Abstract

The far-field imaging properties of a high index microsphere lens spatially separated from the object are experimentally studied. Our experimental results show that, for a Blu-ray disk whose spacing is 300 nm, the high index microsphere lens also can discern the patterns of the object sample when the distance between the lens and the object is up to 5.4 μm. When the distance is increased from 0 to 5.4 μm, for the microsphere lens with a diameter of 24 μm, the lateral magnification increases from 3.5× to 5.5×, while the field of view decreases from 5.1 to 3.0 μm. By varying the distance between the lens and the object, the optical image can be optimized. We also indicate that the far-field imaging capability of a high index microsphere lens is dependent on the electromagnetic field intensity profile of the photonic nanojet under different positions of the microsphere lens.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolution imaging properties of cascaded microsphere lenses

Yun Deng, Songlin Yang, Yang Xia, Yurong Cao, Jianguo Wang, Fengge Wang, and Yong-Hong Ye
Appl. Opt. 57(20) 5578-5582 (2018)

Experimental far-field imaging properties of a ~5-μm diameter spherical lens

Ran Ye, Yong-Hong Ye, Hui Feng Ma, Jun Ma, Bin Wang, Jie Yao, Shuai Liu, Lingling Cao, Huanhuan Xu, and Jia-Yu Zhang
Opt. Lett. 38(11) 1829-1831 (2013)

Unusual imaging properties of superresolution microspheres

Pin-Yi Li, Yang Tsao, Yun-Ju Liu, Zong-Xing Lou, Wei-Li Lee, Shi-Wei Chu, and Chih-Wei Chang
Opt. Express 24(15) 16479-16486 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19, 7084–7093 (2011).
    [Crossref]
  2. P. Ferrand, J. Wenger, and A. Devilez, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008).
    [Crossref]
  3. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
    [Crossref]
  4. X. Lopez-Yglesias, J. M. Gamba, and R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
    [Crossref]
  5. S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15, 125710 (2013).
    [Crossref]
  6. S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16, 15704–15711 (2014).
    [Crossref]
  7. A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40, 5–8 (2015).
    [Crossref]
  8. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100  nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
    [Crossref]
  9. V. M. Sundaram and S. B. Wen, “Analysis of deep sub-micron resolution in microsphere based imaging,” Appl. Phys. Lett. 105, 204102 (2014).
    [Crossref]
  10. K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in IEEE Proceedings of National Aerospace and Electronics Conference (NAECON) (2014), pp. 50–52.
  11. L. Lin, W. Guo, Y. Yan, S. Lee, and T. Wang, “Labe-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
    [Crossref]
  12. H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
    [Crossref]
  13. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol. 5, 127–132 (2010).
    [Crossref]
  14. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
    [Crossref]
  15. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref]
  16. X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
    [Crossref]
  17. A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
    [Crossref]
  18. R. Ye, Y. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Zhang, “Experimental far-field imaging properties of a ∼ 5  μm diameter spherical lens,” Opt. Lett. 38, 1829–1831 (2013).
    [Crossref]
  19. R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 1–5 (2014).
  20. D. J. Goldstein, “A quantitative computer simulation of microscopic imaging,” J. Microsc. 162, 241–253 (1991).
    [Crossref]
  21. D. A. Fletcher, K. E. Goodson, and G. S. Kino, “Focusing in microlenses close to a wavelength in diameter,” Opt. Lett. 26, 399–401 (2001).
    [Crossref]
  22. D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35, 2007–2009 (2010).
    [Crossref]
  23. M. Tsang and D. Psaltis, “Theory of resonantly enhanced near-field imaging,” Opt. Express 15, 11959–11970 (2007).
    [Crossref]
  24. M. Tsang and D. Psaltis, “Reflectionless evanescent-wave amplification by two dielectric planar waveguides,” Opt. Lett. 31, 2741–2743 (2006).
    [Crossref]
  25. Y. Duan, G. Barbastathis, and B. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38, 2988–2990 (2013).
    [Crossref]
  26. T. X. Hoang, Y. Duan, X. Chen, and G. Barbastathis, “Focusing and imaging in microsphere-based microscopy,” Opt. Express 23, 12337–12353 (2015).
    [Crossref]

2015 (2)

2014 (4)

V. M. Sundaram and S. B. Wen, “Analysis of deep sub-micron resolution in microsphere based imaging,” Appl. Phys. Lett. 105, 204102 (2014).
[Crossref]

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16, 15704–15711 (2014).
[Crossref]

R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 1–5 (2014).

2013 (4)

L. Lin, W. Guo, Y. Yan, S. Lee, and T. Wang, “Labe-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15, 125710 (2013).
[Crossref]

Y. Duan, G. Barbastathis, and B. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38, 2988–2990 (2013).
[Crossref]

R. Ye, Y. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Zhang, “Experimental far-field imaging properties of a ∼ 5  μm diameter spherical lens,” Opt. Lett. 38, 1829–1831 (2013).
[Crossref]

2012 (2)

X. Lopez-Yglesias, J. M. Gamba, and R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
[Crossref]

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

2011 (4)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19, 7084–7093 (2011).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100  nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[Crossref]

2010 (2)

J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol. 5, 127–132 (2010).
[Crossref]

D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35, 2007–2009 (2010).
[Crossref]

2009 (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

2004 (1)

2001 (1)

1991 (1)

D. J. Goldstein, “A quantitative computer simulation of microscopic imaging,” J. Microsc. 162, 241–253 (1991).
[Crossref]

Akbulut, D.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100  nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[Crossref]

Allen, K. W.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in IEEE Proceedings of National Aerospace and Electronics Conference (NAECON) (2014), pp. 50–52.

Astratov, V. N.

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in IEEE Proceedings of National Aerospace and Electronics Conference (NAECON) (2014), pp. 50–52.

Auwerx, J.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

Backman, V.

Barbastathis, G.

Ben-Aryeh, Y.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15, 125710 (2013).
[Crossref]

Bertolotti, J.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100  nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[Crossref]

Bose, R.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Cao, L.

R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 1–5 (2014).

R. Ye, Y. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Zhang, “Experimental far-field imaging properties of a ∼ 5  μm diameter spherical lens,” Opt. Lett. 38, 1829–1831 (2013).
[Crossref]

Cárabe, A.

Chen, X.

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
[Crossref]

Darafsheh, A.

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40, 5–8 (2015).
[Crossref]

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

Devilez, A.

Duan, Y.

Farahi, N.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in IEEE Proceedings of National Aerospace and Electronics Conference (NAECON) (2014), pp. 50–52.

Ferrand, P.

Finlay, J. C.

Flagan, R. C.

X. Lopez-Yglesias, J. M. Gamba, and R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
[Crossref]

Fletcher, D. A.

Gamba, J. M.

X. Lopez-Yglesias, J. M. Gamba, and R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
[Crossref]

Gijs, M. A.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

Goldstein, D. J.

D. J. Goldstein, “A quantitative computer simulation of microscopic imaging,” J. Microsc. 162, 241–253 (1991).
[Crossref]

Goodson, K. E.

Guardiola, C.

Guo, W.

L. Lin, W. Guo, Y. Yan, S. Lee, and T. Wang, “Labe-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15, 125710 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Hao, X.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Hoang, T. X.

Hong, B. H.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Hwang, I. C.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Jouravlev, M. V.

D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35, 2007–2009 (2010).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Kaufman, L. J.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Kim, K. S.

D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35, 2007–2009 (2010).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Kim, P.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Kim, Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Kino, G. S.

Kuang, C.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Lagendijk, A.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100  nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[Crossref]

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Lee, S.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16, 15704–15711 (2014).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15, 125710 (2013).
[Crossref]

L. Lin, W. Guo, Y. Yan, S. Lee, and T. Wang, “Labe-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Li, L.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16, 15704–15711 (2014).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15, 125710 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Li, Y.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in IEEE Proceedings of National Aerospace and Electronics Conference (NAECON) (2014), pp. 50–52.

Limberopoulos, N. I.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in IEEE Proceedings of National Aerospace and Electronics Conference (NAECON) (2014), pp. 50–52.

Lin, L.

L. Lin, W. Guo, Y. Yan, S. Lee, and T. Wang, “Labe-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Liu, S.

Liu, X.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Lopez-Yglesias, X.

X. Lopez-Yglesias, J. M. Gamba, and R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
[Crossref]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Ma, H. F.

R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 1–5 (2014).

R. Ye, Y. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Zhang, “Experimental far-field imaging properties of a ∼ 5  μm diameter spherical lens,” Opt. Lett. 38, 1829–1831 (2013).
[Crossref]

Ma, J.

R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 1–5 (2014).

R. Ye, Y. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Zhang, “Experimental far-field imaging properties of a ∼ 5  μm diameter spherical lens,” Opt. Lett. 38, 1829–1831 (2013).
[Crossref]

Mason, D. R.

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Mosk, A. P.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100  nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[Crossref]

Moullan, N.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

Negro, L. D.

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

Palovcak, A.

Psaltis, D.

Quake, S. R.

J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol. 5, 127–132 (2010).
[Crossref]

Schwartz, J.

J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol. 5, 127–132 (2010).
[Crossref]

Shi, R.

R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 1–5 (2014).

Stavrakis, S.

J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol. 5, 127–132 (2010).
[Crossref]

Sundaram, V. M.

V. M. Sundaram and S. B. Wen, “Analysis of deep sub-micron resolution in microsphere based imaging,” Appl. Phys. Lett. 105, 204102 (2014).
[Crossref]

Taflove, A.

Tsang, M.

Urbas, A. M.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in IEEE Proceedings of National Aerospace and Electronics Conference (NAECON) (2014), pp. 50–52.

van Putten, E. G.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100  nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[Crossref]

Vos, W. L.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100  nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[Crossref]

Walker, D. E.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in IEEE Proceedings of National Aerospace and Electronics Conference (NAECON) (2014), pp. 50–52.

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

Wang, B.

Wang, T.

L. Lin, W. Guo, Y. Yan, S. Lee, and T. Wang, “Labe-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Wang, Z.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16, 15704–15711 (2014).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15, 125710 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Wen, S. B.

V. M. Sundaram and S. B. Wen, “Analysis of deep sub-micron resolution in microsphere based imaging,” Appl. Phys. Lett. 105, 204102 (2014).
[Crossref]

Wenger, J.

Wong, C. W.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Wyrowski, F.

R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 1–5 (2014).

Xu, H.

Yan, Y.

L. Lin, W. Guo, Y. Yan, S. Lee, and T. Wang, “Labe-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Yang, H.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

Yang, S.

Yao, J.

Ye, R.

R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 1–5 (2014).

R. Ye, Y. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Zhang, “Experimental far-field imaging properties of a ∼ 5  μm diameter spherical lens,” Opt. Lett. 38, 1829–1831 (2013).
[Crossref]

Ye, Y.

R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 1–5 (2014).

R. Ye, Y. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Zhang, “Experimental far-field imaging properties of a ∼ 5  μm diameter spherical lens,” Opt. Lett. 38, 1829–1831 (2013).
[Crossref]

Zhang, B.

Zhang, H.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Zhang, J.

R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 1–5 (2014).

R. Ye, Y. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J. Zhang, “Experimental far-field imaging properties of a ∼ 5  μm diameter spherical lens,” Opt. Lett. 38, 1829–1831 (2013).
[Crossref]

Appl. Phys. Lett. (3)

V. M. Sundaram and S. B. Wen, “Analysis of deep sub-micron resolution in microsphere based imaging,” Appl. Phys. Lett. 105, 204102 (2014).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

J. Appl. Phys. (1)

X. Lopez-Yglesias, J. M. Gamba, and R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
[Crossref]

J. Microsc. (1)

D. J. Goldstein, “A quantitative computer simulation of microscopic imaging,” J. Microsc. 162, 241–253 (1991).
[Crossref]

J. Opt. (2)

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15, 125710 (2013).
[Crossref]

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16, 15704–15711 (2014).
[Crossref]

Light Sci. Appl. (1)

L. Lin, W. Guo, Y. Yan, S. Lee, and T. Wang, “Labe-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Nat. Nanotechnol. (1)

J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol. 5, 127–132 (2010).
[Crossref]

Nature (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100  nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[Crossref]

Sci. Rep. (1)

R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 1–5 (2014).

Small (1)

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

Other (1)

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in IEEE Proceedings of National Aerospace and Electronics Conference (NAECON) (2014), pp. 50–52.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the experimental setup. (b) SEM image of a blank BD studied in this paper.
Fig. 2.
Fig. 2. Images of the disk through the high index microsphere with a diameter of 24 μm fully immersed in liquid at different distance between the object and the microsphere: (a) 0, (b) 2.2, (c) 3.5, and (d) 5.4 μm.
Fig. 3.
Fig. 3. (a) Magnification and (b) FOV of the lens versus the distance between the object and the microsphere lens.
Fig. 4.
Fig. 4. Electromagnetic field intensity distribution forms “photonic nanojet” at the bottom of the microsphere lens with a diameter of 24 μm.
Fig. 5.
Fig. 5. Electromagnetic field intensity profile at different positions of (a) 0, (b) 2.2, (c) 3.5, and (d) 5.4 μm under the microsphere, respectively.

Metrics