Abstract

A mode transformer based on the quasi-vertical taper is designed to enable high coupling efficiency for interboard-level optical interconnects involving single-mode polymer waveguides and standard single-mode fibers. A triangular region fabricated above the waveguide is adopted to adiabatically transform the mode from the fiber into the polymer waveguide. The effects of the geometrical parameters of the taper, including width, height, tip width, etc., on the coupling efficiency are numerically investigated. Based on this, a quasi-vertical taper for the polymer rib waveguide system is designed, fabricated, and characterized. Coupling losses of 1.79±0.30 and 2.23±0.31dB per coupler for the quasi-TM and quasi-TE mode, respectively, are measured across the optical communication C and L bands (1535 to 1610 nm). Low-cost packaging, leading to widespread utilization of polymeric photonic devices, is envisioned for optical interconnect applications.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Integration of electro-optic polymer modulators with low-loss fluorinated polymer waveguides

Seh-Won Ahn, William H. Steier, Yin-Hao Kuo, Min-Cheol Oh, Hyung-Jong Lee, Cheng Zhang, and Harold R. Fetterman
Opt. Lett. 27(23) 2109-2111 (2002)

Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm

Xiao Xu, Lin Ma, Shoulin Jiang, and Zuyuan He
Opt. Express 25(21) 25689-25696 (2017)

Low loss coupling to sub-micron thick rib and nanowire waveguides by vertical tapering

S. Madden, Z. Jin, D. Choi, S. Debbarma, D. Bulla, and B. Luther-Davies
Opt. Express 21(3) 3582-3594 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based True-Time-Delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2014).
  2. Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.
  3. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
    [Crossref]
  4. D. M. Zhang, X. Q. Sun, F. Wang, and C. M. Chen, “Fast polymer thermo-optic switch with silica under-cladding,” in 2013 IEEE International Symposium on Next-Generation Electronics (ISNE), Kaohsiung (2013), pp. 92–94.
  5. X. Niu, Y. Zheng, Y. Gu, C. Chen, Z. Cai, Z. Shi, F. Wang, X. Sun, Z. Cui, and D. Zhang, “Thermo-optic waveguide gate switch arrays based on direct UV-written highly fluorinated low-loss photopolymer,” Appl. Opt. 53, 6698–6705 (2014).
    [Crossref]
  6. X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer-based thermo-optic switch for optical true time delay,” Proc. SPIE 5728, 60–67 (2005).
  7. B. Howley, X. Wang, M. Chen, and R. T. Chen, “Reconfigurable delay time polymer planar lightwave circuit for an X-band phased-array antenna demonstration,” J. Lightwave Technol. 25, 883–890 (2007).
    [Crossref]
  8. X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array,” Appl. Opt. 46, 379–383 (2007).
    [Crossref]
  9. A. Yeniay and G. Renfeng, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22, 1565–1567 (2010).
    [Crossref]
  10. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [Crossref]
  11. B. Howley, C. Yihong, X. Wang, Z. Qingjun, Z. Shi, Y. Jiang, and Y. Chen, “2-bit reconfigurable true time delay lines using 2 × 2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 17, 1944–1946 (2005).
    [Crossref]
  12. W.-J. Chin, D.-H. Kim, J.-H. Song, and S.-S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys. 45, 2576–2579 (2006).
    [Crossref]
  13. X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 196–210 (2013).
    [Crossref]
  14. X. Lin, A. Hosseini, X. Dou, H. Subbaraman, and R. T. Chen, “Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler,” Opt. Express 21, 60–69 (2013).
    [Crossref]
  15. R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31, 3915–3926 (2013).
    [Crossref]
  16. B. Block, S. Liff, M. Kobrinsky, M. Reshotko, R. Tseng, I. Ban, and P. Chang, “A low power electro-optic polymer clad Mach-Zehnder modulator for high speed optical interconnects,” Proc. SPIE 8629, 86290Z (2013).
    [Crossref]
  17. X. Dou, A. X. Wang, X. Lin, and R. T. Chen, “Photolithography-free polymer optical waveguide arrays for optical backplane bus,” Opt. Express 19, 14403–14410 (2011).
    [Crossref]
  18. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
    [Crossref]
  19. R. T. Chen, W. Phillips, T. Jannson, and D. Pelka, “Integration of holographic optical elements with polymer gelatin waveguides on GaAs, LiNbO3, glass, and aluminum,” Opt. Lett. 14, 892–894 (1989).
    [Crossref]
  20. R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.
  21. S. Natarajan, C. Zhao, and R. T. Chen, “Bi-directional optical backplane bus for general purpose multi-processor board-to-board optoelectronic interconnects,” J. Lightwave Technol. 13, 1031–1040 (1995).
    [Crossref]
  22. X. Lin, T. Ling, H. Subbaraman, X. Zhang, K. Byun, L. J. Guo, and R. T. Chen, “Ultraviolet imprinting and aligned ink-jet printing for multilayer patterning of electro-optic polymer modulators,” Opt. Lett. 38, 1597–1599 (2013).
    [Crossref]
  23. X. Zhang, B. Lee, C.-Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photon. J. 4, 2214–2228 (2012).
    [Crossref]
  24. L. R. Dalton, “Electro-optic polymer modulators,” in Broadband Optical Modulators: Science, Technology, and Applications (2011), pp. 223–256.
  25. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
    [Crossref]
  26. J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
    [Crossref]
  27. X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K. Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32, 3774–3784 (2014).
    [Crossref]
  28. C.-Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, and R. T. Chen, “High dynamic range electric field sensor for electromagnetic pulse detection,” Opt. Express 19, 17372–17377 (2011).
    [Crossref]
  29. S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
    [Crossref]
  30. C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photon. 1, 1093–1098 (2014).
    [Crossref]
  31. C. Zhang, S. Chen, T. Ling, and L. Jay Guo, “Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization,” IEEE Sens. J. 15, 3241–3248 (2015).
    [Crossref]
  32. C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted polymer microrings as high performance ultrasound detectors in photoacoustic imaging,” J. Lightwave Technol. 33, 4318–4328 (2015).
    [Crossref]
  33. X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21, 2110–2117 (2013).
    [Crossref]
  34. R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997).
    [Crossref]
  35. R. Bruck and R. Hainberger, “Efficiency enhancement of grating couplers for single-mode polymer waveguides through high index coatings,” in Proceedings 14th European Conference on Integrated Optics (2008), pp. 201–204.
  36. R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).
    [Crossref]
  37. L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
    [Crossref]
  38. M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
    [Crossref]
  39. Z. Zhang, A. Maese-Novo, E. Schwartz, C. Zawadzki, and N. Keil, “301-nm wavelength tunable differentially driven all-polymer optical filter,” Opt. Lett. 39, 5170–5172 (2014).
    [Crossref]
  40. Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, and R. T. Chen, “High optical coupling efficiency quasi-vertical taper for polymer waveguide devices,” Proc. SPIE 9368, 936808 (2015).
  41. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55, 2389–2391 (1989).
    [Crossref]
  42. B. Mersali, A. Ramdane, and A. Carenco, “Optical-mode transformer: a III-V circuit integration enabler,” IEEE J. Sel. Top. Quantum Electron. 3, 1321–1331 (1998).
    [Crossref]
  43. I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1998).
    [Crossref]
  44. T. T. Aalto, P. Heimala, S. Yliniemi, M. Kapulainen, and M. J. Leppihalme, “Fabrication and characterization of waveguide structures on SOI,” Proc. SPIE 4944, 183–194 (2003).
  45. I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.
  46. R. J. Bozeat, S. Day, F. Hopper, F. Payne, S. Roberts, and M. Asghari, “Silicon based waveguides,” in Silicon Photonics (Springer, 2004), pp. 269–294.
  47. T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
    [Crossref]
  48. D. Dai, S. He, and T. Hon-Ki, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24, 5019–5024 (2006).
    [Crossref]
  49. J. K. Doylend and A. P. Knights, “Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1363–1370 (2006).
    [Crossref]
  50. V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88, 081112 (2006).
  51. A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Double-stage taper for coupling between SOI waveguides and single-mode fiber,” J. Lightwave Technol. 26, 3860–3865 (2008).
    [Crossref]
  52. Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18, 7763–7769 (2010).
    [Crossref]
  53. Q. Huang, J. Cheng, L. Liu, Y. Tang, and S. He, “Ultracompact tapered coupler for the Si/III-V heterogeneous integration,” Appl. Opt. 54, 4327–4332 (2015).
    [Crossref]
  54. H. Park, S. Kim, J. Park, J. Joo, and G. Kim, “A fiber-to-chip coupler based on Si/SiON cascaded tapers for Si photonic chips,” Opt. Express 21, 29313–29319 (2013).
    [Crossref]
  55. A. Khilo, M. A. Popović, M. Araghchini, and F. X. Kärtner, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express 18, 15790–15806 (2010).
    [Crossref]
  56. M. Wood, P. Sun, and R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express 20, 164–172 (2012).
    [Crossref]
  57. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
    [Crossref]
  58. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38, 1669–1670 (2002).
    [Crossref]
  59. R. Orobtchouk, “On chip optical waveguide interconnect: the problem of the in/out coupling,” in Optical Interconnects (Springer, 2006), pp. 263–290.
  60. K. Kataoka, “Estimation of coupling efficiency of optical fiber by far-field method,” Opt. Rev. 17, 476–480 (2010).
    [Crossref]
  61. M. Sanghadasa, P. R. Ashley, E. L. Webster, C. Cocke, G. A. Lindsay, and A. J. Guenthner, “A simplified technique for efficient fiber-polymer-waveguide power coupling using a customized cladding with tunable index of refraction,” J. Lightwave Technol. 24, 3816–3823 (2006).
    [Crossref]

2015 (5)

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

C. Zhang, S. Chen, T. Ling, and L. Jay Guo, “Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, and R. T. Chen, “High optical coupling efficiency quasi-vertical taper for polymer waveguide devices,” Proc. SPIE 9368, 936808 (2015).

Q. Huang, J. Cheng, L. Liu, Y. Tang, and S. He, “Ultracompact tapered coupler for the Si/III-V heterogeneous integration,” Appl. Opt. 54, 4327–4332 (2015).
[Crossref]

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted polymer microrings as high performance ultrasound detectors in photoacoustic imaging,” J. Lightwave Technol. 33, 4318–4328 (2015).
[Crossref]

2014 (6)

Z. Zhang, A. Maese-Novo, E. Schwartz, C. Zawadzki, and N. Keil, “301-nm wavelength tunable differentially driven all-polymer optical filter,” Opt. Lett. 39, 5170–5172 (2014).
[Crossref]

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K. Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32, 3774–3784 (2014).
[Crossref]

X. Niu, Y. Zheng, Y. Gu, C. Chen, Z. Cai, Z. Shi, F. Wang, X. Sun, Z. Cui, and D. Zhang, “Thermo-optic waveguide gate switch arrays based on direct UV-written highly fluorinated low-loss photopolymer,” Appl. Opt. 53, 6698–6705 (2014).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photon. 1, 1093–1098 (2014).
[Crossref]

Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based True-Time-Delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2014).

2013 (7)

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 196–210 (2013).
[Crossref]

B. Block, S. Liff, M. Kobrinsky, M. Reshotko, R. Tseng, I. Ban, and P. Chang, “A low power electro-optic polymer clad Mach-Zehnder modulator for high speed optical interconnects,” Proc. SPIE 8629, 86290Z (2013).
[Crossref]

X. Lin, A. Hosseini, X. Dou, H. Subbaraman, and R. T. Chen, “Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler,” Opt. Express 21, 60–69 (2013).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21, 2110–2117 (2013).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, X. Zhang, K. Byun, L. J. Guo, and R. T. Chen, “Ultraviolet imprinting and aligned ink-jet printing for multilayer patterning of electro-optic polymer modulators,” Opt. Lett. 38, 1597–1599 (2013).
[Crossref]

H. Park, S. Kim, J. Park, J. Joo, and G. Kim, “A fiber-to-chip coupler based on Si/SiON cascaded tapers for Si photonic chips,” Opt. Express 21, 29313–29319 (2013).
[Crossref]

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31, 3915–3926 (2013).
[Crossref]

2012 (4)

M. Wood, P. Sun, and R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express 20, 164–172 (2012).
[Crossref]

X. Zhang, B. Lee, C.-Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photon. J. 4, 2214–2228 (2012).
[Crossref]

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[Crossref]

2011 (3)

2010 (5)

Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18, 7763–7769 (2010).
[Crossref]

A. Khilo, M. A. Popović, M. Araghchini, and F. X. Kärtner, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express 18, 15790–15806 (2010).
[Crossref]

A. Yeniay and G. Renfeng, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22, 1565–1567 (2010).
[Crossref]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

K. Kataoka, “Estimation of coupling efficiency of optical fiber by far-field method,” Opt. Rev. 17, 476–480 (2010).
[Crossref]

2009 (1)

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).
[Crossref]

2008 (1)

2007 (3)

2006 (6)

D. Dai, S. He, and T. Hon-Ki, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24, 5019–5024 (2006).
[Crossref]

M. Sanghadasa, P. R. Ashley, E. L. Webster, C. Cocke, G. A. Lindsay, and A. J. Guenthner, “A simplified technique for efficient fiber-polymer-waveguide power coupling using a customized cladding with tunable index of refraction,” J. Lightwave Technol. 24, 3816–3823 (2006).
[Crossref]

W.-J. Chin, D.-H. Kim, J.-H. Song, and S.-S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys. 45, 2576–2579 (2006).
[Crossref]

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

J. K. Doylend and A. P. Knights, “Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1363–1370 (2006).
[Crossref]

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88, 081112 (2006).

2005 (2)

B. Howley, C. Yihong, X. Wang, Z. Qingjun, Z. Shi, Y. Jiang, and Y. Chen, “2-bit reconfigurable true time delay lines using 2 × 2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 17, 1944–1946 (2005).
[Crossref]

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer-based thermo-optic switch for optical true time delay,” Proc. SPIE 5728, 60–67 (2005).

2003 (1)

T. T. Aalto, P. Heimala, S. Yliniemi, M. Kapulainen, and M. J. Leppihalme, “Fabrication and characterization of waveguide structures on SOI,” Proc. SPIE 4944, 183–194 (2003).

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

2000 (1)

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

1998 (2)

B. Mersali, A. Ramdane, and A. Carenco, “Optical-mode transformer: a III-V circuit integration enabler,” IEEE J. Sel. Top. Quantum Electron. 3, 1321–1331 (1998).
[Crossref]

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1998).
[Crossref]

1997 (2)

R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997).
[Crossref]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[Crossref]

1995 (1)

S. Natarajan, C. Zhao, and R. T. Chen, “Bi-directional optical backplane bus for general purpose multi-processor board-to-board optoelectronic interconnects,” J. Lightwave Technol. 13, 1031–1040 (1995).
[Crossref]

1989 (2)

R. T. Chen, W. Phillips, T. Jannson, and D. Pelka, “Integration of holographic optical elements with polymer gelatin waveguides on GaAs, LiNbO3, glass, and aluminum,” Opt. Lett. 14, 892–894 (1989).
[Crossref]

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55, 2389–2391 (1989).
[Crossref]

Aalto, T.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

Aalto, T. T.

T. T. Aalto, P. Heimala, S. Yliniemi, M. Kapulainen, and M. J. Leppihalme, “Fabrication and characterization of waveguide structures on SOI,” Proc. SPIE 4944, 183–194 (2003).

Ackerman, D. A.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55, 2389–2391 (1989).
[Crossref]

Agarwal, A.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88, 081112 (2006).

Amb, C. M.

Araghchini, M.

Asghari, M.

R. J. Bozeat, S. Day, F. Hopper, F. Payne, S. Roberts, and M. Asghari, “Silicon based waveguides,” in Silicon Photonics (Springer, 2004), pp. 269–294.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.

Ashley, P. R.

Baets, R.

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

Ban, I.

B. Block, S. Liff, M. Kobrinsky, M. Reshotko, R. Tseng, I. Ban, and P. Chang, “A low power electro-optic polymer clad Mach-Zehnder modulator for high speed optical interconnects,” Proc. SPIE 8629, 86290Z (2013).
[Crossref]

Barkai, A.

Basile, P.

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer-based thermo-optic switch for optical true time delay,” Proc. SPIE 5728, 60–67 (2005).

Bihari, B.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

Block, B.

B. Block, S. Liff, M. Kobrinsky, M. Reshotko, R. Tseng, I. Ban, and P. Chang, “A low power electro-optic polymer clad Mach-Zehnder modulator for high speed optical interconnects,” Proc. SPIE 8629, 86290Z (2013).
[Crossref]

Bozeat, R. J.

R. J. Bozeat, S. Day, F. Hopper, F. Payne, S. Roberts, and M. Asghari, “Silicon based waveguides,” in Silicon Photonics (Springer, 2004), pp. 269–294.

Bräuer, A.

Bristow, J.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Bruck, R.

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).
[Crossref]

R. Bruck and R. Hainberger, “Efficiency enhancement of grating couplers for single-mode polymer waveguides through high index coatings,” in Proceedings 14th European Conference on Integrated Optics (2008), pp. 201–204.

Byun, K.

Cai, Z.

Campbell, J. C.

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Carenco, A.

B. Mersali, A. Ramdane, and A. Carenco, “Optical-mode transformer: a III-V circuit integration enabler,” IEEE J. Sel. Top. Quantum Electron. 3, 1321–1331 (1998).
[Crossref]

Chang, H.-H.

Chang, P.

B. Block, S. Liff, M. Kobrinsky, M. Reshotko, R. Tseng, I. Ban, and P. Chang, “A low power electro-optic polymer clad Mach-Zehnder modulator for high speed optical interconnects,” Proc. SPIE 8629, 86290Z (2013).
[Crossref]

Chang, Y.-C.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

Charlton, M. D. B.

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[Crossref]

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[Crossref]

Chen, C.

Chen, C. M.

D. M. Zhang, X. Q. Sun, F. Wang, and C. M. Chen, “Fast polymer thermo-optic switch with silica under-cladding,” in 2013 IEEE International Symposium on Next-Generation Electronics (ISNE), Kaohsiung (2013), pp. 92–94.

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[Crossref]

Chen, M.

Chen, M. Y.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array,” Appl. Opt. 46, 379–383 (2007).
[Crossref]

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer-based thermo-optic switch for optical true time delay,” Proc. SPIE 5728, 60–67 (2005).

Chen, R.

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[Crossref]

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer-based thermo-optic switch for optical true time delay,” Proc. SPIE 5728, 60–67 (2005).

Chen, R. T.

Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, and R. T. Chen, “High optical coupling efficiency quasi-vertical taper for polymer waveguide devices,” Proc. SPIE 9368, 936808 (2015).

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K. Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32, 3774–3784 (2014).
[Crossref]

Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based True-Time-Delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2014).

X. Lin, A. Hosseini, X. Dou, H. Subbaraman, and R. T. Chen, “Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler,” Opt. Express 21, 60–69 (2013).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 196–210 (2013).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21, 2110–2117 (2013).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, X. Zhang, K. Byun, L. J. Guo, and R. T. Chen, “Ultraviolet imprinting and aligned ink-jet printing for multilayer patterning of electro-optic polymer modulators,” Opt. Lett. 38, 1597–1599 (2013).
[Crossref]

X. Zhang, B. Lee, C.-Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photon. J. 4, 2214–2228 (2012).
[Crossref]

X. Dou, A. X. Wang, X. Lin, and R. T. Chen, “Photolithography-free polymer optical waveguide arrays for optical backplane bus,” Opt. Express 19, 14403–14410 (2011).
[Crossref]

C.-Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, and R. T. Chen, “High dynamic range electric field sensor for electromagnetic pulse detection,” Opt. Express 19, 17372–17377 (2011).
[Crossref]

B. Howley, X. Wang, M. Chen, and R. T. Chen, “Reconfigurable delay time polymer planar lightwave circuit for an X-band phased-array antenna demonstration,” J. Lightwave Technol. 25, 883–890 (2007).
[Crossref]

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array,” Appl. Opt. 46, 379–383 (2007).
[Crossref]

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

S. Natarajan, C. Zhao, and R. T. Chen, “Bi-directional optical backplane bus for general purpose multi-processor board-to-board optoelectronic interconnects,” J. Lightwave Technol. 13, 1031–1040 (1995).
[Crossref]

R. T. Chen, W. Phillips, T. Jannson, and D. Pelka, “Integration of holographic optical elements with polymer gelatin waveguides on GaAs, LiNbO3, glass, and aluminum,” Opt. Lett. 14, 892–894 (1989).
[Crossref]

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Chen, S.

C. Zhang, S. Chen, T. Ling, and L. Jay Guo, “Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

Chen, S.-L.

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted polymer microrings as high performance ultrasound detectors in photoacoustic imaging,” J. Lightwave Technol. 33, 4318–4328 (2015).
[Crossref]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photon. 1, 1093–1098 (2014).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

Chen, Y.

B. Howley, C. Yihong, X. Wang, Z. Qingjun, Z. Shi, Y. Jiang, and Y. Chen, “2-bit reconfigurable true time delay lines using 2 × 2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 17, 1944–1946 (2005).
[Crossref]

Cheng, J.

Chin, W.-J.

W.-J. Chin, D.-H. Kim, J.-H. Song, and S.-S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys. 45, 2576–2579 (2006).
[Crossref]

Choi, C.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

Cocke, C.

Cohen, R.

Coppola, G.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
[Crossref]

Cui, Z.

Dai, D.

Dalton, L. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[Crossref]

L. R. Dalton, “Electro-optic polymer modulators,” in Broadband Optical Modulators: Science, Technology, and Applications (2011), pp. 223–256.

Dangel, R.

Dannberg, P.

Day, I. E.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.

Day, S.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.

R. J. Bozeat, S. Day, F. Hopper, F. Payne, S. Roberts, and M. Asghari, “Silicon based waveguides,” in Silicon Photonics (Springer, 2004), pp. 269–294.

Demeester, P. M.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1998).
[Crossref]

Deshazer, D. J.

Dou, X.

Doylend, J. K.

J. K. Doylend and A. P. Knights, “Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1363–1370 (2006).
[Crossref]

Dubinovsky, M.

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Elek, N.

Evans, I.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.

Fang, Q.

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[Crossref]

Gabay, R.

Garcia Porcel, M.

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

Gu, Y.

Guenthner, A. J.

Guo, L. J.

Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, and R. T. Chen, “High optical coupling efficiency quasi-vertical taper for polymer waveguide devices,” Proc. SPIE 9368, 936808 (2015).

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted polymer microrings as high performance ultrasound detectors in photoacoustic imaging,” J. Lightwave Technol. 33, 4318–4328 (2015).
[Crossref]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photon. 1, 1093–1098 (2014).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based True-Time-Delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2014).

X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21, 2110–2117 (2013).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, X. Zhang, K. Byun, L. J. Guo, and R. T. Chen, “Ultraviolet imprinting and aligned ink-jet printing for multilayer patterning of electro-optic polymer modulators,” Opt. Lett. 38, 1597–1599 (2013).
[Crossref]

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.

Hainberger, R.

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).
[Crossref]

R. Bruck and R. Hainberger, “Efficiency enhancement of grating couplers for single-mode polymer waveguides through high index coatings,” in Proceedings 14th European Conference on Integrated Optics (2008), pp. 201–204.

Han, X.

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

Harjanne, M.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

He, S.

Heimala, P.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

T. T. Aalto, P. Heimala, S. Yliniemi, M. Kapulainen, and M. J. Leppihalme, “Fabrication and characterization of waveguide structures on SOI,” Proc. SPIE 4944, 183–194 (2003).

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55, 2389–2391 (1989).
[Crossref]

Hibb-Brenner, M. K.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

Hibbs-Brenner, M.

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Hong, C.-Y.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88, 081112 (2006).

Hon-Ki, T.

Hopper, F.

R. J. Bozeat, S. Day, F. Hopper, F. Payne, S. Roberts, and M. Asghari, “Silicon based waveguides,” in Silicon Photonics (Springer, 2004), pp. 269–294.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.

Horst, F.

Hosseini, A.

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K. Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32, 3774–3784 (2014).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 196–210 (2013).
[Crossref]

X. Lin, A. Hosseini, X. Dou, H. Subbaraman, and R. T. Chen, “Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler,” Opt. Express 21, 60–69 (2013).
[Crossref]

X. Zhang, B. Lee, C.-Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photon. J. 4, 2214–2228 (2012).
[Crossref]

Howley, B.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array,” Appl. Opt. 46, 379–383 (2007).
[Crossref]

B. Howley, X. Wang, M. Chen, and R. T. Chen, “Reconfigurable delay time polymer planar lightwave circuit for an X-band phased-array antenna demonstration,” J. Lightwave Technol. 25, 883–890 (2007).
[Crossref]

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer-based thermo-optic switch for optical true time delay,” Proc. SPIE 5728, 60–67 (2005).

B. Howley, C. Yihong, X. Wang, Z. Qingjun, Z. Shi, Y. Jiang, and Y. Chen, “2-bit reconfigurable true time delay lines using 2 × 2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 17, 1944–1946 (2005).
[Crossref]

Huang, Q.

Hvam, J. M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Iodice, M.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
[Crossref]

Izhaky, N.

Jannson, T.

Jay Guo, L.

C. Zhang, S. Chen, T. Ling, and L. Jay Guo, “Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

Jen, A. K. Y.

Jian, X.

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

Jiang, Y.

B. Howley, C. Yihong, X. Wang, Z. Qingjun, Z. Shi, Y. Jiang, and Y. Chen, “2-bit reconfigurable true time delay lines using 2 × 2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 17, 1944–1946 (2005).
[Crossref]

Johnston, J.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.

Jones, R.

Joo, J.

Jubin, D.

Kapulainen, M.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

T. T. Aalto, P. Heimala, S. Yliniemi, M. Kapulainen, and M. J. Leppihalme, “Fabrication and characterization of waveguide structures on SOI,” Proc. SPIE 4944, 183–194 (2003).

Karthe, W.

Kärtner, F. X.

Kataoka, K.

K. Kataoka, “Estimation of coupling efficiency of optical fiber by far-field method,” Opt. Rev. 17, 476–480 (2010).
[Crossref]

Keil, N.

Khilo, A.

Kim, D.

Kim, D.-H.

W.-J. Chin, D.-H. Kim, J.-H. Song, and S.-S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys. 45, 2576–2579 (2006).
[Crossref]

Kim, G.

Kim, S.

Kimerling, L. C.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88, 081112 (2006).

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55, 2389–2391 (1989).
[Crossref]

Kityk, I.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Kley, E.-B.

Knights, A.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.

Knights, A. P.

J. K. Doylend and A. P. Knights, “Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1363–1370 (2006).
[Crossref]

Kobrinsky, M.

B. Block, S. Liff, M. Kobrinsky, M. Reshotko, R. Tseng, I. Ban, and P. Chang, “A low power electro-optic polymer clad Mach-Zehnder modulator for high speed optical interconnects,” Proc. SPIE 8629, 86290Z (2013).
[Crossref]

Kwong, D.-L.

Lee, B.

X. Zhang, B. Lee, C.-Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photon. J. 4, 2214–2228 (2012).
[Crossref]

Lee, B. S.

Lee, S.-S.

W.-J. Chin, D.-H. Kim, J.-H. Song, and S.-S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys. 45, 2576–2579 (2006).
[Crossref]

Leppihalme, M. J.

T. T. Aalto, P. Heimala, S. Yliniemi, M. Kapulainen, and M. J. Leppihalme, “Fabrication and characterization of waveguide structures on SOI,” Proc. SPIE 4944, 183–194 (2003).

Li, F.

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Li, Q.

Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, and R. T. Chen, “High optical coupling efficiency quasi-vertical taper for polymer waveguide devices,” Proc. SPIE 9368, 936808 (2015).

Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based True-Time-Delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2014).

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.

Li, Y.

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

Liff, S.

B. Block, S. Liff, M. Kobrinsky, M. Reshotko, R. Tseng, I. Ban, and P. Chang, “A low power electro-optic polymer clad Mach-Zehnder modulator for high speed optical interconnects,” Proc. SPIE 8629, 86290Z (2013).
[Crossref]

Lin, C.-Y.

X. Zhang, B. Lee, C.-Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photon. J. 4, 2214–2228 (2012).
[Crossref]

C.-Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, and R. T. Chen, “High dynamic range electric field sensor for electromagnetic pulse detection,” Opt. Express 19, 17372–17377 (2011).
[Crossref]

Lin, L.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

Lin, X.

Lindsay, G. A.

Ling, T.

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted polymer microrings as high performance ultrasound detectors in photoacoustic imaging,” J. Lightwave Technol. 33, 4318–4328 (2015).
[Crossref]

C. Zhang, S. Chen, T. Ling, and L. Jay Guo, “Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based True-Time-Delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2014).

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photon. 1, 1093–1098 (2014).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21, 2110–2117 (2013).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, X. Zhang, K. Byun, L. J. Guo, and R. T. Chen, “Ultraviolet imprinting and aligned ink-jet printing for multilayer patterning of electro-optic polymer modulators,” Opt. Lett. 38, 1597–1599 (2013).
[Crossref]

Liow, T.-Y.

Liu, A.

Liu, F.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Liu, J.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Liu, L.

Q. Huang, J. Cheng, L. Liu, Y. Tang, and S. He, “Ultracompact tapered coupler for the Si/III-V heterogeneous integration,” Appl. Opt. 54, 4327–4332 (2015).
[Crossref]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Liu, X.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Liu, Y. J.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

Liu, Y. S.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Lo, G. Q.

Luff, J.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.

Luo, J.

Maese-Novo, A.

Malik, B. H.

Manolatou, C.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88, 081112 (2006).

Meier, N.

Mersali, B.

B. Mersali, A. Ramdane, and A. Carenco, “Optical-mode transformer: a III-V circuit integration enabler,” IEEE J. Sel. Top. Quantum Electron. 3, 1321–1331 (1998).
[Crossref]

Michel, J.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88, 081112 (2006).

Mihnev, M. T.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

Moerman, I.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1998).
[Crossref]

Montalbo, T.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88, 081112 (2006).

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Morthier, G.

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

Natarajan, S.

S. Natarajan, C. Zhao, and R. T. Chen, “Bi-directional optical backplane bus for general purpose multi-processor board-to-board optoelectronic interconnects,” J. Lightwave Technol. 13, 1031–1040 (1995).
[Crossref]

Nguyen, V.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88, 081112 (2006).

Niu, X.

Noddings, C.

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Norris, T. B.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Offrein, B. J.

Ok, J. G.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

Oo, S.

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[Crossref]

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55, 2389–2391 (1989).
[Crossref]

Orobtchouk, R.

R. Orobtchouk, “On chip optical waveguide interconnect: the problem of the in/out coupling,” in Optical Interconnects (Springer, 2006), pp. 263–290.

Ou, H.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Pan, Z.

Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, and R. T. Chen, “High optical coupling efficiency quasi-vertical taper for polymer waveguide devices,” Proc. SPIE 9368, 936808 (2015).

Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based True-Time-Delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2014).

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.

Panday, A.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.

Paniccia, M.

Park, H.

Park, J.

Payne, F.

R. J. Bozeat, S. Day, F. Hopper, F. Payne, S. Roberts, and M. Asghari, “Silicon based waveguides,” in Silicon Photonics (Springer, 2004), pp. 269–294.

Pearce, S. J.

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[Crossref]

Pelka, D.

Phillips, W.

Picor, B.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Pollard, M. E.

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[Crossref]

Popovic, M. A.

Pu, M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Qi, J.

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Qingjun, Z.

B. Howley, C. Yihong, X. Wang, Z. Qingjun, Z. Shi, Y. Jiang, and Y. Chen, “2-bit reconfigurable true time delay lines using 2 × 2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 17, 1944–1946 (2005).
[Crossref]

Ramdane, A.

B. Mersali, A. Ramdane, and A. Carenco, “Optical-mode transformer: a III-V circuit integration enabler,” IEEE J. Sel. Top. Quantum Electron. 3, 1321–1331 (1998).
[Crossref]

Rattan, S.

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Reano, R. M.

Rendina, I.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
[Crossref]

Renfeng, G.

A. Yeniay and G. Renfeng, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22, 1565–1567 (2010).
[Crossref]

Reshotko, M.

B. Block, S. Liff, M. Kobrinsky, M. Reshotko, R. Tseng, I. Ban, and P. Chang, “A low power electro-optic polymer clad Mach-Zehnder modulator for high speed optical interconnects,” Proc. SPIE 8629, 86290Z (2013).
[Crossref]

Roberts, S.

R. J. Bozeat, S. Day, F. Hopper, F. Payne, S. Roberts, and M. Asghari, “Silicon based waveguides,” in Silicon Photonics (Springer, 2004), pp. 269–294.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.

Sanghadasa, M.

Schnabel, B.

Schow, C. L.

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Schwartz, E.

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55, 2389–2391 (1989).
[Crossref]

Shi, Y.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[Crossref]

Shi, Z.

X. Niu, Y. Zheng, Y. Gu, C. Chen, Z. Cai, Z. Shi, F. Wang, X. Sun, Z. Cui, and D. Zhang, “Thermo-optic waveguide gate switch arrays based on direct UV-written highly fluorinated low-loss photopolymer,” Appl. Opt. 53, 6698–6705 (2014).
[Crossref]

B. Howley, C. Yihong, X. Wang, Z. Qingjun, Z. Shi, Y. Jiang, and Y. Chen, “2-bit reconfigurable true time delay lines using 2 × 2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 17, 1944–1946 (2005).
[Crossref]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Sirleto, L.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
[Crossref]

Solehmainen, K.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

Song, J. F.

Song, J.-H.

W.-J. Chin, D.-H. Kim, J.-H. Song, and S.-S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys. 45, 2576–2579 (2006).
[Crossref]

Steier, W. H.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[Crossref]

Subbaraman, H.

Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, and R. T. Chen, “High optical coupling efficiency quasi-vertical taper for polymer waveguide devices,” Proc. SPIE 9368, 936808 (2015).

Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based True-Time-Delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2014).

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K. Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32, 3774–3784 (2014).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 196–210 (2013).
[Crossref]

X. Lin, A. Hosseini, X. Dou, H. Subbaraman, and R. T. Chen, “Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler,” Opt. Express 21, 60–69 (2013).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21, 2110–2117 (2013).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, X. Zhang, K. Byun, L. J. Guo, and R. T. Chen, “Ultraviolet imprinting and aligned ink-jet printing for multilayer patterning of electro-optic polymer modulators,” Opt. Lett. 38, 1597–1599 (2013).
[Crossref]

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.

Sun, P.

Sun, X.

Sun, X. Q.

D. M. Zhang, X. Q. Sun, F. Wang, and C. M. Chen, “Fast polymer thermo-optic switch with silica under-cladding,” in 2013 IEEE International Symposium on Next-Generation Electronics (ISNE), Kaohsiung (2013), pp. 92–94.

Swatowski, B. W.

Tan, C. W.

Tang, S.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Tang, Y.

Tsang, H. K.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.

Tseng, R.

B. Block, S. Liff, M. Kobrinsky, M. Reshotko, R. Tseng, I. Ban, and P. Chang, “A low power electro-optic polymer clad Mach-Zehnder modulator for high speed optical interconnects,” Proc. SPIE 8629, 86290Z (2013).
[Crossref]

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Van Daele, P. P.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1998).
[Crossref]

Vermeulen, D.

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

Waldhäusl, R.

Wang, A. X.

Wang, F.

X. Niu, Y. Zheng, Y. Gu, C. Chen, Z. Cai, Z. Shi, F. Wang, X. Sun, Z. Cui, and D. Zhang, “Thermo-optic waveguide gate switch arrays based on direct UV-written highly fluorinated low-loss photopolymer,” Appl. Opt. 53, 6698–6705 (2014).
[Crossref]

D. M. Zhang, X. Q. Sun, F. Wang, and C. M. Chen, “Fast polymer thermo-optic switch with silica under-cladding,” in 2013 IEEE International Symposium on Next-Generation Electronics (ISNE), Kaohsiung (2013), pp. 92–94.

Wang, J.

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

Wang, L.

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

Wang, S.

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[Crossref]

Wang, X.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array,” Appl. Opt. 46, 379–383 (2007).
[Crossref]

B. Howley, X. Wang, M. Chen, and R. T. Chen, “Reconfigurable delay time polymer planar lightwave circuit for an X-band phased-array antenna demonstration,” J. Lightwave Technol. 25, 883–890 (2007).
[Crossref]

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer-based thermo-optic switch for optical true time delay,” Proc. SPIE 5728, 60–67 (2005).

B. Howley, C. Yihong, X. Wang, Z. Qingjun, Z. Shi, Y. Jiang, and Y. Chen, “2-bit reconfigurable true time delay lines using 2 × 2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 17, 1944–1946 (2005).
[Crossref]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Webster, E. L.

Weidner, W. K.

Weiss, J.

Wickman, R.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Wood, M.

Wu, L.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Xu, G.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Xu, X.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Yasaitis, J.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88, 081112 (2006).

Yeniay, A.

A. Yeniay and G. Renfeng, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22, 1565–1567 (2010).
[Crossref]

Yihong, C.

B. Howley, C. Yihong, X. Wang, Z. Qingjun, Z. Shi, Y. Jiang, and Y. Chen, “2-bit reconfigurable true time delay lines using 2 × 2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 17, 1944–1946 (2005).
[Crossref]

Yliniemi, S.

T. T. Aalto, P. Heimala, S. Yliniemi, M. Kapulainen, and M. J. Leppihalme, “Fabrication and characterization of waveguide structures on SOI,” Proc. SPIE 4944, 183–194 (2003).

Yu, M. B.

Yvind, K.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Zawadzki, C.

Zhan, Q.

Zhang, C.

C. Zhang, S. Chen, T. Ling, and L. Jay Guo, “Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted polymer microrings as high performance ultrasound detectors in photoacoustic imaging,” J. Lightwave Technol. 33, 4318–4328 (2015).
[Crossref]

Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, and R. T. Chen, “High optical coupling efficiency quasi-vertical taper for polymer waveguide devices,” Proc. SPIE 9368, 936808 (2015).

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photon. 1, 1093–1098 (2014).
[Crossref]

Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based True-Time-Delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2014).

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.

Zhang, D.

Zhang, D. M.

D. M. Zhang, X. Q. Sun, F. Wang, and C. M. Chen, “Fast polymer thermo-optic switch with silica under-cladding,” in 2013 IEEE International Symposium on Next-Generation Electronics (ISNE), Kaohsiung (2013), pp. 92–94.

Zhang, X.

Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, and R. T. Chen, “High optical coupling efficiency quasi-vertical taper for polymer waveguide devices,” Proc. SPIE 9368, 936808 (2015).

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K. Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32, 3774–3784 (2014).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 196–210 (2013).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, X. Zhang, K. Byun, L. J. Guo, and R. T. Chen, “Ultraviolet imprinting and aligned ink-jet printing for multilayer patterning of electro-optic polymer modulators,” Opt. Lett. 38, 1597–1599 (2013).
[Crossref]

X. Zhang, B. Lee, C.-Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photon. J. 4, 2214–2228 (2012).
[Crossref]

C.-Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, and R. T. Chen, “High dynamic range electric field sensor for electromagnetic pulse detection,” Opt. Express 19, 17372–17377 (2011).
[Crossref]

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.

Zhang, Z.

Zhao, C.

S. Natarajan, C. Zhao, and R. T. Chen, “Bi-directional optical backplane bus for general purpose multi-processor board-to-board optoelectronic interconnects,” J. Lightwave Technol. 13, 1031–1040 (1995).
[Crossref]

Zhao, M.

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

Zhen, Z.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Zheng, Y.

Zhou, Q.

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer-based thermo-optic switch for optical true time delay,” Proc. SPIE 5728, 60–67 (2005).

Zou, Y.

Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, and R. T. Chen, “High optical coupling efficiency quasi-vertical taper for polymer waveguide devices,” Proc. SPIE 9368, 936808 (2015).

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.

ACS Photon. (1)

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photon. 1, 1093–1098 (2014).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55, 2389–2391 (1989).
[Crossref]

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88, 081112 (2006).

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[Crossref]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3  μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

B. Mersali, A. Ramdane, and A. Carenco, “Optical-mode transformer: a III-V circuit integration enabler,” IEEE J. Sel. Top. Quantum Electron. 3, 1321–1331 (1998).
[Crossref]

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1998).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 196–210 (2013).
[Crossref]

J. K. Doylend and A. P. Knights, “Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1363–1370 (2006).
[Crossref]

IEEE Photon. J. (1)

X. Zhang, B. Lee, C.-Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photon. J. 4, 2214–2228 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (3)

A. Yeniay and G. Renfeng, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22, 1565–1567 (2010).
[Crossref]

B. Howley, C. Yihong, X. Wang, Z. Qingjun, Z. Shi, Y. Jiang, and Y. Chen, “2-bit reconfigurable true time delay lines using 2 × 2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 17, 1944–1946 (2005).
[Crossref]

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

IEEE Sens. J. (1)

C. Zhang, S. Chen, T. Ling, and L. Jay Guo, “Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

J. Appl. Phys. (1)

L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[Crossref]

J. Lightwave Technol. (8)

S. Natarajan, C. Zhao, and R. T. Chen, “Bi-directional optical backplane bus for general purpose multi-processor board-to-board optoelectronic interconnects,” J. Lightwave Technol. 13, 1031–1040 (1995).
[Crossref]

M. Sanghadasa, P. R. Ashley, E. L. Webster, C. Cocke, G. A. Lindsay, and A. J. Guenthner, “A simplified technique for efficient fiber-polymer-waveguide power coupling using a customized cladding with tunable index of refraction,” J. Lightwave Technol. 24, 3816–3823 (2006).
[Crossref]

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31, 3915–3926 (2013).
[Crossref]

D. Dai, S. He, and T. Hon-Ki, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24, 5019–5024 (2006).
[Crossref]

B. Howley, X. Wang, M. Chen, and R. T. Chen, “Reconfigurable delay time polymer planar lightwave circuit for an X-band phased-array antenna demonstration,” J. Lightwave Technol. 25, 883–890 (2007).
[Crossref]

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Double-stage taper for coupling between SOI waveguides and single-mode fiber,” J. Lightwave Technol. 26, 3860–3865 (2008).
[Crossref]

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted polymer microrings as high performance ultrasound detectors in photoacoustic imaging,” J. Lightwave Technol. 33, 4318–4328 (2015).
[Crossref]

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K. Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32, 3774–3784 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

W.-J. Chin, D.-H. Kim, J.-H. Song, and S.-S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” Jpn. J. Appl. Phys. 45, 2576–2579 (2006).
[Crossref]

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8, 537–542 (2014).
[Crossref]

Opt. Commun. (1)

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Opt. Eng. (1)

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
[Crossref]

Opt. Express (8)

Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18, 7763–7769 (2010).
[Crossref]

A. Khilo, M. A. Popović, M. Araghchini, and F. X. Kärtner, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express 18, 15790–15806 (2010).
[Crossref]

X. Dou, A. X. Wang, X. Lin, and R. T. Chen, “Photolithography-free polymer optical waveguide arrays for optical backplane bus,” Opt. Express 19, 14403–14410 (2011).
[Crossref]

C.-Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, and R. T. Chen, “High dynamic range electric field sensor for electromagnetic pulse detection,” Opt. Express 19, 17372–17377 (2011).
[Crossref]

M. Wood, P. Sun, and R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express 20, 164–172 (2012).
[Crossref]

X. Lin, A. Hosseini, X. Dou, H. Subbaraman, and R. T. Chen, “Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler,” Opt. Express 21, 60–69 (2013).
[Crossref]

X. Lin, T. Ling, H. Subbaraman, L. J. Guo, and R. T. Chen, “Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing,” Opt. Express 21, 2110–2117 (2013).
[Crossref]

H. Park, S. Kim, J. Park, J. Joo, and G. Kim, “A fiber-to-chip coupler based on Si/SiON cascaded tapers for Si photonic chips,” Opt. Express 21, 29313–29319 (2013).
[Crossref]

Opt. Lett. (3)

Opt. Rev. (1)

K. Kataoka, “Estimation of coupling efficiency of optical fiber by far-field method,” Opt. Rev. 17, 476–480 (2010).
[Crossref]

Proc. IEEE (1)

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[Crossref]

Proc. SPIE (7)

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer-based thermo-optic switch for optical true time delay,” Proc. SPIE 5728, 60–67 (2005).

B. Block, S. Liff, M. Kobrinsky, M. Reshotko, R. Tseng, I. Ban, and P. Chang, “A low power electro-optic polymer clad Mach-Zehnder modulator for high speed optical interconnects,” Proc. SPIE 8629, 86290Z (2013).
[Crossref]

Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based True-Time-Delay network utilizing imprinting and inkjet printing,” Proc. SPIE 9362, 936214 (2014).

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[Crossref]

Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, and R. T. Chen, “High optical coupling efficiency quasi-vertical taper for polymer waveguide devices,” Proc. SPIE 9368, 936808 (2015).

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).
[Crossref]

T. T. Aalto, P. Heimala, S. Yliniemi, M. Kapulainen, and M. J. Leppihalme, “Fabrication and characterization of waveguide structures on SOI,” Proc. SPIE 4944, 183–194 (2003).

RSC Adv. (1)

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Other (8)

L. R. Dalton, “Electro-optic polymer modulators,” in Broadband Optical Modulators: Science, Technology, and Applications (2011), pp. 223–256.

R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, and C. Noddings, “Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, Montreal, Ont., Canada (1997), pp. 10–24.

Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, and R. T. Chen, “Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing,” in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII (2015), p. 936214.

D. M. Zhang, X. Q. Sun, F. Wang, and C. M. Chen, “Fast polymer thermo-optic switch with silica under-cladding,” in 2013 IEEE International Symposium on Next-Generation Electronics (ISNE), Kaohsiung (2013), pp. 92–94.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Optical Fiber Communication Conference, Atlanta, GA (2003), paper TuM5.

R. J. Bozeat, S. Day, F. Hopper, F. Payne, S. Roberts, and M. Asghari, “Silicon based waveguides,” in Silicon Photonics (Springer, 2004), pp. 269–294.

R. Bruck and R. Hainberger, “Efficiency enhancement of grating couplers for single-mode polymer waveguides through high index coatings,” in Proceedings 14th European Conference on Integrated Optics (2008), pp. 201–204.

R. Orobtchouk, “On chip optical waveguide interconnect: the problem of the in/out coupling,” in Optical Interconnects (Springer, 2006), pp. 263–290.

Supplementary Material (4)

NameDescription
» Visualization 1: AVI (22223 KB)      Mode_profiles_TM
» Visualization 2: AVI (22224 KB)      Mode_profiles_TE
» Visualization 3: AVI (20231 KB)      Propagation_through_taper_TM
» Visualization 4: AVI (20231 KB)      Propagation_through_taper_TE

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. (a) Schematic of an optical backplane. (b) Schematic of a taper-waveguide system for coupling between standard SMFs and single-mode waveguides. In this diagram, the top cladding is transparent in order to clearly show the system structure, the mode propagating inside the quasi-vertical taper, and the polymer rib waveguide.
Fig. 2.
Fig. 2. Mode profile distributions of quasi-TM mode inside the taper at (a) the fiber facet (rib width 8.5 μm, rib height 8 μm), and (b) the device end (rib width 8.5 μm, rib height 0.5 μm). The fundamental (left) and second-order (right) quasi-TM modes (see Visualization 1) for a fixed SU8 rib width of 8.5 μm, and the rib height varying from 14 to 0.5 μm is shown in the supplementary material.
Fig. 3.
Fig. 3. Mode profile distributions of quasi-TE mode inside the taper at (a) the fiber facet (rib width 8.5 μm, rib height 8 μm), and (b) the device end (rib width 8.5 μm, rib height 0.5 μm). The fundamental (left) and second-order (right) quasi-TE modes (see Visualization 2) for a fixed SU8 rib width of 8.5 μm and the rib height varying from 14 to 0.5 μm is shown in the supplementary material.
Fig. 4.
Fig. 4. Coupling efficiency of (a) quasi-TM and (b) quasi-TE mode from a standard SMF into the taper at the fiber facet versus the rib height and rib width of the taper. The white demarcation curve indicates the cut-off region. The bottom left region under the white curve and upper right region above the white curve indicates the single-mode and multimode region, respectively. The intersection point of two white lines indicates the chosen rib height of 8 μm and width of 8.5 μm for the quasi-vertical taper at the fiber facet.
Fig. 5.
Fig. 5. (a) Fundamental and (b) second-order quasi-TM modes propagating through the taper into the polymer waveguide. The electric fields are normalized to the maximum electric field of the taper at fiber facet (z=0μm). The length of the taper is 1.2 mm. Light propagates in the +z direction from left to right. A tip width of 1.8 μm is assumed in this calculation. The cross-sectional electromagnetic field of the fundamental (left) and second-order (right) quasi-TM modes (see Visualization 3) propagating through the quasi-vertical taper at the different locations on the z axis is shown in the supplementary material.
Fig. 6.
Fig. 6. (a) Fundamental and (b) second-order quasi-TE modes propagating through the taper into the polymer waveguide. The electric fields are normalized to the maximum electric field of the taper at fiber facet (z=0μm). The length of the taper is 1.2 mm. Light propagates in the +z direction from left to right. A tip width of 1.8 μm is assumed in this calculation. The cross-sectional electromagnetic field of the fundamental (left) and second-order (right) quasi-TE modes (see Visualization 4) propagating through the quasi-vertical taper at the different locations on the z axis is shown in the supplementary material.
Fig. 7.
Fig. 7. (a) Calculated optical coupling efficiency of quasi-TM mode from a standard SMF (MFD 10.4 μm) into a polymer waveguide through a quasi-vertical taper versus the misalignment in x (horizontal) and y (vertical) directions. (b) Calculated optical coupling efficiency of quasi-TM mode from a lensed SMF (MFD 2.5 μm) into a polymer waveguide (rib width 8.5 μm and rib height 0.5 μm) without a taper versus the misalignment in x and y direction. (c) Coupling loss of quasi-TM mode in (a) and (b) versus the misalignment in x and y axis.
Fig. 8.
Fig. 8. (a) Calculated optical coupling efficiency of quasi-TE mode from a standard SMF (MFD 10.4 μm) into a polymer waveguide through a quasi-vertical taper versus the misalignment in x (horizontal) and y (vertical) directions. (b) Calculated optical coupling efficiency of quasi-TE mode from a lensed SMF (MFD 2.5 μm) into a polymer waveguide (rib width 8.5 μm and rib height 0.5 μm) without a taper versus the misalignment in x and y direction. (c) Coupling loss of quasi-TE mode in (a) and (b) versus the misalignment in x and y axis.
Fig. 9.
Fig. 9. Fabrication process flow for the quasi-vertical taper. (a) Spin-coat the bottom cladding material (UV15LV) and waveguide slab layer material (SU8 2002) on the substrate. (b) Spin-coat the waveguide rib layer material (SU8 2000.5) and perform the first photolithography step to form the rib core layer of the SU8 polymer waveguide. (c) Spin-coat the top layer material of the quasi-vertical taper (SU8 2007) and perform the second photolithography step to form the triangular region of a taper. (d) Spin-coat the top cladding material (UFC170A).
Fig. 10.
Fig. 10. (a) Top-view SEM image of a fabricated quasi-vertical taper. (b) Cross-section SEM images of a fabricated quasi-vertical taper at fiber facet. Inset in (a) is a zoomed view at the tip.
Fig. 11.
Fig. 11. (a) Schematic and (b) experimental setup to measure the propagation loss of a polymer waveguide. Inset at the top right corner of (b) shows the magnified view of the aligned fibers and the polymer waveguide with quasi-vertical taper.
Fig. 12.
Fig. 12. Measured coupling losses versus the wavelength. The measured coupling losses per taper are 1.79±0.30 and 2.23±0.31dB for quasi-TM and quasi-TE modes, respectively, for the case of coupling light from a standard SMF (MFD 10.4 μm) to the polymer waveguide through a quasi-vertical taper. The coupling losses per facet are 3.44±0.24 and 3.85±0.24dB for quasi-TM and quasi-TE modes, respectively, for the case of directly coupling light from a lensed SMF (MFD 2.5 μm) to a polymer waveguide without a taper. Different dashed lines correspond to the simulated coupling losses calculated in Section 2.B. Colors correspond to their respective measured counterpart.
Fig. 13.
Fig. 13. (a) Measured increase in coupling loss of both quasi-TM and quasi-TE modes between the standard SMF (MFD 10.4 μm) and quasi-vertical taper versus horizontal (x axis) and vertical (y axis) misalignment. (b) Measured increase in coupling loss of both quasi-TM and quasi-TE modes between the lensed SMF (MFD 2.5 μm) and polymer waveguide without a taper versus horizontal (x axis) and vertical (y axis) misalignment.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η=|F(x,y)W(x,y)dxdy|2F(x,y)F(x,y)dxdyW(x,y)W(x,y)dxdy,

Metrics