Abstract

We have theoretically proposed electrical modulation and enhancement of Fano resonance in THz metamaterials. In order to practically realize Fano resonance based devices, resonance dips should be sharp and to be clearly detected. However, realization of Fano resonances with simultaneously high quality factor (Q) and higher spectral contrast remains a major challenge. Therefore we propose a metamaterial based device to overcome the above limitation with active tuning capability. Our simulated results show a large enhancement of surface current and electric field, which results in sharp, extremely narrow bandwidth Fano type resonances. Furthermore, a higher degree of tunability has been achieved for Fano resonance as compared to dipole resonance, which can be useful to realize advanced dynamically reconfigurable devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Electromagnetic wave manipulation and complex light-matter interaction has gained immense interest due to rapid development of numerous novel, wide range of technologies at micro, nanoscale level to control, communicate, detect and monitor information that one can obtain from electromagnetic waves. One of the convenient and efficient way to manipulate and localize electromagnetic (EM) wave is by employing metamaterial based devices. Metamaterial is artificially engineered sub-wavelength structure [1,2] designed in such a way to yield desired resonant response to incident EM radiation. Hence it can be employed in numerous applications like realization of perfect and flat lens, sensors, ultra-compact antennas, slow light, negative refractive index, EM wave modulator, frequency selective surfaces etc. [35]. One of the most fundamental metamaterial structure, consists of split ring resonator (SRR), was employed to obtain artificial magnetism and negative index of refraction at microwave frequency domain [1,6]. Typical resonant responses of metamaterial structures follow symmetrical spectral feature described by Lorentzian function. However, due to direct excitation, these metal based resonators predominantly suffer from huge metallic and radiative losses [7,8]. Among them, radiation loss contributes to the largest of metamaterial losses [9]. One of the solutions to minimize radiation loss is with the help of indirect excitation, whose response is characterized by the resonance of asymmetric line-shape, termed as Fano resonance [10,11].

Fano resonance was invented by Ugo Fano in the year 1961 [12], which is excited due to the interaction of broadband continuum with a discrete narrowband scattering event. In metamaterial structure, Fano resonance was first proposed by Fedotov et al. termed as sharp trapped mode, which occurred due to symmetry breaking in metamaterial structure [13]. At the same time, Zhang et al. introduced transparency in plasmonic metamaterials created as a result of destructive interference between super-radiant and sub-radiant resonators [14]. Later on, R. Singh et al. experimentally demonstrated the occurrence of Fano resonance in THz frequency regime using dual gap SRR where structural asymmetry was considered along the direction of the applied electric field [15]. THz frequency range is very useful for biological and chemical label-free sensing, characterization of materials, astronomical observations, security purpose, medical diagnostics, logical operations and environmental monitoring applications [1619]. Due to indirect excitation and destructive interference between super-radiant (bright) and sub-radiant (dark) mode, Fano resonance is relatively free from high radiation losses. Thus, such high Q, low loss Fano resonances at THz frequency regime are extremely useful for realization of narrowband filters, highly sensitive sensors, slow light devices, and other applications [10].

Numerous metamaterial structures have been proposed so far [1315,822] to realize Fano resonance. In spite of the superior capability of Fano resonance based metamaterial, a trade-off between quality factor (Q) and spectral contrast (or Figure of merit (FOM)) becomes inevitable. As, the structural asymmetry is decreased, Q factor of Fano resonance becomes higher [23]. However, the FOM and spectral contrast also decreases simultaneously with the decrease of structural asymmetry. This causes extreme difficulty to detect Fano resonance and also limit its application possibilities. In addition to that, such passive devices limits the scope of applications and their reconfigurable abilities.

Recently, active metamaterials have attracted enormous interests because of its tunable electromagnetic properties with ultrashort modulation time and on-off switching capabilities. Different techniques have already been proposed by using semiconductors [24,25], superconductors [26], phase change materials [27,28], perovskites [29], graphene [30,31], $V{O_2}$ [32,33], varactor diode [34,35] and electromechanical structures [36] etc. In spite of relatively higher response time in comparison to other techniques, electronic modulation of THz waves has gained much attention due to its low easy integration capability in chip level design [37]. Recently electronic tunability has been realized by using Graphene metasurfaces [29,30]. Although, due to high conductivity of Graphene at THz regime, a higher absorption loss of the resonator eventually degrades the performance of metamaterial devices [31]. An alternative method to tune dipole resonance was proposed by Aydin et al. [38] by using variable capacitors but those are limited to microwave frequency range.

In this paper, we have proposed and theoretically studied modulation performance of Fano resonance using active metamaterials by incorporating variable capacitor operating at THz frequencies. It also shows a highly sharp Fano resonance with Q factor of nearly 380. Our proposed structure is advantageous as it has overcome the trade-off problem between the Q factor and spectral contrast/ FOM of Fano resonance. On the other hand, we’ve demonstrated a detailed and comparative analysis of relative modulation performance of both dipole and Fano resonance with variable capacitors in both the gaps. Our proposed structure can also be capable to suppress the Fano resonance dip completely, which can be employed as THz switches and modulators. Such active tuning of high Q Fano resonance can be extremely useful to realize multi-functional metamaterial devices in the THz frequency domain.

2. Structure and simulation method

The schematic of our proposed structure is shown in Fig. 1. In this study, we’ve taken planar two gap SRR sample with gaps ${G_1}$ and ${G_2}$ in the horizontal arms. Substrate is considered as intrinsic silicon (ɛ=11.68) wafer on top of which 200 nm thick Aluminum resonator (in yellow) has been designed. Typical dimensions are described in the caption of Fig. 1(a). The asymmetry in this structure is introduced by varying the shift parameter ‘d’, which is the axial distance between two split gaps. Electronic tuning capability has been achieved by introducing external capacitors $\; {C_1}$ and ${C_2}$ in the lower and upper gap, respectively.

 

Fig. 1. Schematic of (a) Unit cell of proposed metamaterial structure with typical dimensions ls = 75 μm, lsrr = 60 μm, w = 6 μm, ${G_1}$ = ${G_2}$ = 3 μm, (b) periodic stack of the proposed structure where external capacitor is introduced only in the lower gap.

Download Full Size | PPT Slide | PDF

To study the electromagnetic responses of the metamaterial, numerical calculations have been carried out using FDTD (finite difference time domain) solver in CST microwave studio software. Here, unit cell boundary condition has been employed to calculate the transmission spectrum. Electric field is applied along the horizontal arms as shown in Fig. 1(a). For such structure, axis of asymmetry has been considered along the direction of E-field. The resonator arm to the left of gaps ${G_1}$and ${G_2}$ is directly excited by incident electromagnetic wave called as super-radiant resonator. The right resonator is very weakly coupled to free space radiation termed as sub-radiant resonator. Destructive interference between the responses of both the resonators results in asymmetric Fano resonance [11].

3. Results and discussions

3.1 Realization of high Q Fano resonance and overcoming the Q factor–FOM trade-off

This numerically simulated results of amplitude transmission spectra for d = 20 μm with (in red) and without (in black) ${C_1}$ are shown in Fig. 2(a). The leftmost resonance dip of both the cases at around 0.98 THz is of symmetrical in shape created due to direct excitation with incident EM radiation known as dipole mode. Other resonant dips around 1.28 THz (without capacitor) and 1.2 THz (with capacitor) are asymmetric in nature, created due to interference phenomena as explained earlier [15], termed as Fano mode. The peak around 1.1 THz is termed as transparency peak (or EIT). Surface current distributions for different resonances are shown in Fig. 2 (b) – (e). It is interesting to note that, for d = 20 μm, the insertion of external capacitor in the lower gap leads to a very high (∼ ‘315’) Q factor (calculated as $Q = {f_0}/{\Delta }f$, where, ${\Delta }f$ is Full width at half maxima (FWHM)), as compared to ∼ ‘10’ in the absence of any external capacitor. In order to understand the origin of such high Q Fano resonance, we also examine the surface current distribution at the Fano dip (Fig. 2). The shape of Fano resonance is given by [39]:

$$\sigma ({\Omega } )= {D^2}|{({{{({q + {\Omega }} )}^2}/({1 + {{\Omega }^2}} )} )\kappa + ({1 - \kappa } )} |$$

 

Fig. 2. (a) Variation of amplitude transmission with frequency when external capacitor is loaded in lower gap of the resonator (red curve) and resonator without external capacitor (black curve) for d = 20 μm. Fano dip at f = 1.2 THz (single capacitor in lower gap) and f = 1.28 THz (no capacitor). Surface current distribution at (b) dipole dip for f = 0.98 THz, (c) EIT peak for f = 1.1 THz, (d) Fano dip for f = 1.28 THz when no capacitor is loaded with the resonator (e) Fano dip for f = 1.2 THz ($\; {C_1} = 0.5\; fF$ loaded at lower split gap).

Download Full Size | PPT Slide | PDF

This equation clearly indicates that Fano shape depends on the following 3 factors:

  • (i) Fano parameter ‘q’ which is generally taken to be constant for any particular mode.
  • (ii) Coupling coefficient ($\kappa $) of both the mode.
  • (iii) Phase shift between bright and dark modes in analysis of exactness and accuracy of Fano-like behavior.

Without any external capacitor, all the three factors involves in Eq. (1) will be constant. When external capacitor is added to lower gap, coupling is increased significantly. Induced surface current distribution supports this observation (Fig. 2 (d) & (e)). This figure clearly indicates that stronger surface current is induced at f = 1.2 THz in presence of the external capacitor (max. value ∼ 3.01×105 A/m), which is almost 6.34 times of magnitude larger compared to the case without external capacitor (max. value ∼ 4.74×104 A/m). This strong enhancement in surface current is due to the large displacement current mediated by $ {C_1}$ at the split gap. Higher charge accumulation and electromagnetic energy confinement leads to lower radiation loss which results in high Q Fano resonance.

We have studied further about the effect of asymmetry parameter ‘d’ on the sharpness of Fano resonance with external capacitor ${C_1}$ in lower gap. Figure 3(a) shows the transmission spectra for $ {C_1}$ = 0.5 fF and different d. It’s quite interesting to see that, unlike previous reported results [15,23], the Q factor of Fano dip increases almost linearly with increasing d (asymmetry) (Fig. 3(b)). This is possibly due to the fact that in the presence of capacitor, field confinement in the split gap becomes much higher with increasing d. This results in lower radiation loss with higher asymmetry. Thus, we can achieve Fano resonance simultaneous higher Q factor and higher intensity contrast at the increase of asymmetry parameter d. In order to quantify, the Figure of merit, FOM (= Q×A, where A corresponds to maximum amplitude of Fano resonance). FOM follows the similar behavior as Q factor as shown in Fig. 3(b). Thus, we can achieve a very high Q factor as well as high FOM with the help of external capacitor in higher asymmetry regime.

 

Fig. 3. (a) Amplitude transmission spectra for different asymmetry (d) with $\; {C_1}$ = 0.5 fF (b) Variation of Q-factor and FOM of Fano dip for different values of asymmetric parameter (d) with $\; {C_1}$ of 0.5 fF loaded in the lower gap.

Download Full Size | PPT Slide | PDF

3.2 Electronic tuning of Fano resonance and FOM optimization

Electronic tuning is achieved through varying the values of the external capacitors. Figure 4(a) & (b) shows resonance tuning with varying external capacitor in the lower gap corresponds to d = 10 and 20 μm respectively. To quantify the resonance tuning, variation of resonance dip position of different modes with different capacitor values are shown in Fig. 4(c). From these graphs, it can be seen that, changing the capacitor value modifies both dipole and Fano resonance position, however the degree of tuning is comparatively larger for Fano resonance in case when only $\; {C_1}$ is present. Although, presence of both $\; {C_1}\; $and $\; {C_2}$ tunes dipole resonance significantly. Also,$\; {C_2}$ causes no significant improvement in tuning of Fano resonance. This is possibly due to the fact that, parallel current distribution on both the side arms of$\; \; {C_1}$ results larger field enhancement (as shown in Fig. 2(e)). While, antiparallel surface current around $\; {C_2}$ doesn’t perturb the field significantly. Electric field distribution for d = 20 μm and $\; {C_1}$ and$\; {C_2}$ of 0.5 fF (shown in Fig. 4(d)), clearly verifies the above argument, as most of the energy confined in the lower split gap. Also, different degree of tuning for dipole and Fano resonances is attributed to the fact that, in addition to the change of resonant frequency of both the arms (arms to the left and right of the split gaps), external capacitor also changes coupling between both the resonators. This has been elaborated more in next section with help of coupled differential equations (Table 1).

 

Fig. 4. Capacitive tuning of Amplitude Transmission vs frequency spectra for (a) d = 10 μm, (b) d = 20 μm with external capacitor in lower gap only. (c) Resonant dip tuning of various resonance with different capacitor values for d = 10 μm, (d) Electric field distribution at Fano resonant frequency (1.167 THz) for ${C_1}$ = 0.5 fF, (e) Variation of Q-factor and FOM of Fano dip for different values of external capacitor ${C_1}$ and ${C_2}$ for d = 20 μm.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Parameters for theoretical fit for d = 10 μm and various values of C1.

Variation of Q factor and Figure of merit (FOM) for different ${C_1}$ and ${C_2}$ values (for d = 20 μm case) are shown in Fig. 4(e). It is shown that, with increase of capacitance values, Q factor and FOM both increase simultaneously (reason explained in previous section) up to C = 0.5 fF. Maximum Q ∼ 380 and FOM ∼ 290.6 for ${C_1}\; $= ${C_2}$ = 0.5 fF are observed which is significantly higher than earlier reported values [40]. Above 0.5 fF, both the parameter values are decreased due to low field confinement and increased loss. Optimized regime for maximum FOM has been shown in Fig. 4(e) (within rectangular box).

Intensity modulation with the help of varying capacitor is shown in Fig. 5(a) where we’ve shown the variation of spectral contrast (= $|({T_{max}}$ -${T_{min}}$)/$({T_{max}}$ +${T_{min}}$)$\; $|) with$\; {C_1}$ and$\; {C_2}$. A maximum spectral contrast of 71% has been achieved with both $\; {C_1}$ and$\; {C_2}$ values of 0.5 fF. With the increment of capacitor, spectral contrast of Fano mode gradually decreases and reaches to almost zero when both$\; {C_1}$ and$\; {C_2}$ becomes 5 fF, which signifies a complete disappearance of Fano resonance. From Ref. [41], it is prevalent that in addition to field enhancement, capacitor with lead wire can also acts as a loop antenna. So, with the increase of capacitor value, radiative loss also increases as shown in the far field pattern in Fig. 5(b). The side lobe level, which quantifies radiation loss, increases with the increment of$\; {C_1}$. This counters the field enhancement effect at Fano resonance frequency and leads to significant decrease of spectral contrast and total suppression of Fano resonance. Such modulation phenomena can be highly useful to realize high Q switching devices, tunable dual band filers, notch filters and tunable broadband transparent devices etc. at THz frequency range.

 

Fig. 5. (a) Spectral Contrast of Fano dip for d = 20 μm and different values of$\; {C_1}$, (b) Far field radiation pattern corresponding to d = 20 μm and$\; {C_1}$ = 0.5, 1, and 5 fF.

Download Full Size | PPT Slide | PDF

4. Analytical model of Fano resonance

A classical analogy of Fano resonance has been drawn based upon coupled oscillator model. This model consists of super-radiant (bright) resonator which can be directly excited by the incident electromagnetic wave and a sub-radiant (dark) resonator which doesn’t couple to incident wave directly. Eigen mode of those individual resonators (with coupling) is given by ${\omega _0}$ and $({{\omega_0} + \delta } )$, respectively, where $\delta $ represents small deviation of dark resonance (detuning factor) w.r.t bright resonance. The field amplitude of both the modes can be expressed as 2nd order coupled differential equation as [42]:

$$\begin{aligned}&{\ddot{x}}_{1} + {\gamma _1}{{\dot{x}}_1} + \omega _0^2{x_1} + {\Omega }{x_2} = gE\\ & {\ddot{x}_2} + {\gamma _2}{{\dot{x}}_2} + {({{\omega_0} + \delta } )^2}{x_2} + {\Omega }{x_1} = 0 \end{aligned}$$
Here, ${\gamma _1}$ and ${\gamma _2}$ are the damping factors for bright and dark modes, ${\Omega }$ is the coupling coefficient between both the modes. $^{\prime}g^{\prime}$ represents the field amplitude and $^{\prime}E^{\prime}$is the field excitation. By solving the above Eq. (2), we obtain field amplitude as
$$\begin{aligned}&{a_1}\; = {F_2}g/({{F_1}({F_2} - {{\Omega }^2}} )\\ & {a_2} = {\Omega }g/({{F_1}({F_2} - {{\Omega }^2}} )\end{aligned}$$
Assuming,
$$\begin{aligned} & \mbox{Factor 1:} \quad {F_1} = ({{\omega_1}^2 - {\omega^2} + i{\gamma_1}\omega } ) \mbox{ and} \\ & \mbox{Factor 2:}\quad {F_2} = ({{{({{\omega_1} + \delta } )}^2} - {\omega^2} + i{\gamma_2}\omega } )\end{aligned}$$
Now, the transmittance is given by: $T(\omega )= 1 - {|{{a_1}} |^2}$. So,
$$T(\omega )= 1 - {|{{F_2}g/({{F_1}({F_2} - {{\Omega }^2}} )} |^2}$$
With the help of following approximations [43]:
$$\begin{aligned}& \mbox{(i)}\quad {({{\omega_0} + \delta } )^2} - \omega _0^2 \gg {\Omega }\\ &\mbox{(ii)}\quad \omega _0^2 - {\omega ^2} \cong - 2{\omega _0}({\omega - {\omega_0}} )\end{aligned}$$
We can obtain,
$$\begin{aligned}&\mbox{Factor 3:} \quad {F_3} = ({\omega - {\omega_0} + i{\gamma_1}/2} ) \mbox{ and} \\ & \mbox{Factor 4:}\quad {F_4} = ({\omega - {\omega_0} - \delta + i{\gamma_2}/2} )\end{aligned}$$
Therefore, we can get the approximate formula for transmittance as
$$T(\omega )\; \; \; 1 - Re\{{i{g^2}{F_4}/({F_3}{F_4} - {{\Omega }^2}/4)} \}$$
The amplitude transmission spectra calculated by using Eq. (8) considering variable capacitances are shown in Fig. 6. The parameters corresponding to these calculations are tabulated in Table 1. From the table it’s evident that, maximum Fano dip is observed when the external capacitor $\; {C_1}$ becomes ≈ 0.5 fF. On the other hand, the detuning factor $\delta $ is increased with the increment of $\; {C_1}$ value leading to a different dependence of external capacitors on Fano mode as compared to dipole mode as discussed in the earlier sections. A comparison of analytical simulations (Fig. 6) with numerical simulations (Fig. 4(a)). This clearly indicates that our theoretical model matched well with the numerical outcomes.

 

Fig. 6. Capacitive tuning of Amplitude Transmission spectra for d = 10 μm: analytical modelling using Matlab.

Download Full Size | PPT Slide | PDF

5. Conclusion

Our work proposes Fano resonance based active metamaterial device to realize simultaneously high Q factor and resonance intensity contrast with the help of externally loaded capacitors. Such approach can help to achieve both the frequency and intensity modulations of Fano resonance through proper coupling between the super-radiant and sub-radiant modes. Further, we’ve studied effect of external capacitors $\; {C_1}$ and$\; {C_2}$ to show differential tuning of both the dipole and Fano resonances. We have also demonstrated an analytical approach to obtain the amplitude transmission spectra of variable capacitor loaded Fano metamaterials. For experimental realization of active metamaterials, active materials like semiconductors, graphene, perovskites etc. or electronic devices (varactor, schottky diode) can be employed across the gap where conductivity can be tuned externally. Such conductivity change may also lead to some change of effective capacitance in the split gaps. Our proposed schemes can be beneficial to realize many potential devices like tunable modulators, isolation switches, tunable dual band filters, broadband devices, chemical and biological sensors, nonlinear optical devices and enhanced spectroscopic applications.

Funding

Science and Engineering Research Board (SERB) (EMR/2015/001339).

Acknowledgment

Funding D.R.C. gratefully acknowledges the financial support from the SERB, Department of Science and Technology, India (No. EMR/2015/001339).

References

1. J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]  

2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef]  

3. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007). [CrossRef]  

4. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef]  

5. M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017). [CrossRef]  

6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968). [CrossRef]  

7. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015). [CrossRef]  

8. A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010). [CrossRef]  

9. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008). [CrossRef]  

10. A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013). [CrossRef]  

11. R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011). [CrossRef]  

12. U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]  

13. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). [CrossRef]  

14. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef]  

15. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011). [CrossRef]  

16. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014). [CrossRef]  

17. A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016). [CrossRef]  

18. Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017). [CrossRef]  

19. M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018). [CrossRef]  

20. W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018). [CrossRef]  

21. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008). [CrossRef]  

22. C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016). [CrossRef]  

23. L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015). [CrossRef]  

24. D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011). [CrossRef]  

25. D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013). [CrossRef]  

26. Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018). [CrossRef]  

27. S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018). [CrossRef]  

28. T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015). [CrossRef]  

29. M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017). [CrossRef]  

30. D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015). [CrossRef]  

31. S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017). [CrossRef]  

32. H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018). [CrossRef]  

33. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009). [CrossRef]  

34. Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011). [CrossRef]  

35. T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016). [CrossRef]  

36. A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012). [CrossRef]  

37. J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018). [CrossRef]  

38. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007). [CrossRef]  

39. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017). [CrossRef]  

40. Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016). [CrossRef]  

41. O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011). [CrossRef]  

42. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006). [CrossRef]  

43. S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref]
  3. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
    [Crossref]
  4. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref]
  5. M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
    [Crossref]
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  7. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
    [Crossref]
  8. A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
    [Crossref]
  9. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
    [Crossref]
  10. A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
    [Crossref]
  11. R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
    [Crossref]
  12. U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  13. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref]
  14. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  15. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [Crossref]
  16. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  17. A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
    [Crossref]
  18. Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
    [Crossref]
  19. M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
    [Crossref]
  20. W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
    [Crossref]
  21. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
    [Crossref]
  22. C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
    [Crossref]
  23. L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
    [Crossref]
  24. D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
    [Crossref]
  25. D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
    [Crossref]
  26. Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
    [Crossref]
  27. S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
    [Crossref]
  28. T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
    [Crossref]
  29. M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
    [Crossref]
  30. D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
    [Crossref]
  31. S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
    [Crossref]
  32. H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
    [Crossref]
  33. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref]
  34. Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
    [Crossref]
  35. T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
    [Crossref]
  36. A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
    [Crossref]
  37. J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
    [Crossref]
  38. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
    [Crossref]
  39. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  40. Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
    [Crossref]
  41. O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
    [Crossref]
  42. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
    [Crossref]
  43. S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
    [Crossref]

2018 (6)

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

2017 (5)

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

2016 (5)

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]

2015 (4)

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]

2014 (1)

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

2013 (2)

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

2012 (1)

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

2011 (5)

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]

O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]

2010 (1)

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]

2009 (1)

2008 (3)

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

2007 (3)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]

2006 (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

1999 (1)

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

1961 (1)

U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Agarwal, K.

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

Agrawal, G. P.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Al-Naib, I.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Al-Naib, I. A. I.

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Atwater, H. A.

Aydin, K.

Azad, A. K.

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Bachelier, G.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Barh, A.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Benichou, E.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Boyd, E. M.

Brevet, P.-F.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Busch, K.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Cao, T.

T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]

Cao, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Chen, H. T.

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Cheng, L.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Cho, J-H

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

Cho, O.

O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]

Choi, H.

O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]

Cong, L.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Del Fatti, N.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Dicken, M. J.

Fano, U.

U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Feth, N.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Han, S.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

Holden, A.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Husnik, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Islam, M.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

Ji, J.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Jiang, X.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Jonin, C.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Khanikaev, A. B.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Kim, H.

O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]

Kisel, V. N.

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Klein, M. W.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Koch, M.

König, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Krishnamoorthy, H. N. S.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Kumar, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Kumar, G.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

Lagarkov, A. N.

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]

Lai, K. L.

S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]

Lee, C.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Lim, W. X.

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Lin, H.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

Linden, S.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]

Ling, F.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Liu, A. Q.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Liu, C.

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

Liu, H.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Lu, J.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Ma, J.

Manjappa, M.

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Mao, L.

T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]

Menat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Miroshnichenko, A. E.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Morandotti, R.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Nesimoglu, T.

T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]

Niegemann, J.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

O’Hara, J. F.

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Ozaki, T.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Ozbay, E.

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Pal, B. P.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Pitchappa, P.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Pryce, I. M.

Rahman, B. M. A.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Rao, S. J. M.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

Robbins, D.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Rockstuhl, C.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Roy Chowdhury, D.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Russier-Antoine, I.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Sabah, C.

T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Savinov, V.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Shvets, G.

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]

Singh, N.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Singh, R.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Smirnova, D. A.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Solanki, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]

Srivastava, Y. K.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Stewart, W.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Sum, T. C.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Sweatlock, L. A.

Taylor, A. J.

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Tsai, D. P.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Vallée, F.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Varshney, R. K.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Walavalkar, S.

Wang, B.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Wang, C. M.

S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]

Wang, N.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Wang, T.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Wang, X. R.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Wang, Y.

Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Wegener, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]

Wei, C.

T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Wu, C.

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]

Wu, S. R.

S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]

Xiao, B.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

Xiao, S.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Xu, C.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Xu, N.

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Yan, X.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Yang, H.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

Yang, Y.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Yao, J.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Yin, J.

Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]

Yuan, G.

Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]

Zhang, J.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, Y.

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

Zheludev, N. I.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Zhou, S.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Zhu, W. M.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Adv Opt. Mater. (1)

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Adv. Mater. (2)

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Adv. Opt. Mater. (3)

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Appl. Phys. A (1)

Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]

Appl. Phys. Lett. (5)

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Electron. Lett. (1)

O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

IEEE Trans. Circuits Syst. II (1)

T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Appl. Phys. (1)

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]

J. Opt. (1)

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Nanophotonics (1)

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]

Nanotechnology (1)

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Nat. Commun. (1)

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Nat. Nanotechnol. (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]

Nat. Photonics (2)

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Opt. Express (2)

Phys. B (1)

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]

Phys. Rev. (1)

U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (1)

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Phys. Rev. Lett. (4)

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Phys. Scr. (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Sci. Rep. (5)

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]

T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Science (2)

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Sov Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of (a) Unit cell of proposed metamaterial structure with typical dimensions ls = 75 μm, lsrr = 60 μm, w = 6 μm, ${G_1}$ = ${G_2}$ = 3 μm, (b) periodic stack of the proposed structure where external capacitor is introduced only in the lower gap.
Fig. 2.
Fig. 2. (a) Variation of amplitude transmission with frequency when external capacitor is loaded in lower gap of the resonator (red curve) and resonator without external capacitor (black curve) for d = 20 μm. Fano dip at f = 1.2 THz (single capacitor in lower gap) and f = 1.28 THz (no capacitor). Surface current distribution at (b) dipole dip for f = 0.98 THz, (c) EIT peak for f = 1.1 THz, (d) Fano dip for f = 1.28 THz when no capacitor is loaded with the resonator (e) Fano dip for f = 1.2 THz ($\; {C_1} = 0.5\; fF$ loaded at lower split gap).
Fig. 3.
Fig. 3. (a) Amplitude transmission spectra for different asymmetry (d) with $\; {C_1}$ = 0.5 fF (b) Variation of Q-factor and FOM of Fano dip for different values of asymmetric parameter (d) with $\; {C_1}$ of 0.5 fF loaded in the lower gap.
Fig. 4.
Fig. 4. Capacitive tuning of Amplitude Transmission vs frequency spectra for (a) d = 10 μm, (b) d = 20 μm with external capacitor in lower gap only. (c) Resonant dip tuning of various resonance with different capacitor values for d = 10 μm, (d) Electric field distribution at Fano resonant frequency (1.167 THz) for ${C_1}$ = 0.5 fF, (e) Variation of Q-factor and FOM of Fano dip for different values of external capacitor ${C_1}$ and ${C_2}$ for d = 20 μm.
Fig. 5.
Fig. 5. (a) Spectral Contrast of Fano dip for d = 20 μm and different values of$\; {C_1}$, (b) Far field radiation pattern corresponding to d = 20 μm and$\; {C_1}$ = 0.5, 1, and 5 fF.
Fig. 6.
Fig. 6. Capacitive tuning of Amplitude Transmission spectra for d = 10 μm: analytical modelling using Matlab.

Tables (1)

Tables Icon

Table 1. Parameters for theoretical fit for d = 10 μm and various values of C1.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ ( Ω ) = D 2 | ( ( q + Ω ) 2 / ( 1 + Ω 2 ) ) κ + ( 1 κ ) |
x ¨ 1 + γ 1 x ˙ 1 + ω 0 2 x 1 + Ω x 2 = g E x ¨ 2 + γ 2 x ˙ 2 + ( ω 0 + δ ) 2 x 2 + Ω x 1 = 0
a 1 = F 2 g / ( F 1 ( F 2 Ω 2 ) a 2 = Ω g / ( F 1 ( F 2 Ω 2 )
Factor 1: F 1 = ( ω 1 2 ω 2 + i γ 1 ω )  and Factor 2: F 2 = ( ( ω 1 + δ ) 2 ω 2 + i γ 2 ω )
T ( ω ) = 1 | F 2 g / ( F 1 ( F 2 Ω 2 ) | 2
(i) ( ω 0 + δ ) 2 ω 0 2 Ω (ii) ω 0 2 ω 2 2 ω 0 ( ω ω 0 )
Factor 3: F 3 = ( ω ω 0 + i γ 1 / 2 )  and Factor 4: F 4 = ( ω ω 0 δ + i γ 2 / 2 )
T ( ω ) 1 R e { i g 2 F 4 / ( F 3 F 4 Ω 2 / 4 ) }

Metrics