Abstract

When structured illumination is used in digital holographic microscopy (DHM), each direction of the illumination fringe is required to be shifted at least three times to perform the phase-shifting reconstruction. In this paper, we propose a scheme for spatial resolution enhancement of DHM by using the structured illumination but without phase shifting. The structured illuminations of different directions, which are generated by a spatial light modulator, illuminate the sample sequentially in the object plane. The formed object waves interfere with a reference wave in an off-axis configuration, and a CCD camera records the generated hologram. After the object waves are reconstructed numerically, a synthetic aperture is performed by an iterative algorithm to enhance the spatial resolution. The resolution improvement of the proposed method is proved and demonstrated by both simulation and experiment.

© 2014 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Phase-shifting-free resolution enhancement in digital holographic microscopy under structured illumination

Shaohui Li, Jun Ma, Chenliang Chang, Shouping Nie, Shaotong Feng, and Caojin Yuan
Opt. Express 26(18) 23572-23584 (2018)

Resolution enhancement in quantitative phase microscopy

Vicente Micó, Juanjuan Zheng, Javier Garcia, Zeev Zalevsky, and Peng Gao
Adv. Opt. Photon. 11(1) 135-214 (2019)

Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy

Peng Gao, Giancarlo Pedrini, and Wolfgang Osten
Opt. Lett. 38(8) 1328-1330 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  2. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983).
    [Crossref]
  3. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [Crossref]
  4. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [Crossref]
  5. P. Gao, B. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34, 3553–3555 (2009).
    [Crossref]
  6. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  7. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010).
    [Crossref]
  8. V. Micó, C. Ferreira, and J. García, “Surpassing digital holography limits by lensless object scanning holography,” Opt. Express 20, 9382–9395 (2012).
    [Crossref]
  9. F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26, 1550–1552 (2001).
    [Crossref]
  10. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
    [Crossref]
  11. M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
    [Crossref]
  12. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
    [Crossref]
  13. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424–1426 (2003).
    [Crossref]
  14. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
    [Crossref]
  15. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006).
    [Crossref]
  16. C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50, B6–B11 (2011).
    [Crossref]
  17. L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
    [Crossref]
  18. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M.-S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17, 12285–12292 (2009).
    [Crossref]
  19. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref]
  20. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
    [Crossref]
  21. A.-A. Mudassar and A. Hussain, “Super-resolution of active spatial frequency heterodyning using holographic approach,” Appl. Opt. 49, 3434–3441 (2010).
    [Crossref]
  22. A. Hussain and A.-A. Mudassar, “Holography based super resolution,” Opt. Commun. 285, 2303–2310 (2012).
    [Crossref]
  23. J. Ma, C. Yuan, G. Situ, G. Pedrini, and W. Osten, “Resolution enhancement in digital holographic microscopy with structured illumination,” Chin. Opt. Lett. 11, 090901 (2013).
    [Crossref]
  24. P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
    [Crossref]
  25. W. Osten and N. Reingand, Optical Imaging and Metrology (Wiley-VCH, 2010).
  26. K. Lee, H.-D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21, 22453–22463 (2013).
    [Crossref]
  27. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009).
    [Crossref]

2013 (3)

2012 (2)

2011 (2)

2010 (2)

2009 (5)

2008 (2)

2006 (2)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006).
[Crossref]

2005 (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

2003 (1)

2001 (1)

2000 (2)

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[Crossref]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

1983 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Alexandrov, S. A.

R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

Badizadegan, K.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Brueck, S. R. J.

Burow, R.

Choi, W.

Collot, L.

Cuche, E.

Dasari, R.

De Nicola, S.

Depeursinge, C.

Eigenthaler, U.

Elssner, K.-E.

Faridian, A.

Feld, M.-S.

Ferraro, P.

Ferreira, C.

Finizio, A.

Gao, P.

García, J.

Geist, E.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Granero, L.

Grilli, S.

Gross, M.

Grzanna, J.

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Gutzler, T.

R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

Harder, I.

Hillman, R.

Hillman, T. R.

K. Lee, H.-D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21, 22453–22463 (2013).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

Hirscher, M.

Hopp, D.

Hussain, A.

Kemper, B.

Kim, H.-D.

Kim, K.

Kim, Y.

Kuznetsova, Y.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Le Clerc, F.

Lee, K.

Lindlein, N.

Ma, J.

Mantel, K.

Marquet, P.

Merkel, K.

Merola, F.

Mico, V.

Micó, V.

Min, B.

Mudassar, A.-A.

Osten, W.

Park, Y.

Paturzo, M.

Pedrini, G.

Reingand, N.

W. Osten and N. Reingand, Optical Imaging and Metrology (Wiley-VCH, 2010).

Sampson, D. D.

R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

Schwarz, C. J.

Schwider, J.

Situ, G.

Spolaczyk, R.

von Bally, G.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Yao, B.

Yaqoob, Z.

Yuan, C.

Zalevsky, Z.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Chin. Opt. Lett. (1)

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Opt. Commun. (1)

A. Hussain and A.-A. Mudassar, “Holography based super resolution,” Opt. Commun. 285, 2303–2310 (2012).
[Crossref]

Opt. Express (8)

K. Lee, H.-D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21, 22453–22463 (2013).
[Crossref]

R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009).
[Crossref]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M.-S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17, 12285–12292 (2009).
[Crossref]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006).
[Crossref]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]

A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010).
[Crossref]

V. Micó, C. Ferreira, and J. García, “Surpassing digital holography limits by lensless object scanning holography,” Opt. Express 20, 9382–9395 (2012).
[Crossref]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

W. Osten and N. Reingand, Optical Imaging and Metrology (Wiley-VCH, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of DHM with structured illumination.
Fig. 2.
Fig. 2. Resolution enhancement of DHM by the structured illumination. (a) Spectrum evolvement of the object wave during the imaging process. (b) Flowchart of the iteration process for resolution enhancement. The black dots denote high frequency components of the object; the red-dashed circles denote the NA of the optical system.
Fig. 3.
Fig. 3. Simulation results for resolution enhancement by structured illuminations. (a) Amplitude and (b) phase distributions of the simulated specimen. (c) Intensity distribution of the structured illumination along horizontal orientation. (d) and (e) Reconstructed amplitude images by using on-axis plane wave illumination and by structured illuminations with the proposed iterative method, respectively.
Fig. 4.
Fig. 4. Experimental results for resolution enhancement by structured illuminations. (a) Four phase gratings with different orientations loaded on SLM to generate structured illuminations. (b) Recorded hologram under one structured illumination. (c) and (d) The reconstructed phase images by using the on-axis plane wave illumination and by using the proposed iteration method, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{AOi(x,y,Δz)=FT1{FT{IOiR}·Wf·H},Aillumi(x,y,Δz)=FT1{FT{IillumiR}·Wf·H}.
δ=κ1λNA+sinθillum.

Metrics