Abstract

We report on an all-fiber oscillator followed by an all-fiber amplifier to produce as short as 382 fs laser pulses with up to 0.9 W average power. The oscillator is an all-normal-dispersion all-fiber dissipative soliton laser operating at 1030 nm, and operating in dissipative soliton mode. The amplifier stage is mainly based on a double-cladding 20 μm radius ytterbium-doped fiber pumped by an up to 2.5 W CW laser source. The optical-to-optical conversion amplifier efficiency is around 40%. To our knowledge, this is the first report of an all-fiber mode-locked fiber laser oscillator amplified by an all-fiber amplifier.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Dissipative soliton resonances in all-fiber Er-Yb double clad figure-8 laser

Karol Krzempek
Opt. Express 23(24) 30651-30656 (2015)

100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system

Junqing Zhao, Deqin Ouyang, Zhijian Zheng, Minqiu Liu, Xikui Ren, Chunbo Li, Shuangchen Ruan, and Weixin Xie
Opt. Express 24(11) 12072-12081 (2016)

Double-clad 10-W Yb3+-doped fiber master oscillator power fiber amplifier for He3+ optical pumping

Sylvain Bordais, Sébastien Grot, Yves Jaouën, Pascal Besnard, and Marc Le Flohic
Appl. Opt. 43(10) 2168-2174 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. 27, B63–B92 (2010).
    [Crossref]
  2. X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2  μm with mJ-level pulse energy,” Appl. Opt. 55, 1941–1945 (2016).
    [Crossref]
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013), Chap. 4.
  4. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000).
    [Crossref]
  5. J. Hu, L. Zhang, H. Liu, K. Liu, Z. Xu, and Y. Feng, “High-power single-frequency 1014.8  nm Yb-doped fiber amplifier working at room temperature,” Appl. Opt. 53, 4972–4977 (2014).
    [Crossref]
  6. R. A. Sims, P. Kadwani, A. S. L. Shah, and M. Richardson, “1  μJ, sub-500  fs chirped pulse amplification in a Tm-doped fiber system,” Opt. Lett. 38, 121–123 (2013).
    [Crossref]
  7. J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H.-J. Fuchs, H. Zellmer, E.-B. Kley, and A. Tünnermann, “High-average-power femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 28, 1984–1986 (2003).
    [Crossref]
  8. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “131  W 220  fs fiber laser system,” Opt. Lett. 30, 2754–2756 (2003).
    [Crossref]
  9. P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
    [Crossref]
  10. H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20, 416–424 (2014).
    [Crossref]
  11. M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Properties and stability limits of an optimized mode-locked Yb-doped femtosecond fiber laser,” Opt. Express 17, 2264–2279 (2009).
    [Crossref]
  12. H. E. Kotb, M. A. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion modelocked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22, 25–33 (2016).
    [Crossref]

2016 (2)

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion modelocked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22, 25–33 (2016).
[Crossref]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2  μm with mJ-level pulse energy,” Appl. Opt. 55, 1941–1945 (2016).
[Crossref]

2014 (2)

J. Hu, L. Zhang, H. Liu, K. Liu, Z. Xu, and Y. Feng, “High-power single-frequency 1014.8  nm Yb-doped fiber amplifier working at room temperature,” Appl. Opt. 53, 4972–4977 (2014).
[Crossref]

H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20, 416–424 (2014).
[Crossref]

2013 (1)

2010 (1)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. 27, B63–B92 (2010).
[Crossref]

2009 (2)

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[Crossref]

M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Properties and stability limits of an optimized mode-locked Yb-doped femtosecond fiber laser,” Opt. Express 17, 2264–2279 (2009).
[Crossref]

2003 (2)

2000 (1)

Abdelalim, M. A.

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion modelocked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22, 25–33 (2016).
[Crossref]

H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20, 416–424 (2014).
[Crossref]

M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Properties and stability limits of an optimized mode-locked Yb-doped femtosecond fiber laser,” Opt. Express 17, 2264–2279 (2009).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013), Chap. 4.

Anis, H.

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion modelocked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22, 25–33 (2016).
[Crossref]

H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20, 416–424 (2014).
[Crossref]

M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Properties and stability limits of an optimized mode-locked Yb-doped femtosecond fiber laser,” Opt. Express 17, 2264–2279 (2009).
[Crossref]

Budunoglu, I. L.

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[Crossref]

Clarkson, W. A.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. 27, B63–B92 (2010).
[Crossref]

Clausnitzer, T.

Feng, Y.

Fuchs, H.-J.

Goldberg, L.

Hu, J.

Ilday, F. O.

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[Crossref]

Jin, X.

Kadwani, P.

Khalil, D. A.

Kley, E.-B.

Kliner, D. A. V.

Koplow, J. P.

Kotb, H. E.

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion modelocked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22, 25–33 (2016).
[Crossref]

H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20, 416–424 (2014).
[Crossref]

Liem, A.

Limpert, J.

Liu, H.

Liu, K.

Liu, Z.

Logvin, Y.

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[Crossref]

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. 27, B63–B92 (2010).
[Crossref]

Ortac, B.

Ozgoren, K.

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. 27, B63–B92 (2010).
[Crossref]

Richardson, M.

Röser, F.

Rothhard, J.

Schmidt, O.

Schreiber, T.

Shah, A. S. L.

Sims, R. A.

Tünnermann, A.

Wang, X.

Xiao, H.

Xu, Z.

Zellmer, H.

Zhang, L.

Zhou, P.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (3)

P. K. Mukhopadhyay, K. Ozgoren, I. L. Budunoglu, and F. O. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145–152 (2009).
[Crossref]

H. E. Kotb, M. A. Abdelalim, and H. Anis, “An efficient semi-vectorial model for all-fiber mode-locked femtosecond lasers based on nonlinear polarization rotation,” IEEE J. Sel. Top. Quantum Electron. 20, 416–424 (2014).
[Crossref]

H. E. Kotb, M. A. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion modelocked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22, 25–33 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. 27, B63–B92 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagram of the experimental laser oscillator: SM-LD, single-mode laser diode; WDM, wavelength division multiplexer; Yb, ytterbium fiber; PC, polarization controller; PBS, polarization beam splitter; SF, spectral filter; MM-LD, multimode laser diode; DC-MPC, double-cladding multimode pump signal combiner; DC-Yb, double-cladding ytterbium fiber; OSC, oscilloscope; OSA, optical spectrum analyzer; AC, autocorrelator.
Fig. 2.
Fig. 2. PBS output: (a) train of output pulses (the inset shows a zoom of a pulse to verify single-pulse operation), and (b) the pulse spectrum.
Fig. 3.
Fig. 3. Output of the oscillator coupler after the isolator and before the amplifier stage: (a) AC temporal chirped pulse profile and (b) pulse spectrum.
Fig. 4.
Fig. 4. Output SPD of the amplifier (2.4 m Yb) at different amplifier pump power levels: (a) SPD including the pump wavelength and (b) pulse SPD showing the spectrum widening with increasing pump power.
Fig. 5.
Fig. 5. Output power and pulse width at different pump power.
Fig. 6.
Fig. 6. Output pulse of Yb-doped fiber: (a) temporal profile at different pump power and (b) no pump spectrum.
Fig. 7.
Fig. 7. Autocorrelation pulse profile (a) at 2.5 W pump power and (b) at 3 W pump power and up, showing shoulder oscillations.
Fig. 8.
Fig. 8. Compressed pulse width versus anomalous dispersion at different pump powers.
Fig. 9.
Fig. 9. Shortest compressed pulse width in femtosecond versus pump power in watts at 24,680  fs2 anomalous dispersion.
Fig. 10.
Fig. 10. Spectra of compressed pulses at different pump levels: (a) the pump spectrum is included and (b) zoomed-in pulse spectra.

Metrics