Abstract

We demonstrate an integrated all-fiber mid-infrared (mid-IR) supercontinuum (SC) source generated by a 1.95 μm master oscillator power amplifier system and a single-mode ZBLAN (ZrF4BaF2LaF3AlF3NaF) fiber. The maximum average output power is 10.67 W with spectral bandwidth covering from 1.9 to 4.1 μm. The single-mode ZBLAN fiber and silica fiber are thermal-spliced to enhance the robustness and practicability of the system. It is, to the best of our knowledge, the first high-power integrated compacted all-fiber mid-IR SC source based on thermal-spliced silica fiber and ZBLAN fiber.

© 2016 Chinese Laser Press

Full Article  |  PDF Article

Corrections

27 July 2016: A correction was made to the copyright.


OSA Recommended Articles
High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power

Kun Liu, Jiang Liu, Hongxing Shi, Fangzhou Tan, and Pu Wang
Opt. Express 22(20) 24384-24391 (2014)

High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system

Weiqiang Yang, Bin Zhang, Ke Yin, Xuanfeng Zhou, and Jing Hou
Opt. Express 21(17) 19732-19742 (2013)

Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system

Weiqiang Yang, Bin Zhang, Guanghui Xue, Ke Yin, and Jing Hou
Opt. Lett. 39(7) 1849-1852 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
    [Crossref]
  2. C. H. Li, A. G. Glenday, A. J. Benedick, G. Q. Chang, L. J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm−1,” Opt. Express 18, 13239–13249 (2010).
    [Crossref]
  3. V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, G. Kailinchenko, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. A. Zadnik, A. S. Szalkowski, and G. J. Boer, “Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser,” Appl. Opt. 52, 6813–6823 (2013).
    [Crossref]
  4. C. Vozzi, M. Negro, and S. Stagira, “Strong-field phenomena driven by mid-infrared ultrafast sources: JMO Series: attosecond and strong field science,” J. Mod. Opt. 59, 1283–1302 (2012).
    [Crossref]
  5. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
    [Crossref]
  6. P. G. Yan, J. Shu, S. C. Ruan, J. Zhao, J. Q. Zhao, C. L. Du, C. Y. Guo, H. F. Wei, and J. Luo, “Polarization dependent visible supercontinuum generation in the nanoweb fiber,” Opt. Express 19, 4985–4990 (2011).
    [Crossref]
  7. R. Song, J. Hou, S. P. Chen, W. Q. Yang, and Q. S. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37, 1529–1531 (2012).
    [Crossref]
  8. J. Swiderski and M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
    [Crossref]
  9. X. H. Fang, M. L. Hu, L. L. Huang, L. Chai, N. L. Dai, J. Y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C. Y. Wang, “Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber,” Opt. Lett. 37, 2292–2294 (2012).
    [Crossref]
  10. K. M. Hilligse, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mlmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004).
    [Crossref]
  11. H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun. 284, 5484–5487 (2011).
    [Crossref]
  12. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  13. P. G. Yan, G. L. Zhang, H. F. Wei, D. Q. Ouyang, S. S. Huang, J. Q. Zhao, K. K. Chen, J. Luo, and S. C. Ruan, “Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output,” J. Lightwave Technol. 31, 3658–3662 (2013).
    [Crossref]
  14. L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” in Advanced Solid-State Photonics (ASSP) (Optical Society of America, 2005).
  15. P. G. Yan, R. J. Dong, G. L. Zhang, H. Q. Li, and S. C. Ruan, “Numerical simulation on the coherent time-critical 2–5  μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
    [Crossref]
  16. R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40, 5074–5077 (2015).
    [Crossref]
  17. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  18. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
    [Crossref]
  19. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
    [Crossref]
  20. M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, and J. H. V. Price, “Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers,” Opt. Lett. 40, 2237–2240 (2015).
    [Crossref]
  21. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
    [Crossref]
  22. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22, 24384–24391 (2014).
    [Crossref]
  23. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
    [Crossref]
  24. J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39, 910–913 (2014).
    [Crossref]
  25. W. Q. Yang, B. Zhang, G. H. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
    [Crossref]
  26. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3  W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” in Advanced Solid State Lasers (ASSL) (Optical Society of America, 2014).
  27. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
    [Crossref]
  28. M. Eckerle, C. Kieleck, J. Swiderski, S. D. Jackson, G. Maze, and M. Eichhorn, “Actively Q-switched and mode-locked Tm3+-doped silicate 2  μm fiber laser for supercontinuum generation in fluoride fiber,” Opt. Lett. 37, 512–514 (2012).
    [Crossref]
  29. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
    [Crossref]
  30. J. Swiderski, “High-power mid-infrared supercontinuum sources: current status and future perspectives,” Prog. Quant. Electron. 38, 189–235 (2014).
    [Crossref]
  31. Z. J. Zheng, D. Q. Ouyang, J. Q. Zhao, S. C. Ruan, J. Yu, C. Y. Guo, and J. Z. Wang, “An effective thermal splicing method to join fluoride and silica fibers for a high power regime,” Chin. Phys. Lett. 32, 114206 (2015).
    [Crossref]
  32. K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, and J. Hou, “Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers,” Opt. Lett. 41, 946–949 (2016).
    [Crossref]

2016 (1)

2015 (3)

2014 (5)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22, 24384–24391 (2014).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39, 910–913 (2014).
[Crossref]

W. Q. Yang, B. Zhang, G. H. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
[Crossref]

J. Swiderski, “High-power mid-infrared supercontinuum sources: current status and future perspectives,” Prog. Quant. Electron. 38, 189–235 (2014).
[Crossref]

2013 (6)

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[Crossref]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

P. G. Yan, G. L. Zhang, H. F. Wei, D. Q. Ouyang, S. S. Huang, J. Q. Zhao, K. K. Chen, J. Luo, and S. C. Ruan, “Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output,” J. Lightwave Technol. 31, 3658–3662 (2013).
[Crossref]

P. G. Yan, R. J. Dong, G. L. Zhang, H. Q. Li, and S. C. Ruan, “Numerical simulation on the coherent time-critical 2–5  μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, G. Kailinchenko, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. A. Zadnik, A. S. Szalkowski, and G. J. Boer, “Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser,” Appl. Opt. 52, 6813–6823 (2013).
[Crossref]

J. Swiderski and M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
[Crossref]

2012 (5)

2011 (2)

P. G. Yan, J. Shu, S. C. Ruan, J. Zhao, J. Q. Zhao, C. L. Du, C. Y. Guo, H. F. Wei, and J. Luo, “Polarization dependent visible supercontinuum generation in the nanoweb fiber,” Opt. Express 19, 4985–4990 (2011).
[Crossref]

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun. 284, 5484–5487 (2011).
[Crossref]

2010 (2)

2009 (1)

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

2008 (1)

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[Crossref]

2004 (1)

1976 (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Absi, A.

Aggarwal, I. D.

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” in Advanced Solid-State Photonics (ASSP) (Optical Society of America, 2005).

Alexander, V. V.

Andersen, T. V.

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Belal, M.

Benedick, A. J.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Boer, G. J.

Chai, L.

Chan, A.

Chang, G. Q.

Chavez-Pirson, A.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Chen, H. W.

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun. 284, 5484–5487 (2011).
[Crossref]

Chen, K. K.

Chen, L. J.

Chen, S.

Chen, S. P.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, and Q. S. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37, 1529–1531 (2012).
[Crossref]

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun. 284, 5484–5487 (2011).
[Crossref]

Chen, Z. L.

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun. 284, 5484–5487 (2011).
[Crossref]

Chin, G.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Cordeiro, C. M. B.

Cramer, C.

Cronin-Golomb, M.

Dai, N. L.

Domachuk, P.

Dong, R. J.

P. G. Yan, R. J. Dong, G. L. Zhang, H. Q. Li, and S. C. Ruan, “Numerical simulation on the coherent time-critical 2–5  μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Du, C. L.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Eckerle, M.

Eichhorn, M.

Ettabib, M.

Fang, X. H.

Fendel, P.

Feng, X.

Freeman, M. J.

Furesz, G.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gattass, R. R.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

George, A. K.

Gibson, D.

Glenday, A. G.

Guo, C. Y.

Z. J. Zheng, D. Q. Ouyang, J. Q. Zhao, S. C. Ruan, J. Yu, C. Y. Guo, and J. Z. Wang, “An effective thermal splicing method to join fluoride and silica fibers for a high power regime,” Chin. Phys. Lett. 32, 114206 (2015).
[Crossref]

P. G. Yan, J. Shu, S. C. Ruan, J. Zhao, J. Q. Zhao, C. L. Du, C. Y. Guo, H. F. Wei, and J. Luo, “Polarization dependent visible supercontinuum generation in the nanoweb fiber,” Opt. Express 19, 4985–4990 (2011).
[Crossref]

Hagen, C. L.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[Crossref]

Hansen, K. P.

Hilligse, K. M.

Horak, P.

Hou, J.

Hu, M. L.

Huang, L. L.

Huang, S. S.

Ifarraguerri, A.

Islam, M. N.

Jackson, S. D.

Kailinchenko, G.

Kärtner, F. X.

Ke, K.

Keiding, S.

Kieleck, C.

Kim, W.

Knight, J. C.

Korzennik, S.

Kristiansen, R.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Kumar, M.

Kung, F. H.

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” in Advanced Solid-State Photonics (ASSP) (Optical Society of America, 2005).

Larsen, J. J.

Leonard, J.

Li, C. H.

Li, H. Q.

P. G. Yan, R. J. Dong, G. L. Zhang, H. Q. Li, and S. C. Ruan, “Numerical simulation on the coherent time-critical 2–5  μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Li, J. Y.

Lin, C.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Liu, J.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22, 24384–24391 (2014).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3  W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” in Advanced Solid State Lasers (ASSL) (Optical Society of America, 2014).

Liu, K.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22, 24384–24391 (2014).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3  W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” in Advanced Solid State Lasers (ASSL) (Optical Society of America, 2014).

Lu, Q. S.

Luo, J.

Manzur, T.

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Maze, G.

Meola, J.

Michalska, M.

Mlmer, K.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Neelakandan, M.

Negro, M.

C. Vozzi, M. Negro, and S. Stagira, “Strong-field phenomena driven by mid-infrared ultrafast sources: JMO Series: attosecond and strong field science,” J. Mod. Opt. 59, 1283–1302 (2012).
[Crossref]

Nguyen, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Nguyen, V.

Nguyen, V. Q.

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” in Advanced Solid-State Photonics (ASSP) (Optical Society of America, 2005).

Nielsen, C. K.

Omenetto, F. G.

Ouyang, D. Q.

Z. J. Zheng, D. Q. Ouyang, J. Q. Zhao, S. C. Ruan, J. Yu, C. Y. Guo, and J. Z. Wang, “An effective thermal splicing method to join fluoride and silica fibers for a high power regime,” Chin. Phys. Lett. 32, 114206 (2015).
[Crossref]

P. G. Yan, G. L. Zhang, H. F. Wei, D. Q. Ouyang, S. S. Huang, J. Q. Zhao, K. K. Chen, J. Luo, and S. C. Ruan, “Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output,” J. Lightwave Technol. 31, 3658–3662 (2013).
[Crossref]

Paulsen, H. N.

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Petropoulos, P.

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Phillips, D. F.

Price, J. H. V.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Rhonehouse, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Richardson, D. J.

Ruan, S. C.

Z. J. Zheng, D. Q. Ouyang, J. Q. Zhao, S. C. Ruan, J. Yu, C. Y. Guo, and J. Z. Wang, “An effective thermal splicing method to join fluoride and silica fibers for a high power regime,” Chin. Phys. Lett. 32, 114206 (2015).
[Crossref]

P. G. Yan, R. J. Dong, G. L. Zhang, H. Q. Li, and S. C. Ruan, “Numerical simulation on the coherent time-critical 2–5  μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

P. G. Yan, G. L. Zhang, H. F. Wei, D. Q. Ouyang, S. S. Huang, J. Q. Zhao, K. K. Chen, J. Luo, and S. C. Ruan, “Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output,” J. Lightwave Technol. 31, 3658–3662 (2013).
[Crossref]

P. G. Yan, J. Shu, S. C. Ruan, J. Zhao, J. Q. Zhao, C. L. Du, C. Y. Guo, H. F. Wei, and J. Luo, “Polarization dependent visible supercontinuum generation in the nanoweb fiber,” Opt. Express 19, 4985–4990 (2011).
[Crossref]

Sanders, S. T.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[Crossref]

Sanghera, J. S.

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40, 5074–5077 (2015).
[Crossref]

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” in Advanced Solid-State Photonics (ASSP) (Optical Society of America, 2005).

Sasselov, D.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Shaw, L. B.

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40, 5074–5077 (2015).
[Crossref]

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” in Advanced Solid-State Photonics (ASSP) (Optical Society of America, 2005).

Shen, L.

Shi, H.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22, 24384–24391 (2014).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3  W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” in Advanced Solid State Lasers (ASSL) (Optical Society of America, 2014).

Shi, Z.

Shu, J.

Smith, C.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Song, R.

Stagira, S.

C. Vozzi, M. Negro, and S. Stagira, “Strong-field phenomena driven by mid-infrared ultrafast sources: JMO Series: attosecond and strong field science,” J. Mod. Opt. 59, 1283–1302 (2012).
[Crossref]

Stolen, R. H.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Swiderski, J.

Szalkowski, A. S.

Szentgyorgyi, A.

Tan, F.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22, 24384–24391 (2014).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3  W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” in Advanced Solid State Lasers (ASSL) (Optical Society of America, 2014).

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tashchilina, A. Y.

Terry, F. L.

M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
[Crossref]

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Thapa, R.

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40, 5074–5077 (2015).
[Crossref]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Thielen, P. A.

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” in Advanced Solid-State Photonics (ASSP) (Optical Society of America, 2005).

Vozzi, C.

C. Vozzi, M. Negro, and S. Stagira, “Strong-field phenomena driven by mid-infrared ultrafast sources: JMO Series: attosecond and strong field science,” J. Mod. Opt. 59, 1283–1302 (2012).
[Crossref]

Walewski, J. W.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[Crossref]

Walsworth, R. L.

Wang, A.

Wang, C. Y.

Wang, J. H.

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun. 284, 5484–5487 (2011).
[Crossref]

Wang, J. Z.

Z. J. Zheng, D. Q. Ouyang, J. Q. Zhao, S. C. Ruan, J. Yu, C. Y. Guo, and J. Z. Wang, “An effective thermal splicing method to join fluoride and silica fibers for a high power regime,” Chin. Phys. Lett. 32, 114206 (2015).
[Crossref]

Wang, P.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22, 24384–24391 (2014).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3  W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” in Advanced Solid State Lasers (ASSL) (Optical Society of America, 2014).

Wei, H. F.

Wiersma, K.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Wolchover, N. A.

Xia, C.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Xu, L.

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Xue, G. H.

Yan, P. G.

Yang, L.

Yang, W. Q.

Yao, J.

Yin, K.

Yu, J.

Z. J. Zheng, D. Q. Ouyang, J. Q. Zhao, S. C. Ruan, J. Yu, C. Y. Guo, and J. Z. Wang, “An effective thermal splicing method to join fluoride and silica fibers for a high power regime,” Chin. Phys. Lett. 32, 114206 (2015).
[Crossref]

Zadnik, J. A.

Zakel, A.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Zhang, B.

Zhang, G. L.

P. G. Yan, G. L. Zhang, H. F. Wei, D. Q. Ouyang, S. S. Huang, J. Q. Zhao, K. K. Chen, J. Luo, and S. C. Ruan, “Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output,” J. Lightwave Technol. 31, 3658–3662 (2013).
[Crossref]

P. G. Yan, R. J. Dong, G. L. Zhang, H. Q. Li, and S. C. Ruan, “Numerical simulation on the coherent time-critical 2–5  μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Zhao, J.

Zhao, J. Q.

Zheltikov, A. M.

Zheng, Z. J.

Z. J. Zheng, D. Q. Ouyang, J. Q. Zhao, S. C. Ruan, J. Yu, C. Y. Guo, and J. Z. Wang, “An effective thermal splicing method to join fluoride and silica fibers for a high power regime,” Chin. Phys. Lett. 32, 114206 (2015).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Zong, J.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Chin. Phys. Lett. (1)

Z. J. Zheng, D. Q. Ouyang, J. Q. Zhao, S. C. Ruan, J. Yu, C. Y. Guo, and J. Z. Wang, “An effective thermal splicing method to join fluoride and silica fibers for a high power regime,” Chin. Phys. Lett. 32, 114206 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

C. Vozzi, M. Negro, and S. Stagira, “Strong-field phenomena driven by mid-infrared ultrafast sources: JMO Series: attosecond and strong field science,” J. Mod. Opt. 59, 1283–1302 (2012).
[Crossref]

Laser Phys. Lett. (1)

J. Swiderski and M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Opt. Commun. (2)

P. G. Yan, R. J. Dong, G. L. Zhang, H. Q. Li, and S. C. Ruan, “Numerical simulation on the coherent time-critical 2–5  μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun. 284, 5484–5487 (2011).
[Crossref]

Opt. Express (6)

P. G. Yan, J. Shu, S. C. Ruan, J. Zhao, J. Q. Zhao, C. L. Du, C. Y. Guo, H. F. Wei, and J. Luo, “Polarization dependent visible supercontinuum generation in the nanoweb fiber,” Opt. Express 19, 4985–4990 (2011).
[Crossref]

C. H. Li, A. G. Glenday, A. J. Benedick, G. Q. Chang, L. J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm−1,” Opt. Express 18, 13239–13249 (2010).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22, 24384–24391 (2014).
[Crossref]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
[Crossref]

K. M. Hilligse, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mlmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004).
[Crossref]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[Crossref]

Opt. Lett. (8)

M. Eckerle, C. Kieleck, J. Swiderski, S. D. Jackson, G. Maze, and M. Eichhorn, “Actively Q-switched and mode-locked Tm3+-doped silicate 2  μm fiber laser for supercontinuum generation in fluoride fiber,” Opt. Lett. 37, 512–514 (2012).
[Crossref]

K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, and J. Hou, “Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers,” Opt. Lett. 41, 946–949 (2016).
[Crossref]

M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, and J. H. V. Price, “Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers,” Opt. Lett. 40, 2237–2240 (2015).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39, 910–913 (2014).
[Crossref]

W. Q. Yang, B. Zhang, G. H. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
[Crossref]

R. Song, J. Hou, S. P. Chen, W. Q. Yang, and Q. S. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37, 1529–1531 (2012).
[Crossref]

X. H. Fang, M. L. Hu, L. L. Huang, L. Chai, N. L. Dai, J. Y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C. Y. Wang, “Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber,” Opt. Lett. 37, 2292–2294 (2012).
[Crossref]

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40, 5074–5077 (2015).
[Crossref]

Proc. SPIE (1)

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Prog. Quant. Electron. (1)

J. Swiderski, “High-power mid-infrared supercontinuum sources: current status and future perspectives,” Prog. Quant. Electron. 38, 189–235 (2014).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Other (2)

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” in Advanced Solid-State Photonics (ASSP) (Optical Society of America, 2005).

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3  W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” in Advanced Solid State Lasers (ASSL) (Optical Society of America, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic setup of the passively mode-locked fiber laser.
Fig. 2.
Fig. 2. Schematic setup of the high-power integrated compacted all-fiber mid-IR SC system.
Fig. 3.
Fig. 3. Spectrum of the mode-locked fiber laser.
Fig. 4.
Fig. 4. (a) Pulse train of the passively mode-locked fiber with a repetition of 75.4 MHz. Inset: the pulse autocorrelation trace of the first amplifier at average output power of 100 mW. (b) RF spectrum of harmonic repetition rate within 2 GHz. Inset: the RF spectrum around fundamental repetition rate.
Fig. 5.
Fig. 5. Output spectra of the backward MFA at different average output power.
Fig. 6.
Fig. 6. Output spectra from the ZBLAN fiber at different average output power.
Fig. 7.
Fig. 7. Different output powers and splicing joint temperature versus the pump power of LMA TDFA.

Metrics