Abstract

Photonic crystal slabs integrated into organic light-emitting diodes (OLEDs) allow for the extraction of waveguide modes and thus an increase in OLED efficiency. We fabricated linear Bragg gratings with a 460-nm period on flexible polycarbonate substrates using UV nanoimprint lithography. A hybrid organic–inorganic nanoimprint resist is used that serves also as a high refractive index layer. OLEDs composed of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymer anode, an organic emission layer [poly(p-phenylene vinylene) (PPV)-derivative “Super Yellow”], and a metal cathode (LiF/Al) are deposited onto the flexible grating substrates. The effects of photonic crystal slab deformation in a flexible OLED are studied in theory and experiment. The substrate deformation is modeled using the finite-element method. The influence of the change in the grating period and the waveguide thickness under bending are investigated. The change in the grating period is found to be the dominant effect. At an emission angle of 20° a change in the resonance wavelength of 1.2% is predicted for a strain of 1.3% perpendicular to the grating grooves. This value is verified experimentally by analyzing electroluminescence and photoluminescence properties of the fabricated grating OLEDs.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Spontaneous buckling in flexible organic light-emitting devices for enhanced light extraction

Byoungchoo Park and Hong Goo Jeon
Opt. Express 19(S5) A1117-A1125 (2011)

Far-field radiation of photonic crystal organic light-emitting diode

Yong-Jae Lee, Se-Heon Kim, Guk-Hyun Kim, Yong-Hee Lee, Sang-Hwan Cho, Young-Woo Song, Yoon-Chang Kim, and Young Rag Do
Opt. Express 13(15) 5864-5870 (2005)

Stable angular emission spectra in white organic light-emitting diodes using graphene/PEDOT:PSS composite electrode

Hyunsu Cho, Hyunkoo Lee, Jonghee Lee, Woo Jin Sung, Byoung-Hwa Kwon, Chul-Woong Joo, Jin-Wook Shin, Jun-Han Han, Jaehyun Moon, Jeong-Ik Lee, Seungmin Cho, and Nam Sung Cho
Opt. Express 25(9) 9734-9742 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Buckley, ed., Organic Light-Emitting Diodes (OLEDs), Materials, Devices and Applications (Woodhead, 2013).
  2. Z. Xie, L.-S. Hung, and F. Zhu, “A flexible top-emitting organic light-emitting diode on steel foil,” Chem. Phys. Lett. 381, 691–696 (2003).
    [Crossref]
  3. J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, “A bilayer organic light-emitting diode using flexible ITO anode,” Phys. Status Solidi 184, 233–238 (2001).
  4. M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
    [Crossref]
  5. A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett. 80, 3853–3855 (2002).
    [Crossref]
  6. S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13, 826–832 (2012).
    [Crossref]
  7. R. Paetzold, K. Heuser, D. Henseler, S. Roeger, and G. Wittmann, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82, 3342–3344 (2003).
    [Crossref]
  8. J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, “Elastomeric polymer light-emitting devices and displays,” Nat. Photonics 7, 817–824 (2013).
  9. Y.-H. Ho, C.-C. Liu, S.-W. Liu, H. Liang, C.-W. Chu, and P.-K. Wei, “Efficiency enhancement of flexible organic light-emitting devices by using antireflection nanopilars,” Opt. Express 19, A295–A302 (2011).
    [Crossref]
  10. J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
    [Crossref]
  11. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104, 093111 (2008).
    [Crossref]
  12. B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96, 243302 (2010).
    [Crossref]
  13. A. Pradana, C. Kluge, and M. Gerken, “Tailoring the refractive index of nanoimprint resist by blending with TiO2 nanoparticles,” Opt. Mater. Express 4, 329–337 (2014).
    [Crossref]
  14. A. Pradana and M. Gerken, “Nanostructured, ITO-free electrodes for OLED emission control,” in MRS Proceedings, Vol. 1699 (Cambridge University, 2014).
  15. M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B 30, 031601 (2012).
    [Crossref]
  16. M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22, 421–428 (2012).
    [Crossref]
  17. A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol.,” Org. Electron. 9, 727–734 (2008).
    [Crossref]

2014 (1)

2013 (1)

J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, “Elastomeric polymer light-emitting devices and displays,” Nat. Photonics 7, 817–824 (2013).

2012 (3)

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13, 826–832 (2012).
[Crossref]

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B 30, 031601 (2012).
[Crossref]

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22, 421–428 (2012).
[Crossref]

2011 (1)

2010 (1)

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96, 243302 (2010).
[Crossref]

2008 (2)

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104, 093111 (2008).
[Crossref]

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol.,” Org. Electron. 9, 727–734 (2008).
[Crossref]

2003 (2)

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, and G. Wittmann, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82, 3342–3344 (2003).
[Crossref]

Z. Xie, L.-S. Hung, and F. Zhu, “A flexible top-emitting organic light-emitting diode on steel foil,” Chem. Phys. Lett. 381, 691–696 (2003).
[Crossref]

2002 (2)

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett. 80, 3853–3855 (2002).
[Crossref]

2001 (1)

J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, “A bilayer organic light-emitting diode using flexible ITO anode,” Phys. Status Solidi 184, 233–238 (2001).

2000 (1)

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Bao, Z.

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22, 421–428 (2012).
[Crossref]

Barnes, W. L.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Bennett, W.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Bonham, C.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Brown, J. J.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Burrows, P. E.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Chu, C.-W.

de Kok, M. M.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol.,” Org. Electron. 9, 727–734 (2008).
[Crossref]

Gerken, M.

A. Pradana, C. Kluge, and M. Gerken, “Tailoring the refractive index of nanoimprint resist by blending with TiO2 nanoparticles,” Opt. Mater. Express 4, 329–337 (2014).
[Crossref]

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B 30, 031601 (2012).
[Crossref]

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96, 243302 (2010).
[Crossref]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104, 093111 (2008).
[Crossref]

A. Pradana and M. Gerken, “Nanostructured, ITO-free electrodes for OLED emission control,” in MRS Proceedings, Vol. 1699 (Cambridge University, 2014).

Geyer, U.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96, 243302 (2010).
[Crossref]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104, 093111 (2008).
[Crossref]

Gleiss, S.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104, 093111 (2008).
[Crossref]

Graff, G. L.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Gross, M. E.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Guetlein, J.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96, 243302 (2010).
[Crossref]

Hall, M.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Han, S.

J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, “A bilayer organic light-emitting diode using flexible ITO anode,” Phys. Status Solidi 184, 233–238 (2001).

Hansen, M.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B 30, 031601 (2012).
[Crossref]

Hauss, J.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96, 243302 (2010).
[Crossref]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104, 093111 (2008).
[Crossref]

Henseler, D.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, and G. Wittmann, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82, 3342–3344 (2003).
[Crossref]

Heuser, K.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, and G. Wittmann, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82, 3342–3344 (2003).
[Crossref]

Ho, Y.-H.

Hung, L.-S.

Z. Xie, L.-S. Hung, and F. Zhu, “A flexible top-emitting organic light-emitting diode on steel foil,” Chem. Phys. Lett. 381, 691–696 (2003).
[Crossref]

Janssen, R. A. J.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol.,” Org. Electron. 9, 727–734 (2008).
[Crossref]

Jory, M. J.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Kemerink, M.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol.,” Org. Electron. 9, 727–734 (2008).
[Crossref]

Kim, J.-J.

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13, 826–832 (2012).
[Crossref]

Kim, S.-Y.

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13, 826–832 (2012).
[Crossref]

Kluge, C.

Kohlstedt, H.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B 30, 031601 (2012).
[Crossref]

Krasnov, A. N.

A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett. 80, 3853–3855 (2002).
[Crossref]

Lee, J.-H.

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13, 826–832 (2012).
[Crossref]

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13, 826–832 (2012).
[Crossref]

Lemmer, U.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96, 243302 (2010).
[Crossref]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104, 093111 (2008).
[Crossref]

Li, L.

J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, “Elastomeric polymer light-emitting devices and displays,” Nat. Photonics 7, 817–824 (2013).

Liang, H.

Liang, J.

J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, “Elastomeric polymer light-emitting devices and displays,” Nat. Photonics 7, 817–824 (2013).

Lipomi, D. J.

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22, 421–428 (2012).
[Crossref]

Liu, C.-C.

Liu, S.-W.

Lupton, J. M.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Martin, P. M.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Mast, E.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Matterson, B. J.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Maturova, K.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol.,” Org. Electron. 9, 727–734 (2008).
[Crossref]

Michalski, L. A.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Nardes, A. M.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol.,” Org. Electron. 9, 727–734 (2008).
[Crossref]

Niu, X.

J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, “Elastomeric polymer light-emitting devices and displays,” Nat. Photonics 7, 817–824 (2013).

Paetzold, R.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, and G. Wittmann, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82, 3342–3344 (2003).
[Crossref]

Pei, Q.

J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, “Elastomeric polymer light-emitting devices and displays,” Nat. Photonics 7, 817–824 (2013).

Pradana, A.

A. Pradana, C. Kluge, and M. Gerken, “Tailoring the refractive index of nanoimprint resist by blending with TiO2 nanoparticles,” Opt. Mater. Express 4, 329–337 (2014).
[Crossref]

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B 30, 031601 (2012).
[Crossref]

A. Pradana and M. Gerken, “Nanostructured, ITO-free electrodes for OLED emission control,” in MRS Proceedings, Vol. 1699 (Cambridge University, 2014).

Rädler, M.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B 30, 031601 (2012).
[Crossref]

Rajan, K.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Riedel, B.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96, 243302 (2010).
[Crossref]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104, 093111 (2008).
[Crossref]

Roeger, S.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, and G. Wittmann, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82, 3342–3344 (2003).
[Crossref]

Rothman, M. A.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Samuel, I. D. W.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Silvernail, J. A.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Vinken, E.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol.,” Org. Electron. 9, 727–734 (2008).
[Crossref]

Vosgueritchian, M.

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22, 421–428 (2012).
[Crossref]

Weaver, M. S.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Wei, P.-K.

Wittmann, G.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, and G. Wittmann, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82, 3342–3344 (2003).
[Crossref]

Xie, S.

J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, “A bilayer organic light-emitting diode using flexible ITO anode,” Phys. Status Solidi 184, 233–238 (2001).

Xie, Z.

Z. Xie, L.-S. Hung, and F. Zhu, “A flexible top-emitting organic light-emitting diode on steel foil,” Chem. Phys. Lett. 381, 691–696 (2003).
[Crossref]

Yang, T.

J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, “A bilayer organic light-emitting diode using flexible ITO anode,” Phys. Status Solidi 184, 233–238 (2001).

Yang, Z.

J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, “A bilayer organic light-emitting diode using flexible ITO anode,” Phys. Status Solidi 184, 233–238 (2001).

Ye, L.

J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, “A bilayer organic light-emitting diode using flexible ITO anode,” Phys. Status Solidi 184, 233–238 (2001).

Yu, Z.

J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, “Elastomeric polymer light-emitting devices and displays,” Nat. Photonics 7, 817–824 (2013).

Zhao, J.

J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, “A bilayer organic light-emitting diode using flexible ITO anode,” Phys. Status Solidi 184, 233–238 (2001).

Zhu, F.

Z. Xie, L.-S. Hung, and F. Zhu, “A flexible top-emitting organic light-emitting diode on steel foil,” Chem. Phys. Lett. 381, 691–696 (2003).
[Crossref]

Ziegler, M.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B 30, 031601 (2012).
[Crossref]

Zumhoff, M.

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

Adv. Funct. Mater. (1)

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22, 421–428 (2012).
[Crossref]

Appl. Phys. Lett. (5)

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96, 243302 (2010).
[Crossref]

M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates,” Appl. Phys. Lett. 81, 2929–2931 (2002).
[Crossref]

A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett. 80, 3853–3855 (2002).
[Crossref]

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, and G. Wittmann, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82, 3342–3344 (2003).
[Crossref]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Chem. Phys. Lett. (1)

Z. Xie, L.-S. Hung, and F. Zhu, “A flexible top-emitting organic light-emitting diode on steel foil,” Chem. Phys. Lett. 381, 691–696 (2003).
[Crossref]

J. Appl. Phys. (1)

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104, 093111 (2008).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B 30, 031601 (2012).
[Crossref]

Nat. Photonics (1)

J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, “Elastomeric polymer light-emitting devices and displays,” Nat. Photonics 7, 817–824 (2013).

Opt. Express (1)

Opt. Mater. Express (1)

Org. Electron. (2)

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol.,” Org. Electron. 9, 727–734 (2008).
[Crossref]

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13, 826–832 (2012).
[Crossref]

Phys. Status Solidi (1)

J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, “A bilayer organic light-emitting diode using flexible ITO anode,” Phys. Status Solidi 184, 233–238 (2001).

Other (2)

A. Pradana and M. Gerken, “Nanostructured, ITO-free electrodes for OLED emission control,” in MRS Proceedings, Vol. 1699 (Cambridge University, 2014).

A. Buckley, ed., Organic Light-Emitting Diodes (OLEDs), Materials, Devices and Applications (Woodhead, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic diagram of flexible OLED design with periodically nanostructured photonic crystal slab. (b) Controlled substrate deformation employing two screws. Locations of four OLEDs on substrate and PL measurement point are indicated.
Fig. 2.
Fig. 2. (a)–(c) FEM simulations of the normalized displacement in x, y, and z directions for a deformation obtained with two screws as depicted in Fig. 1(b). (d) Strain in x, y, and z directions for a screw displacement of Δz=2mm along the surface cut line illustrated in (c).
Fig. 3.
Fig. 3. (a) IV curve for flat and bent conditions. Inset shows photograph of OLEDs for bending operation. (b) EL characterization of flexible grating OLED with a TE polarization filter. Angle- and wavelength-resolved EL intensity perpendicular to the grating grooves is shown for a flat substrate (Δz=0) and a grating period of Λ=460nm. The intensity is normalized to the maximum value at each wavelength. The theoretical extraction angles of the TE0 and TE1 modes are shown for a thickness of the composite nanoimprint resist layer of 450 nm. (c) EL intensity for bent condition obtained by a screw displacement of Δz=1.48mm.
Fig. 4.
Fig. 4. PL intensity of flexible grating OLED as a function of emission angle and wavelength. The intensity is normalized to the maximum intensity at a given angle. (a) Results for a flat substrate (Δz=0) and (b) for bent condition obtained by a screw displacement of Δz=2.165mm. For both strain conditions the grating resonances are clearly visible, and bending causes only a slight shift of the resonances in wavelength.
Fig. 5.
Fig. 5. (a) Resonance wavelength of the TE1 mode at 25° emission angle as a function of the strain in the x direction, εx, obtained from screw displacements Δz as given in Table 1. Compared are the experimental value and the theoretical prediction calculated with the Bragg equation, Eq. (1), for the grating periods and the effective refractive indices given in Table 1. (b) Relative resonance wavelength shift under deflection for extraction angles of 15°, 20°, 25°, and 30°.

Tables (2)

Tables Icon

Table 1. Theoretical Analysis of Strain in x Direction, εx, and Compression in y and z Directions, εy and εz, for Different Screw Displacements Δz in Fig. 1 Calculated Using FEMa

Tables Icon

Table 2. Layer Thicknesses and Refractive Indices at a Wavelength of 550 nm Used in the Transfer Matrix Simulations for Determining the Effective Refractive Index neff [14]

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sinθ=neff±mλΛ,
Λbend=Λflat(1+εx).
dbend=dflat(1+εz).

Metrics