Abstract

Thermal characteristics are numerically investigated for the hybrid AlGaInAs/InP on silicon microring lasers with different ring radii and widths. Low threshold current and low active region temperature rise are expected for a microring laser with a narrow ring width. Based on the thermal analysis and the 3D simulation for mode characteristics, a hybrid AlGaInAs/InP on silicon microring lasers with an inner n-electrode laterally confined by the p-electrode metallic layer is fabricated using an adhesive bonding technique. A threshold current of 4 mA is achieved for a hybrid microring laser with a radius of 20 μm and a ring width of 3.5 μm at 12°C, and the corresponding threshold current density is as low as 1kA/cm2. The influence of the location of silicon waveguide on output performance is studied experimentally for improving the output coupling efficiency. Furthermore, continuous-wave electrically injected lasing up to 55°C is realized for a hybrid microring laser with a radius of 30 μm and a ring width of 3 μm.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Electrically-pumped compact hybrid silicon microring lasers for optical interconnects

Di Liang, Marco Fiorentino, Tadashi Okumura, Hsu-Hao Chang, Daryl T. Spencer, Ying-Hao Kuo, Alexander W. Fang, Daoxin Dai, Raymond G. Beausoleil, and John E. Bowers
Opt. Express 17(22) 20355-20364 (2009)

Hybrid quantum-dot microring laser on silicon

Chong Zhang, Di Liang, Geza Kurczveil, Antoine Descos, and Raymond G. Beausoleil
Optica 6(9) 1145-1151 (2019)

Hybrid spiral-ring microlaser vertically coupled to silicon waveguide for stable and unidirectional output

Shao-Shuai Sui, Ming-Ying Tang, Yue-De Yang, Jin-Long Xiao, Yun Du, and Yong-Zhen Huang
Opt. Lett. 40(21) 4995-4998 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
    [Crossref]
  2. T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Multichannel and high density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for interchip optical interconnection,” Photon. Res. 2, A19–A24 (2014).
    [Crossref]
  3. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  4. K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III–V laser diode and photodetector with silicon waveguide,” Opt. Express 18, 15440–15447 (2010).
    [Crossref]
  5. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
    [Crossref]
  6. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J. M. Fedeli, and G. T. Reed, “High contrast 40  Gbit/s optical modulation in silicon,” Opt. Express 19, 11507–11516 (2011).
    [Crossref]
  7. A. W. Poon, X. S. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix,” Proc. IEEE 97, 1216–1238 (2009).
    [Crossref]
  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [Crossref]
  9. H. M. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and J. Michel, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [Crossref]
  10. H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
    [Crossref]
  11. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  12. X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34, 1345–1347 (2009).
    [Crossref]
  13. Y. J. Zhang, H. W. Qu, H. L. Wang, S. Zhang, S. D. Ma, A. Y. Qi, Z. G. Feng, H. L. Peng, and W. H. Zheng, “Hybrid III–V/silicon single-mode laser with periodic microstructures,” Opt. Lett. 38, 842–844 (2013).
    [Crossref]
  14. G. Roelkens, D. V. Thourhout, and R. Baets, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Express 14, 8154–8159 (2006).
    [Crossref]
  15. S. S. Sui, M. Y. Tang, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array,” Electron. Lett. 51, 506–508 (2015).
    [Crossref]
  16. S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
    [Crossref]
  17. L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, and J. Q. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photon. Technol. Lett. 25, 1180–1183 (2013).
    [Crossref]
  18. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
    [Crossref]
  19. Y. de Koninck, F. Raineri, A. Bazin, R. Raj, G. Roelkens, and R. Baets, “Experimental demonstration of a hybrid III–V-on-silicon microlaser based on resonant grating cavity mirrors,” Opt. Lett. 38, 2496–2498 (2013).
    [Crossref]
  20. D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1528–1533 (2011).
    [Crossref]
  21. S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron. 51, 2600108 (2015).
    [Crossref]
  22. S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide,” IEEE Photon. J. 7, 6100209 (2015).
  23. J. V. Campenhout, P. R. Romeo, D. V. Thourhout, C. Seassal, P. Regreny, L. D. Cioccio, J. M. Fedeli, and R. Baets, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightwave Technol. 25, 1543–1548 (2007).
    [Crossref]

2015 (3)

S. S. Sui, M. Y. Tang, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array,” Electron. Lett. 51, 506–508 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron. 51, 2600108 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide,” IEEE Photon. J. 7, 6100209 (2015).

2014 (1)

2013 (3)

2012 (1)

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[Crossref]

2011 (4)

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J. M. Fedeli, and G. T. Reed, “High contrast 40  Gbit/s optical modulation in silicon,” Opt. Express 19, 11507–11516 (2011).
[Crossref]

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1528–1533 (2011).
[Crossref]

2010 (3)

2009 (3)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

A. W. Poon, X. S. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34, 1345–1347 (2009).
[Crossref]

2007 (2)

2006 (2)

2005 (1)

H. M. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and J. Michel, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Arakawa, Y.

Asghari, M.

Atwater, H. A.

Baets, R.

Bazin, A.

Beausoleil, R. G.

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1528–1533 (2011).
[Crossref]

Bowers, J. E.

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1528–1533 (2011).
[Crossref]

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Campenhout, J. V.

Chen, H.

A. W. Poon, X. S. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Chen, H.-W.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Chen, W. X.

L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, and J. Q. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photon. Technol. Lett. 25, 1180–1183 (2013).
[Crossref]

Cioccio, L. D.

Cohen, O.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

H. M. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and J. Michel, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Cunningham, J. E.

de Koninck, Y.

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Diest, K. A.

Dong, P.

Du, Y.

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron. 51, 2600108 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide,” IEEE Photon. J. 7, 6100209 (2015).

S. S. Sui, M. Y. Tang, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array,” Electron. Lett. 51, 506–508 (2015).
[Crossref]

Ezaki, M.

Fang, A.

H. M. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and J. Michel, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Fang, A. W.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Fedeli, J. M.

Feng, D.

Feng, Z. G.

Fiorentino, M.

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1528–1533 (2011).
[Crossref]

Fournier, M.

Furuyama, H.

Gardes, F. Y.

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Ghaffari, A.

Grosse, P.

Hak, D.

H. M. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and J. Michel, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Hatori, N.

Heck, J. M.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Hogg, R.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Hu, Y.

Huang, Y. Z.

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide,” IEEE Photon. J. 7, 6100209 (2015).

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron. 51, 2600108 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array,” Electron. Lett. 51, 506–508 (2015).
[Crossref]

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Iizuka, N.

Ishizaka, M.

Jiang, Q.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Jones, R.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

H. M. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and J. Michel, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Kobayashi, K.

Koch, B. R.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Kojima, A.

Krishnamoorthy, A. V.

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Li, G.

Li, Y. P.

L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, and J. Q. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photon. Technol. Lett. 25, 1180–1183 (2013).
[Crossref]

Liang, D.

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1528–1533 (2011).
[Crossref]

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Liang, H.

Liu, A. S.

H. M. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and J. Michel, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Liu, H. Y.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Lu, D.

L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, and J. Q. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photon. Technol. Lett. 25, 1180–1183 (2013).
[Crossref]

Luo, X. S.

A. W. Poon, X. S. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Ma, S. D.

Mashanovich, G.

Michel, J.

H. M. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and J. Michel, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Mori, M.

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Nakamura, K.

Nakamura, T.

Ohira, K.

Okano, M.

Pan, J. Q.

L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, and J. Q. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photon. Technol. Lett. 25, 1180–1183 (2013).
[Crossref]

Paniccia, M. J.

Park, H.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Peng, H. L.

Poon, A. W.

A. W. Poon, X. S. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Pozzi, F.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Qi, A. Y.

Qian, W.

Qu, H. W.

Raineri, F.

Raj, R.

Ran, G. Z.

L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, and J. Q. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photon. Technol. Lett. 25, 1180–1183 (2013).
[Crossref]

Reed, G. T.

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

J. V. Campenhout, P. R. Romeo, D. V. Thourhout, C. Seassal, P. Regreny, L. D. Cioccio, J. M. Fedeli, and R. Baets, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightwave Technol. 25, 1543–1548 (2007).
[Crossref]

Roelkens, G.

Romeo, P. R.

Rong, H. M. S.

H. M. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and J. Michel, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Scherer, A.

Seassal, C.

Seeds, A.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Shafiiha, R.

Shearn, M. J.

Shibata, H.

Shimizu, T.

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Srinivasan, S.

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1528–1533 (2011).
[Crossref]

Stankovic, S.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[Crossref]

Sui, S. S.

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron. 51, 2600108 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array,” Electron. Lett. 51, 506–508 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide,” IEEE Photon. J. 7, 6100209 (2015).

Sun, X.

Sysak, M. N.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[Crossref]

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

Tang, M. Y.

S. S. Sui, M. Y. Tang, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array,” Electron. Lett. 51, 506–508 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron. 51, 2600108 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide,” IEEE Photon. J. 7, 6100209 (2015).

Tao, L.

L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, and J. Q. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photon. Technol. Lett. 25, 1180–1183 (2013).
[Crossref]

Thomson, D. J.

Thourhout, D. V.

Tutu, F.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Uemura, H.

Urino, Y.

Van Thourhout, D.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Wang, H. L.

Wang, T.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Xiao, J. L.

S. S. Sui, M. Y. Tang, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array,” Electron. Lett. 51, 506–508 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron. 51, 2600108 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide,” IEEE Photon. J. 7, 6100209 (2015).

Xu, F.

A. W. Poon, X. S. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Yamamoto, T.

Yang, Y. D.

S. S. Sui, M. Y. Tang, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array,” Electron. Lett. 51, 506–508 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron. 51, 2600108 (2015).
[Crossref]

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide,” IEEE Photon. J. 7, 6100209 (2015).

Yariv, A.

Yoshida, H.

Yu, H. Y.

L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, and J. Q. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photon. Technol. Lett. 25, 1180–1183 (2013).
[Crossref]

Yuan, L. J.

L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, and J. Q. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photon. Technol. Lett. 25, 1180–1183 (2013).
[Crossref]

Zadok, A.

Zhang, S.

Zhang, Y. J.

Zheng, W. H.

Electron. Lett. (1)

S. S. Sui, M. Y. Tang, Y. Z. Huang, Y. D. Yang, J. L. Xiao, and Y. Du, “Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array,” Electron. Lett. 51, 506–508 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron. 51, 2600108 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Liang, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “Low threshold electrically-pumped hybrid silicon microring lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1528–1533 (2011).
[Crossref]

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).
[Crossref]

IEEE Photon. J. (1)

S. S. Sui, M. Y. Tang, Y. D. Yang, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide,” IEEE Photon. J. 7, 6100209 (2015).

IEEE Photon. Technol. Lett. (2)

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “Hybrid III–V/Si distributed-feedback laser based on adhesive bonding,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
[Crossref]

L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, and J. Q. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photon. Technol. Lett. 25, 1180–1183 (2013).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (3)

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Nature (1)

H. M. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and J. Michel, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Photon. Res. (1)

Proc. IEEE (2)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

A. W. Poon, X. S. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) 2D structures used in the thermal simulation. (b) 2D temperature distributions at dissipated power of 20 mW for the hybrid microring lasers with the radius R=20μm and the ring width d=3.5μm.
Fig. 2.
Fig. 2. Thermal resistance Ith and active region temperature rise ΔT at current density of 1kA/cm2 versus microring width d for the 20 μm radius microlaser.
Fig. 3.
Fig. 3. (a) Calculated threshold current Ith versus microlaser radius R at different ring width d. (b) Threshold currents Ith versus the microring width d at R=20μm, as the circles and the squares, with and without the heating effect, respectively.
Fig. 4.
Fig. 4. Calculated threshold current versus the stage temperature rise for microring resonators with the radius of 30 μm and the ring width of 2, 3, and 5 μm, respectively.
Fig. 5.
Fig. 5. (a) Cross-sectional view of the microring laser used in the 3D FDTD simulation. (b) Calculated output coupling efficiency η and scattering loss αbot caused by outer-bottom contacting layer versus the outer-bottom contacting layer thickness hbot.
Fig. 6.
Fig. 6. (a) Cross-sectional field patterns of magnetic component Hz at y=0 for the vertically fundamental mode TE1,15 at h=50, 200, 350, and 500 nm and hbot=0. (b) Corresponding vertical normalized field amplitudes at x=1.25μm, where Γ is the optical confinement factor in the active layer.
Fig. 7.
Fig. 7. Diagrams of the fabrication steps. (a) ICP etch to the BCB layer. (b) ICP etch to inner-bottom contacting layer and SiO2 insulating layer deposition. (c) n-electrode deposition. (d) p-electrode deposition.
Fig. 8.
Fig. 8. (a) Top view and (b) cross-sectional view SEM images of an AlGaInAs/Si hybrid microring laser vertically coupled to a silicon waveguide.
Fig. 9.
Fig. 9. Output power and applied voltage versus CW injection currents for the hybrid microring lasers with (a) outer-bottom contacting layer and Δ=500nm, (c) inner-bottom contacting layer and Δ=500nm, and (e) inner-bottom contacting layer and Δ=100nm. (b), (d), and (f) show the corresponding lasing spectra at 15 mA, respectively. Microring radius is 20 μm; ring width is 3.5 μm.
Fig. 10.
Fig. 10. (a) Output power from the silicon waveguide and applied voltage versus CW injection current at 8°C, 20°C, 35°C, 45°C and 55°C. (b) Lasing spectra at CW injection currents of 6 and 17 mA at 20°C for a microlaser with a radius 30 μm and a ring width of 3 μm.
Fig. 11.
Fig. 11. Lasing wavelength Δλ shift versus the injection power increment ΔP for the microring lasers with the radius of 20 and 30 μm, and the corresponding ring width of 3.5 and 3 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρcTt=Q+·(κT),
Ith=qVηiNtr[A+BNtre(αi+αm)/Γg0+CQWNtr2e2(αi+αm)/Γg0]e(αi+αm)/Γg0,

Metrics