. A 414, 492–497 (2012).
[Crossref]

Feldmann, J.

T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22, 1805–1825 (2010).
[Crossref]

Fratalocchi, A.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Fu, Y.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles,” Nano Lett. 7, 2101–2107 (2007).
[Crossref]

Fu, Y. Z.

G. J. Zhou, Y. Yang, S. H. Han, W. Chen, Y. Z. Fu, C. Zou, L. J. Zhang, and S. M. Huang, “Growth of nanobipyramid by using large sized au decahedra as seeds,” ACS Appl. Mater. Interface 5, 13340–13352 (2013).
[Crossref]

Gao, C. B.

C. B. Gao, Z. D. Lu, Y. Liu, Q. Zhang, M. F. Chi, Q. Cheng, and Y. D. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. 51, 5629–5633 (2012).
[Crossref]

Gao, Y. Z.

X. C. Ye, C. Zheng, J. Chen, Y. Z. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13, 765–771 (2013).
[Crossref]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617–618 (2001).
[Crossref]

Ghosh, P.

C. K. Kim, P. Ghosh, and V. M. Rotello, “Multimodal drug delivery using gold nanoparticles,” Nanoscale 1, 61–67 (2009).
[Crossref]

Gibson, K. J.

J. H. Lee, K. J. Gibson, G. Chen, and Y. Weizmann, “Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals,” Nat. Commun. 6, 7571 (2015).
[Crossref]

Gong, C.

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photon. 134, 507–513 (2016).
[Crossref]

Goubet, N.

N. Goubet, H. Portales, C. Yan, I. Arfaoui, P. A. Albouy, A. Mermet, and M. P. Pileni, “Simultaneous growths of gold colloidal crystals,” J. Am. Chem. Soc. 134, 3714–3719 (2012).
[Crossref]

Gu, C. R.

Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
[Crossref]

Gu, F. X.

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci. 12, 724–739 (2012).
[Crossref]

Gu, N.

Z. R. Guo, Y. Wan, M. Wang, L. Xu, X. Lu, G. Yang, K. Fang, and N. Gu, “High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route,” Colloids Surf. A 414, 492–497 (2012).
[Crossref]

Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
[Crossref]

Gu, P.

Z. D. Yan, W. Du, L. L. Tu, P. Gu, Z. Huang, P. Zhan, F. X. Liu, and Z. L. Wang, “A facile high-performance SERS substrate based on broadband near-perfect optical absorption,” J. Raman Spectrosc. 46, 795–801 (2015).
[Crossref]

Guidez, E. B.

E. B. Guidez and C. M. Aikens, “Diameter dependence of the excitation spectra of silver and gold nanorods,” J. Phys. Chem. C 117, 12325–12336 (2013).
[Crossref]

Guiton, B. S.

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Guo, Z. R.

Z. R. Guo, Y. Wan, M. Wang, L. Xu, X. Lu, G. Yang, K. Fang, and N. Gu, “High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route,” Colloids Surf. A 414, 492–497 (2012).
[Crossref]

Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
[Crossref]

Guyot-Sionnest, P.

M. Z. Liu and P. Guyot-Sionnest, “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids,” J. Phys. Chem. B 109, 22192–22200 (2005).
[Crossref]

Hafner, J. H.

J. R. Matthews, C. M. Payne, and J. H. Hafner, “Analysis of phospholipid bilayers on gold nanorods by plasmon resonance sensing and surface-enhanced raman scattering,” Langmuir 31, 9893–9900 (2015).
[Crossref]

Han, S. H.

G. J. Zhou, Y. Yang, S. H. Han, W. Chen, Y. Z. Fu, C. Zou, L. J. Zhang, and S. M. Huang, “Growth of nanobipyramid by using large sized au decahedra as seeds,” ACS Appl. Mater. Interface 5, 13340–13352 (2013).
[Crossref]

Han, Y.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

He, X.

Z. B. Li, G. W. Meng, Q. Huang, X. Y. Hu, X. He, H. B. Tang, Z. W. Wang, and F. D. Li, “Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates,” Small 11, 5452–5459 (2015).
[Crossref]

Hedhili, M. N.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Herricks, T.

Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly-(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[Crossref]

Ho, H. P.

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524, 637–662 (2012).
[Crossref]

Hong, L. H.

L. H. Hong, C. X. Kan, C. S. Wang, B. Cong, Y. Ni, and D. N. Shi, “Synthesis of Ag nanostructures with controlled shapes by a polyvinylpyrrolidone-assisted hydrothermal method,” Acta Phys.-Chim. Sin. 30, 569–575 (2014).
[Crossref]

Hu, X. Y.

Z. B. Li, G. W. Meng, Q. Huang, X. Y. Hu, X. He, H. B. Tang, Z. W. Wang, and F. D. Li, “Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates,” Small 11, 5452–5459 (2015).
[Crossref]

Hu, Z. J.

Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
[Crossref]

Hua, Y. L.

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22, 3558–3563 (2010).
[Crossref]

Huang, C. Z.

Y. Wang, D. Wan, S. Xie, X. Xia, C. Z. Huang, and Y. Xia, “Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth,” ACS Nano 7, 4586–4594 (2013).
[Crossref]

Huang, J. F.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Huang, Q.

Z. B. Li, G. W. Meng, Q. Huang, X. Y. Hu, X. He, H. B. Tang, Z. W. Wang, and F. D. Li, “Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates,” Small 11, 5452–5459 (2015).
[Crossref]

Huang, S. M.

G. J. Zhou, Y. Yang, S. H. Han, W. Chen, Y. Z. Fu, C. Zou, L. J. Zhang, and S. M. Huang, “Growth of nanobipyramid by using large sized au decahedra as seeds,” ACS Appl. Mater. Interface 5, 13340–13352 (2013).
[Crossref]

Huang, Y. H.

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524, 637–662 (2012).
[Crossref]

Huang, Z.

Z. D. Yan, W. Du, L. L. Tu, P. Gu, Z. Huang, P. Zhan, F. X. Liu, and Z. L. Wang, “A facile high-performance SERS substrate based on broadband near-perfect optical absorption,” J. Raman Spectrosc. 46, 795–801 (2015).
[Crossref]

Hwang, J. H.

J. H. Lee, J. H. Hwang, and J. M. Nam, “DNA-tailored plasmonic nanoparticles for biosensing applications,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 96–109 (2013).
[Crossref]

Iberi, V.

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Jackel, F.

T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22, 1805–1825 (2010).
[Crossref]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617–618 (2001).
[Crossref]

Jeong, S. H.

S. H. Jeong, H. Choi, J. Y. Kim, and T. W. Lee, “Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics,” Part. Part. Syst. Charact. 32, 164–175 (2015).
[Crossref]

Ji, Y. H.

Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
[Crossref]

Jiang, R. B.

R. B. Jiang, B. X. Li, C. H. Fang, and J. F. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

Jiang, X. M.

Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
[Crossref]

Kabashin, A. V.

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524, 637–662 (2012).
[Crossref]

Kan, C. X.

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods,” Plasmonics 10, 117–124 (2015).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly (ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

L. H. Hong, C. X. Kan, C. S. Wang, B. Cong, Y. Ni, and D. N. Shi, “Synthesis of Ag nanostructures with controlled shapes by a polyvinylpyrrolidone-assisted hydrothermal method,” Acta Phys.-Chim. Sin. 30, 569–575 (2014).
[Crossref]

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, Z. S. Li, and D. N. Shi, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Kim, C. K.

C. K. Kim, P. Ghosh, and V. M. Rotello, “Multimodal drug delivery using gold nanoparticles,” Nanoscale 1, 61–67 (2009).
[Crossref]

Kim, D.

J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
[Crossref]

Kim, J. Y.

S. H. Jeong, H. Choi, J. Y. Kim, and T. W. Lee, “Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics,” Part. Part. Syst. Charact. 32, 164–175 (2015).
[Crossref]

Klar, T. A.

T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22, 1805–1825 (2010).
[Crossref]

Kong, S. K.

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524, 637–662 (2012).
[Crossref]

Koshizaki, N.

Y. Li, N. Koshizaki, H. Q. Wang, and Y. Shimizu, “Untraditional approach to complex hierarchical periodic arrays with trinary stepwise architectures of micro-, submicro-, and nanosized structures based on binary colloidal crystals and their fine structure enhanced properties,” ACS Nano 5, 9403–9412 (2011).
[Crossref]

Kotula, P. G.

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Lakowicz, J. R.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles,” Nano Lett. 7, 2101–2107 (2007).
[Crossref]

Langille, M. R.

M. R. Langille, M. L. Personick, and C. A. Mirkin, “Plasmon-mediated syntheses of metallic nanostructures,” Angew. Chem. Int. Ed. 52, 13910–13940 (2013).
[Crossref]

J. Zhang, M. R. Langille, and C. A. Mirkin, “Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds,” Nano Lett. 11, 2495–2498 (2011).
[Crossref]

Lee, H. S.

J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
[Crossref]

Lee, J.

J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
[Crossref]

Lee, J. H.

J. H. Lee, K. J. Gibson, G. Chen, and Y. Weizmann, “Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals,” Nat. Commun. 6, 7571 (2015).
[Crossref]

J. H. Lee, J. H. Hwang, and J. M. Nam, “DNA-tailored plasmonic nanoparticles for biosensing applications,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 96–109 (2013).
[Crossref]

Lee, S.

J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
[Crossref]

Lee, T.

J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
[Crossref]

Lee, T. W.

S. H. Jeong, H. Choi, J. Y. Kim, and T. W. Lee, “Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics,” Part. Part. Syst. Charact. 32, 164–175 (2015).
[Crossref]

Leite, M. S.

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photon. 134, 507–513 (2016).
[Crossref]

Leonard, D. N.

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Li, B. X.

R. B. Jiang, B. X. Li, C. H. Fang, and J. F. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

Li, F. D.

Z. B. Li, G. W. Meng, Q. Huang, X. Y. Hu, X. He, H. B. Tang, Z. W. Wang, and F. D. Li, “Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates,” Small 11, 5452–5459 (2015).
[Crossref]

Li, H. C.

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, Z. S. Li, and D. N. Shi, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Li, Q.

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

X. L. Zhuo, X. Z. Zhu, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-directed growth of length-variable silver nanorods with multipolar plasmon resonances,” ACS Nano 9, 7523–7535 (2015).
[Crossref]

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Li, S.

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Li, S. Z.

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Li, X. H.

Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
[Crossref]

Li, Y.

Y. Li, N. Koshizaki, H. Q. Wang, and Y. Shimizu, “Untraditional approach to complex hierarchical periodic arrays with trinary stepwise architectures of micro-, submicro-, and nanosized structures based on binary colloidal crystals and their fine structure enhanced properties,” ACS Nano 5, 9403–9412 (2011).
[Crossref]

Li, Y. L.

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods,” Plasmonics 10, 117–124 (2015).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly (ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

Li, Z. B.

Z. B. Li, G. W. Meng, Q. Huang, X. Y. Hu, X. He, H. B. Tang, Z. W. Wang, and F. D. Li, “Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates,” Small 11, 5452–5459 (2015).
[Crossref]

Li, Z. S.

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, Z. S. Li, and D. N. Shi, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Li, Z. Y.

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22, 3558–3563 (2010).
[Crossref]

Lin, D. L.

X. Dong, J. F. Zhou, X. Y. Liu, D. L. Lin, and L. S. Zha, “Preparation of monodisperse bimetallic nanorods with gold nanorod core and silver shell and their plasmonic property and SERS efficiency,” J. Raman Spectrosc. 45, 431–437 (2014).
[Crossref]

Liu, C. X.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Liu, F. X.

Z. D. Yan, W. Du, L. L. Tu, P. Gu, Z. Huang, P. Zhan, F. X. Liu, and Z. L. Wang, “A facile high-performance SERS substrate based on broadband near-perfect optical absorption,” J. Raman Spectrosc. 46, 795–801 (2015).
[Crossref]

Liu, J. S.

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods,” Plasmonics 10, 117–124 (2015).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly (ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

Liu, L. K.

Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
[Crossref]

Liu, M. Z.

M. Z. Liu and P. Guyot-Sionnest, “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids,” J. Phys. Chem. B 109, 22192–22200 (2005).
[Crossref]

Liu, X. Y.

X. Dong, J. F. Zhou, X. Y. Liu, D. L. Lin, and L. S. Zha, “Preparation of monodisperse bimetallic nanorods with gold nanorod core and silver shell and their plasmonic property and SERS efficiency,” J. Raman Spectrosc. 45, 431–437 (2014).
[Crossref]

Liu, Y.

C. B. Gao, Z. D. Lu, Y. Liu, Q. Zhang, M. F. Chi, Q. Cheng, and Y. D. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. 51, 5629–5633 (2012).
[Crossref]

Liu, Z. H.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Lu, X.

Z. R. Guo, Y. Wan, M. Wang, L. Xu, X. Lu, G. Yang, K. Fang, and N. Gu, “High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route,” Colloids Surf. A 414, 492–497 (2012).
[Crossref]

Lu, Z. D.

C. B. Gao, Z. D. Lu, Y. Liu, Q. Zhang, M. F. Chi, Q. Cheng, and Y. D. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. 51, 5629–5633 (2012).
[Crossref]

Luan, F.

S. W. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491–506 (2011).
[Crossref]

Mahata, C.

J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
[Crossref]

Mahmoud, M. A.

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4, 1541–1545 (2013).
[Crossref]

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: Silver nanocubes,” J. Am. Chem. Soc. 134, 6434–6442 (2012).
[Crossref]

Malik, S.

S. Mondal, U. Rana, and S. Malik, “Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate,” ACS Appl. Mater. Interface 7, 10457–10465 (2015).
[Crossref]

Matthews, J. R.

J. R. Matthews, C. M. Payne, and J. H. Hafner, “Analysis of phospholipid bilayers on gold nanorods by plasmon resonance sensing and surface-enhanced raman scattering,” Langmuir 31, 9893–9900 (2015).
[Crossref]

Mayers, B. T.

Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly-(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[Crossref]

Meng, G. W.

Z. B. Li, G. W. Meng, Q. Huang, X. Y. Hu, X. He, H. B. Tang, Z. W. Wang, and F. D. Li, “Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates,” Small 11, 5452–5459 (2015).
[Crossref]

Mermet, A.

N. Goubet, H. Portales, C. Yan, I. Arfaoui, P. A. Albouy, A. Mermet, and M. P. Pileni, “Simultaneous growths of gold colloidal crystals,” J. Am. Chem. Soc. 134, 3714–3719 (2012).
[Crossref]

Min, B. W.

J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
[Crossref]

Mirkin, C. A.

M. R. Langille, M. L. Personick, and C. A. Mirkin, “Plasmon-mediated syntheses of metallic nanostructures,” Angew. Chem. Int. Ed. 52, 13910–13940 (2013).
[Crossref]

J. Zhang, M. R. Langille, and C. A. Mirkin, “Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds,” Nano Lett. 11, 2495–2498 (2011).
[Crossref]

Mondal, S.

S. Mondal, U. Rana, and S. Malik, “Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate,” ACS Appl. Mater. Interface 7, 10457–10465 (2015).
[Crossref]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617–618 (2001).
[Crossref]

Murray, C. B.

X. C. Ye, C. Zheng, J. Chen, Y. Z. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13, 765–771 (2013).
[Crossref]

Nam, J. M.

J. H. Lee, J. H. Hwang, and J. M. Nam, “DNA-tailored plasmonic nanoparticles for biosensing applications,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 96–109 (2013).
[Crossref]

Ni, Y.

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods,” Plasmonics 10, 117–124 (2015).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly (ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

L. H. Hong, C. X. Kan, C. S. Wang, B. Cong, Y. Ni, and D. N. Shi, “Synthesis of Ag nanostructures with controlled shapes by a polyvinylpyrrolidone-assisted hydrothermal method,” Acta Phys.-Chim. Sin. 30, 569–575 (2014).
[Crossref]

Parish, C. M.

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Park, K.

V. Sharma, K. Park, and M. Srinivasarao, “Shape separation of gold nanorods using centrifugation,” Proc. Natl. Acad. Sci. U.S.A. 106, 4981–4985 (2009).
[Crossref]

Payne, C. M.

J. R. Matthews, C. M. Payne, and J. H. Hafner, “Analysis of phospholipid bilayers on gold nanorods by plasmon resonance sensing and surface-enhanced raman scattering,” Langmuir 31, 9893–9900 (2015).
[Crossref]

Pennycook, S. J.

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Personick, M. L.

M. R. Langille, M. L. Personick, and C. A. Mirkin, “Plasmon-mediated syntheses of metallic nanostructures,” Angew. Chem. Int. Ed. 52, 13910–13940 (2013).
[Crossref]

Peukert, W.

C. Damm, D. Segets, G. A. Yang, B. F. Vieweg, E. Spiecker, and W. Peukert, “Shape transformation mechanism of silver nanorods in aqueous solution,” Small 7, 147–156 (2011).
[Crossref]

Pierson, J. F.

M. H. P. Reddy, J. F. Pierson, and S. Uthanna, “Structural, surface morphological, and optical properties of nanocrystalline Cu2O and CuO films formed by RF magnetron sputtering: oxygen partial pressure effect,” Phys. Status Solidi A 209, 1279–1286 (2012).
[Crossref]

Pileni, M. P.

N. Goubet, H. Portales, C. Yan, I. Arfaoui, P. A. Albouy, A. Mermet, and M. P. Pileni, “Simultaneous growths of gold colloidal crystals,” J. Am. Chem. Soc. 134, 3714–3719 (2012).
[Crossref]

Portales, H.

N. Goubet, H. Portales, C. Yan, I. Arfaoui, P. A. Albouy, A. Mermet, and M. P. Pileni, “Simultaneous growths of gold colloidal crystals,” J. Am. Chem. Soc. 134, 3714–3719 (2012).
[Crossref]

Pradier, C. M.

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci. 12, 724–739 (2012).
[Crossref]

Qi, J. S.

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, Z. S. Li, and D. N. Shi, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Rana, U.

S. Mondal, U. Rana, and S. Malik, “Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate,” ACS Appl. Mater. Interface 7, 10457–10465 (2015).
[Crossref]

Rao, Y. N.

Y. N. Rao, S. K. Das, and A. Saha, “Room temperature aqueous synthesis of bipyramidal silver nanostructures,” J. Nanosci. Nanotechnol. 12, 2014–2021 (2012).
[Crossref]

Rathmell, A. R.

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22, 3558–3563 (2010).
[Crossref]

Reddy, M. H. P.

M. H. P. Reddy, J. F. Pierson, and S. Uthanna, “Structural, surface morphological, and optical properties of nanocrystalline Cu2O and CuO films formed by RF magnetron sputtering: oxygen partial pressure effect,” Phys. Status Solidi A 209, 1279–1286 (2012).
[Crossref]

Rogach, A. L.

T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22, 1805–1825 (2010).
[Crossref]

Rotello, V. M.

C. K. Kim, P. Ghosh, and V. M. Rotello, “Multimodal drug delivery using gold nanoparticles,” Nanoscale 1, 61–67 (2009).
[Crossref]

Roy, I.

S. W. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491–506 (2011).
[Crossref]

Ruan, Q. F.

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Saha, A.

Y. N. Rao, S. K. Das, and A. Saha, “Room temperature aqueous synthesis of bipyramidal silver nanostructures,” J. Nanosci. Nanotechnol. 12, 2014–2021 (2012).
[Crossref]

Sau, T. K.

T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22, 1805–1825 (2010).
[Crossref]

Schatz, G. C.

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Segets, D.

C. Damm, D. Segets, G. A. Yang, B. F. Vieweg, E. Spiecker, and W. Peukert, “Shape transformation mechanism of silver nanorods in aqueous solution,” Small 7, 147–156 (2011).
[Crossref]

Seo, J.

J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
[Crossref]

Shao, L.

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Sharma, V.

V. Sharma, K. Park, and M. Srinivasarao, “Shape separation of gold nanorods using centrifugation,” Proc. Natl. Acad. Sci. U.S.A. 106, 4981–4985 (2009).
[Crossref]

Shi, D. N.

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods,” Plasmonics 10, 117–124 (2015).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly (ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

L. H. Hong, C. X. Kan, C. S. Wang, B. Cong, Y. Ni, and D. N. Shi, “Synthesis of Ag nanostructures with controlled shapes by a polyvinylpyrrolidone-assisted hydrothermal method,” Acta Phys.-Chim. Sin. 30, 569–575 (2014).
[Crossref]

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, Z. S. Li, and D. N. Shi, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Shimizu, Y.

Y. Li, N. Koshizaki, H. Q. Wang, and Y. Shimizu, “Untraditional approach to complex hierarchical periodic arrays with trinary stepwise architectures of micro-, submicro-, and nanosized structures based on binary colloidal crystals and their fine structure enhanced properties,” ACS Nano 5, 9403–9412 (2011).
[Crossref]

Shin, S.

J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
[Crossref]

Spadavecchia, J.

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci. 12, 724–739 (2012).
[Crossref]

Spiecker, E.

C. Damm, D. Segets, G. A. Yang, B. F. Vieweg, E. Spiecker, and W. Peukert, “Shape transformation mechanism of silver nanorods in aqueous solution,” Small 7, 147–156 (2011).
[Crossref]

Srinivasarao, M.

V. Sharma, K. Park, and M. Srinivasarao, “Shape separation of gold nanorods using centrifugation,” Proc. Natl. Acad. Sci. U.S.A. 106, 4981–4985 (2009).
[Crossref]

Sun, Y. G.

Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly-(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[Crossref]

Tang, H. B.

Z. B. Li, G. W. Meng, Q. Huang, X. Y. Hu, X. He, H. B. Tang, Z. W. Wang, and F. D. Li, “Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates,” Small 11, 5452–5459 (2015).
[Crossref]

Tu, L. L.

Z. D. Yan, W. Du, L. L. Tu, P. Gu, Z. Huang, P. Zhan, F. X. Liu, and Z. L. Wang, “A facile high-performance SERS substrate based on broadband near-perfect optical absorption,” J. Raman Spectrosc. 46, 795–801 (2015).
[Crossref]

Uthanna, S.

M. H. P. Reddy, J. F. Pierson, and S. Uthanna, “Structural, surface morphological, and optical properties of nanocrystalline Cu2O and CuO films formed by RF magnetron sputtering: oxygen partial pressure effect,” Phys. Status Solidi A 209, 1279–1286 (2012).
[Crossref]

Varela, M.

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Vieweg, B. F.

C. Damm, D. Segets, G. A. Yang, B. F. Vieweg, E. Spiecker, and W. Peukert, “Shape transformation mechanism of silver nanorods in aqueous solution,” Small 7, 147–156 (2011).
[Crossref]

Wan, D.

Y. Wang, D. Wan, S. Xie, X. Xia, C. Z. Huang, and Y. Xia, “Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth,” ACS Nano 7, 4586–4594 (2013).
[Crossref]

Wan, Y.

Z. R. Guo, Y. Wan, M. Wang, L. Xu, X. Lu, G. Yang, K. Fang, and N. Gu, “High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route,” Colloids Surf. A 414, 492–497 (2012).
[Crossref]

Wang, C. S.

L. H. Hong, C. X. Kan, C. S. Wang, B. Cong, Y. Ni, and D. N. Shi, “Synthesis of Ag nanostructures with controlled shapes by a polyvinylpyrrolidone-assisted hydrothermal method,” Acta Phys.-Chim. Sin. 30, 569–575 (2014).
[Crossref]

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, Z. S. Li, and D. N. Shi, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Wang, H. Q.

Y. Li, N. Koshizaki, H. Q. Wang, and Y. Shimizu, “Untraditional approach to complex hierarchical periodic arrays with trinary stepwise architectures of micro-, submicro-, and nanosized structures based on binary colloidal crystals and their fine structure enhanced properties,” ACS Nano 5, 9403–9412 (2011).
[Crossref]

Wang, J.

Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
[Crossref]

Wang, J. F.

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

X. L. Zhuo, X. Z. Zhu, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-directed growth of length-variable silver nanorods with multipolar plasmon resonances,” ACS Nano 9, 7523–7535 (2015).
[Crossref]

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

R. B. Jiang, B. X. Li, C. H. Fang, and J. F. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Wang, L. M.

Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
[Crossref]

Wang, M.

Z. R. Guo, Y. Wan, M. Wang, L. Xu, X. Lu, G. Yang, K. Fang, and N. Gu, “High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route,” Colloids Surf. A 414, 492–497 (2012).
[Crossref]

Wang, Y.

Y. Wang, D. Wan, S. Xie, X. Xia, C. Z. Huang, and Y. Xia, “Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth,” ACS Nano 7, 4586–4594 (2013).
[Crossref]

Wang, Z. L.

Z. D. Yan, W. Du, L. L. Tu, P. Gu, Z. Huang, P. Zhan, F. X. Liu, and Z. L. Wang, “A facile high-performance SERS substrate based on broadband near-perfect optical absorption,” J. Raman Spectrosc. 46, 795–801 (2015).
[Crossref]

Wang, Z. W.

Z. B. Li, G. W. Meng, Q. Huang, X. Y. Hu, X. He, H. B. Tang, Z. W. Wang, and F. D. Li, “Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates,” Small 11, 5452–5459 (2015).
[Crossref]

Weizmann, Y.

J. H. Lee, K. J. Gibson, G. Chen, and Y. Weizmann, “Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals,” Nat. Commun. 6, 7571 (2015).
[Crossref]

Wiley, B. J.

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22, 3558–3563 (2010).
[Crossref]

Wu, X. C.

Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
[Crossref]

Xia, X.

Y. Wang, D. Wan, S. Xie, X. Xia, C. Z. Huang, and Y. Xia, “Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth,” ACS Nano 7, 4586–4594 (2013).
[Crossref]

Xia, Y.

Y. Wang, D. Wan, S. Xie, X. Xia, C. Z. Huang, and Y. Xia, “Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth,” ACS Nano 7, 4586–4594 (2013).
[Crossref]

Xia, Y. N.

Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly-(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[Crossref]

Xie, S.

Y. Wang, D. Wan, S. Xie, X. Xia, C. Z. Huang, and Y. Xia, “Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth,” ACS Nano 7, 4586–4594 (2013).
[Crossref]

Xu, H. Y.

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods,” Plasmonics 10, 117–124 (2015).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly (ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

Xu, L.

Z. R. Guo, Y. Wan, M. Wang, L. Xu, X. Lu, G. Yang, K. Fang, and N. Gu, “High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route,” Colloids Surf. A 414, 492–497 (2012).
[Crossref]

Xu, Q. H.

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Yan, C.

N. Goubet, H. Portales, C. Yan, I. Arfaoui, P. A. Albouy, A. Mermet, and M. P. Pileni, “Simultaneous growths of gold colloidal crystals,” J. Am. Chem. Soc. 134, 3714–3719 (2012).
[Crossref]

Yan, Z. D.

Z. D. Yan, W. Du, L. L. Tu, P. Gu, Z. Huang, P. Zhan, F. X. Liu, and Z. L. Wang, “A facile high-performance SERS substrate based on broadband near-perfect optical absorption,” J. Raman Spectrosc. 46, 795–801 (2015).
[Crossref]

Yang, D.

Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
[Crossref]

Yang, G.

Z. R. Guo, Y. Wan, M. Wang, L. Xu, X. Lu, G. Yang, K. Fang, and N. Gu, “High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route,” Colloids Surf. A 414, 492–497 (2012).
[Crossref]

Yang, G. A.

C. Damm, D. Segets, G. A. Yang, B. F. Vieweg, E. Spiecker, and W. Peukert, “Shape transformation mechanism of silver nanorods in aqueous solution,” Small 7, 147–156 (2011).
[Crossref]

Yang, Y.

G. J. Zhou, Y. Yang, S. H. Han, W. Chen, Y. Z. Fu, C. Zou, L. J. Zhang, and S. M. Huang, “Growth of nanobipyramid by using large sized au decahedra as seeds,” ACS Appl. Mater. Interface 5, 13340–13352 (2013).
[Crossref]

Yang, Z.

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

X. L. Zhuo, X. Z. Zhu, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-directed growth of length-variable silver nanorods with multipolar plasmon resonances,” ACS Nano 9, 7523–7535 (2015).
[Crossref]

Ye, X. C.

X. C. Ye, C. Zheng, J. Chen, Y. Z. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13, 765–771 (2013).
[Crossref]

Yin, Y. D.

C. B. Gao, Z. D. Lu, Y. Liu, Q. Zhang, M. F. Chi, Q. Cheng, and Y. D. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. 51, 5629–5633 (2012).
[Crossref]

Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly-(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[Crossref]

Yong, K. T.

S. W. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491–506 (2011).
[Crossref]

Yu, X.

S. W. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491–506 (2011).
[Crossref]

Zeng, S. W.

S. W. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491–506 (2011).
[Crossref]

Zha, L. S.

X. Dong, J. F. Zhou, X. Y. Liu, D. L. Lin, and L. S. Zha, “Preparation of monodisperse bimetallic nanorods with gold nanorod core and silver shell and their plasmonic property and SERS efficiency,” J. Raman Spectrosc. 45, 431–437 (2014).
[Crossref]

Zhan, P.

Z. D. Yan, W. Du, L. L. Tu, P. Gu, Z. Huang, P. Zhan, F. X. Liu, and Z. L. Wang, “A facile high-performance SERS substrate based on broadband near-perfect optical absorption,” J. Raman Spectrosc. 46, 795–801 (2015).
[Crossref]

Zhang, J.

J. Zhang, M. R. Langille, and C. A. Mirkin, “Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds,” Nano Lett. 11, 2495–2498 (2011).
[Crossref]

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles,” Nano Lett. 7, 2101–2107 (2007).
[Crossref]

Zhang, J. N.

Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
[Crossref]

Zhang, L. J.

G. J. Zhou, Y. Yang, S. H. Han, W. Chen, Y. Z. Fu, C. Zou, L. J. Zhang, and S. M. Huang, “Growth of nanobipyramid by using large sized au decahedra as seeds,” ACS Appl. Mater. Interface 5, 13340–13352 (2013).
[Crossref]

Zhang, Q.

C. B. Gao, Z. D. Lu, Y. Liu, Q. Zhang, M. F. Chi, Q. Cheng, and Y. D. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. 51, 5629–5633 (2012).
[Crossref]

Zhang, Y.

Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
[Crossref]

Zhang, Z. J.

Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
[Crossref]

Zhao, Y. F.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Zheng, C.

X. C. Ye, C. Zheng, J. Chen, Y. Z. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13, 765–771 (2013).
[Crossref]

Zhou, G. J.

G. J. Zhou, Y. Yang, S. H. Han, W. Chen, Y. Z. Fu, C. Zou, L. J. Zhang, and S. M. Huang, “Growth of nanobipyramid by using large sized au decahedra as seeds,” ACS Appl. Mater. Interface 5, 13340–13352 (2013).
[Crossref]

Zhou, J. F.

X. Dong, J. F. Zhou, X. Y. Liu, D. L. Lin, and L. S. Zha, “Preparation of monodisperse bimetallic nanorods with gold nanorod core and silver shell and their plasmonic property and SERS efficiency,” J. Raman Spectrosc. 45, 431–437 (2014).
[Crossref]

Zhu, J. J.

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, Z. S. Li, and D. N. Shi, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

Zhu, X. Z.

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

X. L. Zhuo, X. Z. Zhu, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-directed growth of length-variable silver nanorods with multipolar plasmon resonances,” ACS Nano 9, 7523–7535 (2015).
[Crossref]

Zhu, Y. H.

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Zhuo, X. L.

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

X. L. Zhuo, X. Z. Zhu, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-directed growth of length-variable silver nanorods with multipolar plasmon resonances,” ACS Nano 9, 7523–7535 (2015).
[Crossref]

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Zou, C.

G. J. Zhou, Y. Yang, S. H. Han, W. Chen, Y. Z. Fu, C. Zou, L. J. Zhang, and S. M. Huang, “Growth of nanobipyramid by using large sized au decahedra as seeds,” ACS Appl. Mater. Interface 5, 13340–13352 (2013).
[Crossref]

ACS Appl. Mater. Interface (3)

J. Lee, J. Seo, D. Kim, S. Shin, S. Lee, C. Mahata, H. S. Lee, B. W. Min, and T. Lee, “Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates,” ACS Appl. Mater. Interface 6, 9053–9060 (2014).
[Crossref]

S. Mondal, U. Rana, and S. Malik, “Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate,” ACS Appl. Mater. Interface 7, 10457–10465 (2015).
[Crossref]

G. J. Zhou, Y. Yang, S. H. Han, W. Chen, Y. Z. Fu, C. Zou, L. J. Zhang, and S. M. Huang, “Growth of nanobipyramid by using large sized au decahedra as seeds,” ACS Appl. Mater. Interface 5, 13340–13352 (2013).
[Crossref]

ACS Nano (3)

Y. Wang, D. Wan, S. Xie, X. Xia, C. Z. Huang, and Y. Xia, “Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth,” ACS Nano 7, 4586–4594 (2013).
[Crossref]

Y. Li, N. Koshizaki, H. Q. Wang, and Y. Shimizu, “Untraditional approach to complex hierarchical periodic arrays with trinary stepwise architectures of micro-, submicro-, and nanosized structures based on binary colloidal crystals and their fine structure enhanced properties,” ACS Nano 5, 9403–9412 (2011).
[Crossref]

X. L. Zhuo, X. Z. Zhu, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-directed growth of length-variable silver nanorods with multipolar plasmon resonances,” ACS Nano 9, 7523–7535 (2015).
[Crossref]

ACS Photon. (1)

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photon. 134, 507–513 (2016).
[Crossref]

Acta Phys.-Chim. Sin. (1)

L. H. Hong, C. X. Kan, C. S. Wang, B. Cong, Y. Ni, and D. N. Shi, “Synthesis of Ag nanostructures with controlled shapes by a polyvinylpyrrolidone-assisted hydrothermal method,” Acta Phys.-Chim. Sin. 30, 569–575 (2014).
[Crossref]

Adv. Funct. Mater. (1)

X. Z. Zhu, X. L. Zhuo, Q. Li, Z. Yang, and J. F. Wang, “Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability,” Adv. Funct. Mater. 26, 341–352 (2016).
[Crossref]

Adv. Mater. (4)

Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, and C. Y. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24, 1418–1423 (2012).
[Crossref]

T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22, 1805–1825 (2010).
[Crossref]

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22, 3558–3563 (2010).
[Crossref]

R. B. Jiang, B. X. Li, C. H. Fang, and J. F. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

Adv. Opt. Mater. (1)

Q. Li, X. L. Zhuo, S. Li, Q. F. Ruan, Q. H. Xu, and J. F. Wang, “Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties,” Adv. Opt. Mater. 3, 801–812 (2015).
[Crossref]

Angew. Chem. Int. Ed. (2)

C. B. Gao, Z. D. Lu, Y. Liu, Q. Zhang, M. F. Chi, Q. Cheng, and Y. D. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. 51, 5629–5633 (2012).
[Crossref]

M. R. Langille, M. L. Personick, and C. A. Mirkin, “Plasmon-mediated syntheses of metallic nanostructures,” Angew. Chem. Int. Ed. 52, 13910–13940 (2013).
[Crossref]

Ann. Phys. (1)

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524, 637–662 (2012).
[Crossref]

Appl. Phys. Lett. (1)

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly (ethylene glycol),” Appl. Phys. Lett. 104, 253105 (2014).
[Crossref]

Chem. Commun. (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617–618 (2001).
[Crossref]

Chem. Mater. (1)

Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly-(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[Crossref]

Chem. Soc. Rev. (1)

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Colloids Surf. A (1)

Z. R. Guo, Y. Wan, M. Wang, L. Xu, X. Lu, G. Yang, K. Fang, and N. Gu, “High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route,” Colloids Surf. A 414, 492–497 (2012).
[Crossref]

J. Am. Chem. Soc. (2)

M. A. Mahmoud, M. Chamanzar, A. Adibi, and M. A. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: Silver nanocubes,” J. Am. Chem. Soc. 134, 6434–6442 (2012).
[Crossref]

N. Goubet, H. Portales, C. Yan, I. Arfaoui, P. A. Albouy, A. Mermet, and M. P. Pileni, “Simultaneous growths of gold colloidal crystals,” J. Am. Chem. Soc. 134, 3714–3719 (2012).
[Crossref]

J. Colloid Interface Sci. (1)

Z. R. Guo, X. Fan, L. K. Liu, Z. P. Bian, C. R. Gu, Y. Zhang, N. Gu, D. Yang, and J. N. Zhang, “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms,” J. Colloid Interface Sci. 348, 29–36 (2010).
[Crossref]

J. Nanosci. Nanotechnol. (1)

Y. N. Rao, S. K. Das, and A. Saha, “Room temperature aqueous synthesis of bipyramidal silver nanostructures,” J. Nanosci. Nanotechnol. 12, 2014–2021 (2012).
[Crossref]

J. Phys. Chem. B (1)

M. Z. Liu and P. Guyot-Sionnest, “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids,” J. Phys. Chem. B 109, 22192–22200 (2005).
[Crossref]

J. Phys. Chem. C (1)

E. B. Guidez and C. M. Aikens, “Diameter dependence of the excitation spectra of silver and gold nanorods,” J. Phys. Chem. C 117, 12325–12336 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4, 1541–1545 (2013).
[Crossref]

J. Raman Spectrosc. (2)

Z. D. Yan, W. Du, L. L. Tu, P. Gu, Z. Huang, P. Zhan, F. X. Liu, and Z. L. Wang, “A facile high-performance SERS substrate based on broadband near-perfect optical absorption,” J. Raman Spectrosc. 46, 795–801 (2015).
[Crossref]

X. Dong, J. F. Zhou, X. Y. Liu, D. L. Lin, and L. S. Zha, “Preparation of monodisperse bimetallic nanorods with gold nanorod core and silver shell and their plasmonic property and SERS efficiency,” J. Raman Spectrosc. 45, 431–437 (2014).
[Crossref]

Langmuir (1)

J. R. Matthews, C. M. Payne, and J. H. Hafner, “Analysis of phospholipid bilayers on gold nanorods by plasmon resonance sensing and surface-enhanced raman scattering,” Langmuir 31, 9893–9900 (2015).
[Crossref]

Macromol. Biosci. (1)

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci. 12, 724–739 (2012).
[Crossref]

Nano Lett. (4)

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles,” Nano Lett. 7, 2101–2107 (2007).
[Crossref]

J. Zhang, M. R. Langille, and C. A. Mirkin, “Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds,” Nano Lett. 11, 2495–2498 (2011).
[Crossref]

X. C. Ye, C. Zheng, J. Chen, Y. Z. Gao, and C. B. Murray, “Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods,” Nano Lett. 13, 765–771 (2013).
[Crossref]

B. S. Guiton, V. Iberi, S. Z. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Nanoscale (1)

C. K. Kim, P. Ghosh, and V. M. Rotello, “Multimodal drug delivery using gold nanoparticles,” Nanoscale 1, 61–67 (2009).
[Crossref]

Nat. Commun. (1)

J. H. Lee, K. J. Gibson, G. Chen, and Y. Weizmann, “Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals,” Nat. Commun. 6, 7571 (2015).
[Crossref]

Part. Part. Syst. Charact. (1)

S. H. Jeong, H. Choi, J. Y. Kim, and T. W. Lee, “Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics,” Part. Part. Syst. Charact. 32, 164–175 (2015).
[Crossref]

Phys. Status Solidi A (1)

M. H. P. Reddy, J. F. Pierson, and S. Uthanna, “Structural, surface morphological, and optical properties of nanocrystalline Cu2O and CuO films formed by RF magnetron sputtering: oxygen partial pressure effect,” Phys. Status Solidi A 209, 1279–1286 (2012).
[Crossref]

Plasmonics (2)

S. W. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491–506 (2011).
[Crossref]

J. S. Liu, C. X. Kan, Y. L. Li, H. Y. Xu, Y. Ni, and D. N. Shi, “Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods,” Plasmonics 10, 117–124 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Sharma, K. Park, and M. Srinivasarao, “Shape separation of gold nanorods using centrifugation,” Proc. Natl. Acad. Sci. U.S.A. 106, 4981–4985 (2009).
[Crossref]

Small (4)

Z. B. Li, G. W. Meng, Q. Huang, X. Y. Hu, X. He, H. B. Tang, Z. W. Wang, and F. D. Li, “Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates,” Small 11, 5452–5459 (2015).
[Crossref]

C. X. Kan, C. S. Wang, H. C. Li, J. S. Qi, J. J. Zhu, Z. S. Li, and D. N. Shi, “Gold microplates with well-defined shapes,” Small 6, 1768–1775 (2010).
[Crossref]

C. Damm, D. Segets, G. A. Yang, B. F. Vieweg, E. Spiecker, and W. Peukert, “Shape transformation mechanism of silver nanorods in aqueous solution,” Small 7, 147–156 (2011).
[Crossref]

J. F. Huang, Y. H. Zhu, C. X. Liu, Y. F. Zhao, Z. H. Liu, M. N. Hedhili, A. Fratalocchi, and Y. Han, “Fabricating a homogeneously alloyed AuAg shell on Au nanorods to achieve strong, stable, and tunable surface plasmon resonances,” Small 11, 5214–5221 (2015).
[Crossref]

Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. (1)

J. H. Lee, J. H. Hwang, and J. M. Nam, “DNA-tailored plasmonic nanoparticles for biosensing applications,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 96–109 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the Au/AgNR for FDTD. The D 1 , L 1 , α , and D 2 , L 2 indicate the diameter, length, and cone angle of AuNBP and AgNR, respectively.
Fig. 2.
Fig. 2. Reaction process for achieving a high-purity Au/AgNRs colloid through CTAC-assisted synthesis.
Fig. 3.
Fig. 3. TEM images of (A) AuNBPs, and (B)–(E) Au/AgNRs with different lengths (150–800 nm). Scale bars = 200    nm .
Fig. 4.
Fig. 4. (A) Absorption spectra of AuNBPs and Au/AgNRs corresponding to the TEM images in Fig. 3. The SPRL of Au/AgNRs with addition of increasing AgNO 3 at 5 μL intervals: (B) 10–30 μL, and (C) 35–140 μL.
Fig. 5.
Fig. 5. TEM images of Au/AgNRs with different diameters. Scale bars = 200    nm .
Fig. 6.
Fig. 6. Experimental optical spectra and FDTD calculated SPR (including SPR T and SPR L ) of (A) AuNBP, and (B) Au/AgNR ( D = 30    nm ) with AR from 3 to 10. The inset in Fig. 6(B) shows the FDTD calculated SPR L of the pure AgNR (AR = 6).
Fig. 7.
Fig. 7. SERS spectra obtained using R6G as a probing molecule. (A) Spectra obtained using samples immersed in solutions with R6G concentrations of 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , and 10 12    m o l / L . (B) Relationship between SERS intensity and R6G concentration. (C) SERS of R6G obtained on the surface of Au/AgNRs and AuNRs.

Metrics