Abstract

We report a directly modulated laser diode system capable of generating picosecond-pulse bursts and nanosecond pulses simultaneously. A generated pulse shape can be arbitrary controlled with a temporal resolution of 1 ns and wavelength of 1064 nm. A two-stage Nd:YVO4 amplifier boosts the pulse energy to hundreds of microjoules to process JIS 304 stainless steel. Characterization of processed holes irradiated by different pulse durations and shapes reveals that the ablation efficiencies with the nanosecond pulses are two times higher than those with the picosecond-pulse bursts. A clear hole with a taper angle of 1.5° is realized by the picosecond-pulse bursts with a 10-ns pulse interval. The combination of pulses with large differences in timescales offers an efficient production line with a single laser system.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Ko, A. Srinivasa, and P. R. Kumar, “A Multi-Component Automated Laser-Origami System for Cyber-Manufacturing,” IOP Conf. Ser.: Mater. Sci. Eng. 272, 012013 (2017).
    [Crossref]
  2. V. I. Babushok, F. C. DeLucia Jr, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
    [Crossref]
  3. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5(8), 1563–1572 (1988).
    [Crossref]
  4. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  5. P. Xi, Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14(1), 014002 (2009).
    [Crossref]
  6. K. A. Mumtaz and N. Hopkinson, “Selective laser melting of thin wall parts using pulse shaping,” J. Mater. Process. Technol. 210(2), 279–287 (2010).
    [Crossref]
  7. S. Banerjee, P. Mason, K. Ertel, P. Jonathan Phillips, M. De Vido, O. Chekhlov, M. Divoky, J. Pilar, J. Smith, T. Butcher, A. Lintern, S. Tomlinson, W. Shaikh, C. Hooker, A. Lucianetti, C. Hernandez-Gomez, T. Mocek, C. Edwards, and J. Collier, “100J-level nanosecond pulsed diode pumped solid state laser,” Opt. Lett. 41(9), 2089–2092 (2016).
    [Crossref]
  8. C. E. Rogers and P. L. Gould, “Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier,” Opt. Express 24(3), 2596–2606 (2016).
    [Crossref]
  9. M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Active pulse shaping for end-pumped Nd:YVO4 amplifier with high gain,” Opt. Lett. 42(6), 1051–1054 (2017).
    [Crossref]
  10. R. A. Meijer, A. S. Stodolna, K. S. E. Eikema, and S. Witte, “High-energy Nd:YAG laser system with arbitrary sub-nanosecond pulse shaping capability,” Opt. Lett. 42(14), 2758–2761 (2017).
    [Crossref]
  11. K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
    [Crossref]
  12. H. Ito, H. Yokoyama, S. Murata, and H. Inaba, “Picosecond optical pulse generation from an R.F. modulated AlGaAs double heterostructure diode laser,” Electron. Lett. 15(23), 738–740 (1979).
    [Crossref]
  13. H. Liu, C. Gao, J. Tao, W. Zhao, and Y. Wang, “Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode,” Opt. Express 16(11), 7888–7893 (2008).
    [Crossref]
  14. T. Chen, H. Liu, W. Kong, and R. Shu, “Burst-mode-operated, sub-nanosecond fiber MOPA system incorporating direct seed-packet shaping,” Opt. Express 24(18), 20963–20972 (2016).
    [Crossref]
  15. W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys. A: Mater. Sci. Process. 98(2), 407–415 (2010).
    [Crossref]
  16. Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
    [Crossref]
  17. J. Lopez, G. Mincuzzi, R. Devillard, Y. Zaouter, C. Hönninger, E. Mottay, and R. Kling, “Ablation efficiency of high average power ultrafast laser,” J. Laser Appl. 27(S2), S28008 (2015).
    [Crossref]

2017 (3)

2016 (3)

2015 (1)

J. Lopez, G. Mincuzzi, R. Devillard, Y. Zaouter, C. Hönninger, E. Mottay, and R. Kling, “Ablation efficiency of high average power ultrafast laser,” J. Laser Appl. 27(S2), S28008 (2015).
[Crossref]

2014 (1)

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

2010 (2)

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys. A: Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

K. A. Mumtaz and N. Hopkinson, “Selective laser melting of thin wall parts using pulse shaping,” J. Mater. Process. Technol. 210(2), 279–287 (2010).
[Crossref]

2009 (1)

P. Xi, Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14(1), 014002 (2009).
[Crossref]

2008 (1)

2006 (2)

V. I. Babushok, F. C. DeLucia Jr, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
[Crossref]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

1988 (1)

1979 (1)

H. Ito, H. Yokoyama, S. Murata, and H. Inaba, “Picosecond optical pulse generation from an R.F. modulated AlGaAs double heterostructure diode laser,” Electron. Lett. 15(23), 738–740 (1979).
[Crossref]

Andegeko, Y.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14(1), 014002 (2009).
[Crossref]

Arakawa, Y.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Babushok, V. I.

V. I. Babushok, F. C. DeLucia Jr, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Banerjee, S.

Butcher, T.

Cao, X.

Chekhlov, O.

Chen, T.

Collier, J.

Dantus, M. M.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14(1), 014002 (2009).
[Crossref]

De Vido, M.

DeLucia Jr, F. C.

V. I. Babushok, F. C. DeLucia Jr, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Devillard, R.

J. Lopez, G. Mincuzzi, R. Devillard, Y. Zaouter, C. Hönninger, E. Mottay, and R. Kling, “Ablation efficiency of high average power ultrafast laser,” J. Laser Appl. 27(S2), S28008 (2015).
[Crossref]

Divoky, M.

Edwards, C.

Eikema, K. S. E.

Ertel, K.

Fu, X.

Gao, C.

Ghiringhelli, F.

Gong, M.

Gottfried, J. L.

V. I. Babushok, F. C. DeLucia Jr, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Gould, P. L.

Heritage, J. P.

Hernandez-Gomez, C.

Hickey, L. M. B.

Hönninger, C.

J. Lopez, G. Mincuzzi, R. Devillard, Y. Zaouter, C. Hönninger, E. Mottay, and R. Kling, “Ablation efficiency of high average power ultrafast laser,” J. Laser Appl. 27(S2), S28008 (2015).
[Crossref]

Hooker, C.

Hopkinson, N.

K. A. Mumtaz and N. Hopkinson, “Selective laser melting of thin wall parts using pulse shaping,” J. Mater. Process. Technol. 210(2), 279–287 (2010).
[Crossref]

Hu, W.

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys. A: Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

Inaba, H.

H. Ito, H. Yokoyama, S. Murata, and H. Inaba, “Picosecond optical pulse generation from an R.F. modulated AlGaAs double heterostructure diode laser,” Electron. Lett. 15(23), 738–740 (1979).
[Crossref]

Ito, H.

H. Ito, H. Yokoyama, S. Murata, and H. Inaba, “Picosecond optical pulse generation from an R.F. modulated AlGaAs double heterostructure diode laser,” Electron. Lett. 15(23), 738–740 (1979).
[Crossref]

Ji, E.

Jonathan Phillips, P.

Kageyama, T.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Kanbe, S.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

King, G.

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys. A: Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

Kirschner, E. M.

Kling, R.

J. Lopez, G. Mincuzzi, R. Devillard, Y. Zaouter, C. Hönninger, E. Mottay, and R. Kling, “Ablation efficiency of high average power ultrafast laser,” J. Laser Appl. 27(S2), S28008 (2015).
[Crossref]

Ko, W. H.

W. H. Ko, A. Srinivasa, and P. R. Kumar, “A Multi-Component Automated Laser-Origami System for Cyber-Manufacturing,” IOP Conf. Ser.: Mater. Sci. Eng. 272, 012013 (2017).
[Crossref]

Kondo, H.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Kong, W.

Kumar, P. R.

W. H. Ko, A. Srinivasa, and P. R. Kumar, “A Multi-Component Automated Laser-Origami System for Cyber-Manufacturing,” IOP Conf. Ser.: Mater. Sci. Eng. 272, 012013 (2017).
[Crossref]

Lintern, A.

Liu, H.

Liu, Q.

Lopez, J.

J. Lopez, G. Mincuzzi, R. Devillard, Y. Zaouter, C. Hönninger, E. Mottay, and R. Kling, “Ablation efficiency of high average power ultrafast laser,” J. Laser Appl. 27(S2), S28008 (2015).
[Crossref]

Lozovoy, V. V.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14(1), 014002 (2009).
[Crossref]

Lucianetti, A.

Maeda, Y.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Malinowski, A.

Mason, P.

Meijer, R. A.

Mincuzzi, G.

J. Lopez, G. Mincuzzi, R. Devillard, Y. Zaouter, C. Hönninger, E. Mottay, and R. Kling, “Ablation efficiency of high average power ultrafast laser,” J. Laser Appl. 27(S2), S28008 (2015).
[Crossref]

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia Jr, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Mocek, T.

Mochida, R.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Mottay, E.

J. Lopez, G. Mincuzzi, R. Devillard, Y. Zaouter, C. Hönninger, E. Mottay, and R. Kling, “Ablation efficiency of high average power ultrafast laser,” J. Laser Appl. 27(S2), S28008 (2015).
[Crossref]

Mumtaz, K. A.

K. A. Mumtaz and N. Hopkinson, “Selective laser melting of thin wall parts using pulse shaping,” J. Mater. Process. Technol. 210(2), 279–287 (2010).
[Crossref]

Munson, C. A.

V. I. Babushok, F. C. DeLucia Jr, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Murata, S.

H. Ito, H. Yokoyama, S. Murata, and H. Inaba, “Picosecond optical pulse generation from an R.F. modulated AlGaAs double heterostructure diode laser,” Electron. Lett. 15(23), 738–740 (1979).
[Crossref]

Nie, M.

Nishi, K.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Pestov, D.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14(1), 014002 (2009).
[Crossref]

Pilar, J.

Richardson, D. J.

Rogers, C. E.

Shaikh, W.

Shin, Y. C.

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys. A: Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

Shu, R.

Smith, J.

Srinivasa, A.

W. H. Ko, A. Srinivasa, and P. R. Kumar, “A Multi-Component Automated Laser-Origami System for Cyber-Manufacturing,” IOP Conf. Ser.: Mater. Sci. Eng. 272, 012013 (2017).
[Crossref]

Stodolna, A. S.

Sugawara, M.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Takada, K.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Takemasa, K.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Tanaka, S.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Tao, J.

Tomlinson, S.

Vu, K. T.

Wang, Y.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5(8), 1563–1572 (1988).
[Crossref]

Witte, S.

Xi, P.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14(1), 014002 (2009).
[Crossref]

Yamamoto, T.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Yokoyama, H.

H. Ito, H. Yokoyama, S. Murata, and H. Inaba, “Picosecond optical pulse generation from an R.F. modulated AlGaAs double heterostructure diode laser,” Electron. Lett. 15(23), 738–740 (1979).
[Crossref]

Yokoyama, Y.

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Zaouter, Y.

J. Lopez, G. Mincuzzi, R. Devillard, Y. Zaouter, C. Hönninger, E. Mottay, and R. Kling, “Ablation efficiency of high average power ultrafast laser,” J. Laser Appl. 27(S2), S28008 (2015).
[Crossref]

Zervas, M. N.

Zhao, W.

Appl. Phys. A: Mater. Sci. Process. (1)

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys. A: Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

Electron. Lett. (1)

H. Ito, H. Yokoyama, S. Murata, and H. Inaba, “Picosecond optical pulse generation from an R.F. modulated AlGaAs double heterostructure diode laser,” Electron. Lett. 15(23), 738–740 (1979).
[Crossref]

IOP Conf. Ser.: Mater. Sci. Eng. (1)

W. H. Ko, A. Srinivasa, and P. R. Kumar, “A Multi-Component Automated Laser-Origami System for Cyber-Manufacturing,” IOP Conf. Ser.: Mater. Sci. Eng. 272, 012013 (2017).
[Crossref]

J. Biomed. Opt. (1)

P. Xi, Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14(1), 014002 (2009).
[Crossref]

J. Laser Appl. (1)

J. Lopez, G. Mincuzzi, R. Devillard, Y. Zaouter, C. Hönninger, E. Mottay, and R. Kling, “Ablation efficiency of high average power ultrafast laser,” J. Laser Appl. 27(S2), S28008 (2015).
[Crossref]

J. Mater. Process. Technol. (1)

K. A. Mumtaz and N. Hopkinson, “Selective laser melting of thin wall parts using pulse shaping,” J. Mater. Process. Technol. 210(2), 279–287 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Fiber Technol. (1)

Y. Yokoyama, K. Takada, T. Kageyama, S. Tanaka, H. Kondo, S. Kanbe, Y. Maeda, R. Mochida, K. Nishi, T. Yamamoto, K. Takemasa, M. Sugawara, and Y. Arakawa, “2014-nm DFB laser diode modules applicable to seeder for pulse-on-demand fiber laser systems,” Opt. Fiber Technol. 20(6), 714–724 (2014).
[Crossref]

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Spectrochim. Acta, Part B (1)

V. I. Babushok, F. C. DeLucia Jr, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the temporally programmable laser system. DFB-LD: distributed feedback grating laser diode; FBG-LD: fiber-Bragg-grating-stabilized LD; ISO: isolator; WDM: wavelength division multiplexer; YDF: ytterbium-doped fiber; BPF: bandpass filter; HWP: half-wave plate; PBS: polarizing beam splitter cube; AL: aspheric lens; L1–2: lenses; L3–4: collimation lenses; L5: focusing lens; FCLD: fiber-coupled LD; MS: mechanical shutter; PD1–2: photodiodes.
Fig. 2.
Fig. 2. Temporal characteristics of the pulse shapes generated from the directly modulated DFB-LD. The applied peak current was 500 mA. (a) 4.9-ns pulse. (b) 20.5-ns pulse. (c) Gain switching operation generating 53-ps pulse. The inset shows a gain switching pulse with a pedestal due to too much bias current. (d) Combination of picosecond and nanosecond pulses.
Fig. 3.
Fig. 3. Energy stability of the directly modulated DFB-LD
Fig. 4.
Fig. 4. Temporal characteristics of the output pulse generated from the Nd:YVO4 amplifiers. The insets show the corresponding input pulse shape. (a) 100-ns square pulse. (b) Picosecond-pulse bursts with 10 pulses. The pulse interval was kept constant at 5 ns. (c) Picosecond-pulse bursts with gradually changing pulse intervals. (d) Combination of picosecond-pulse bursts and nanosecond pulses.
Fig. 5.
Fig. 5. SEM images of the SUS304 processed using different patterns of laser pulses. (a) 100-ns rectangular pulse. (b) 20-ns Gaussian pulse. (c) Burst of five picosecond pulses with 5-ns interval and 71.2-ns pulse. (d) Burst of ten picosecond pulses with 2-ns interval. (e) Burst of ten picosecond pulses with 5-ns interval. (f) Burst of ten picosecond pulses with 10-ns interval. (g) Burst of ten picosecond pulses with 50-ns interval. (h) Single picosecond pulse with 3.3-ms interval. The insets show the corresponding hole exits.
Fig. 6.
Fig. 6. Representative oscilloscope traces showing the pulse trains measured in front of and behind the 50-µm sample. The results of 900 pulses with the 100-ns rectangular pulse shape are shown, indicating that 19 pulses are required to penetrate the sample. The inset shows the enlarged traces.
Fig. 7.
Fig. 7. Comparison of SEM images with and without a post process. (a) 300 bursts of ten picosecond pulses with 2-ns interval. (b) Condition of (a) followed by 300 137-ns Gaussian-like pulses. The insets show the corresponding hole exits.

Tables (1)

Tables Icon

Table 1. Processing results performed with different pulse shapes

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = V f L × Δ τ ,
ρ = W t h E L / E L R R ,

Metrics