Abstract

Over the past few decades, various laboratories have worked on non-destructive methods for the evaluation of residual birefringence of single-mode optical fibers. Among them, polarimetric methods allowing the measurement of polarization eigenmodes represent the best option when it is necessary either to understand or to control the evolution of the state of polarization of light along the fiber. In this work, we present a polarimetric technique based on the use of Mueller calculus and the Poincaré sphere. This is a simple, precise, and non-destructive method allowing the measurement of the azimuth and ellipticity angles of the polarization eigenmode, as well as the total retardation angle modulus-π.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Smith, “Automated birefringence measurement system,” J. Phys. E: Sci. Instrum. 12(10), 927–930 (1979).
    [Crossref]
  2. S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983).
    [Crossref]
  3. A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” J. Lightwave Technol. 3(1), 135–145 (1985).
    [Crossref]
  4. S. Singh and S. Singh, “Limitations on Hybrid WDM/OTDM Multicast Overlay System Imposed by Nonlinear Polarization Effect and its Mitigation,” IEEE Photonics J. 9(6), 1–11 (2017).
    [Crossref]
  5. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5-6), 263–267 (2003).
    [Crossref]
  6. S. Xu, H. Shao, C. Li, F. Xing, Y. Wang, and W. Li, “A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor,” Sensors 17(7), 1556 (2017).
    [Crossref]
  7. T. T. Nguyen, E. C. Lee, and H. Ju, “Bimetal coated optical fiber sensors based on surface plasmon resonance induced change in birefringence and intensity,” Opt. Express 22(5), 5590–5598 (2014).
    [Crossref]
  8. E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, A. François, S. Sukhbi, and S. Surinder, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(1), 12 (2016).
    [Crossref]
  9. P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
    [Crossref]
  10. V. Ramaswamy, R. D. Standley, D. Sze, and W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57(3), 635–651 (1978).
    [Crossref]
  11. D. Tentori, C. Ayala-Díaz, E. Ledezma-Sillas, F. Treviño-Martínez, and A. Garcia-Weidner, “Birefringence matrix for a twisted single-mode fiber: Geometrical contribution,” Opt. Commun. 282(5), 830–834 (2009).
    [Crossref]
  12. D. Tentori and A. Garcia-Weidner, “Right- and left-handed twist in optical fibers,” Rev. mex. fis. 60(1), 69–74 (2014).
  13. S. Y. Lu and R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11(2), 766–773 (1994).
    [Crossref]
  14. T. Chartier, A. Hideur, C. Özkul, F. Sanchez, and G. M. Stéphan, “Measurement of the elliptical birefringence of single-mode optical fibers,” Appl. Opt. 40(30), 5343–5353 (2001).
    [Crossref]
  15. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized light in optics and spectroscopy (Academic Press, 1990).
  16. F. Treviño-Martínez, D. Tentori, C. Ayala-Díaz, and F. J. Mendieta-Jiménez, “Birefringence assessment of single-mode optical fibers,” Opt. Express 13(7), 2556–2563 (2005).
    [Crossref]
  17. D. Tentori, C. Ayala-Díaz, F. Treviño-Martínez, and F. J. Mendieta-Jiménez, “Evaluation of the residual birefringence of single-mode erbium-doped silica fibers,” Opt. Commun. 271(1), 73–80 (2007).
    [Crossref]
  18. B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. Von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
    [Crossref]
  19. E. A. Kuzin, J. E. Ayala, B. I. Escamilla, and J. W. Haus, “Measurements of beat length in short low-birefringence fibers,” Opt. Lett. 26(15), 1134–1136 (2001).
    [Crossref]
  20. Y. Yang, W. Duan, and M. Ye, “High precision measurement technology for beat length of birefringence optical fiber,” Meas. Sci. Technol. 24(2), 025201 (2013).
    [Crossref]
  21. D. Tentori, C. Ayala-Díaz, and A. García-Weidner, “Birefringence Matrix for a Twisted Single-Mode Fiber: Photoelastic and Geometrical Contributions,” Opt. Fiber Technol. 18(1), 14–20 (2012).
    [Crossref]
  22. D. Tentori, A. Garcia-Weidner, and E. Kuzin, “On the birefringence evaluation of single-mode fibers,” Rev. mex. fis. 62(4), 381–392 (2016).

2017 (2)

S. Singh and S. Singh, “Limitations on Hybrid WDM/OTDM Multicast Overlay System Imposed by Nonlinear Polarization Effect and its Mitigation,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

S. Xu, H. Shao, C. Li, F. Xing, Y. Wang, and W. Li, “A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor,” Sensors 17(7), 1556 (2017).
[Crossref]

2016 (2)

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, A. François, S. Sukhbi, and S. Surinder, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(1), 12 (2016).
[Crossref]

D. Tentori, A. Garcia-Weidner, and E. Kuzin, “On the birefringence evaluation of single-mode fibers,” Rev. mex. fis. 62(4), 381–392 (2016).

2014 (2)

2013 (1)

Y. Yang, W. Duan, and M. Ye, “High precision measurement technology for beat length of birefringence optical fiber,” Meas. Sci. Technol. 24(2), 025201 (2013).
[Crossref]

2012 (1)

D. Tentori, C. Ayala-Díaz, and A. García-Weidner, “Birefringence Matrix for a Twisted Single-Mode Fiber: Photoelastic and Geometrical Contributions,” Opt. Fiber Technol. 18(1), 14–20 (2012).
[Crossref]

2009 (1)

D. Tentori, C. Ayala-Díaz, E. Ledezma-Sillas, F. Treviño-Martínez, and A. Garcia-Weidner, “Birefringence matrix for a twisted single-mode fiber: Geometrical contribution,” Opt. Commun. 282(5), 830–834 (2009).
[Crossref]

2007 (1)

D. Tentori, C. Ayala-Díaz, F. Treviño-Martínez, and F. J. Mendieta-Jiménez, “Evaluation of the residual birefringence of single-mode erbium-doped silica fibers,” Opt. Commun. 271(1), 73–80 (2007).
[Crossref]

2005 (1)

2003 (1)

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5-6), 263–267 (2003).
[Crossref]

2001 (2)

1998 (1)

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. Von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

1994 (1)

1985 (1)

A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” J. Lightwave Technol. 3(1), 135–145 (1985).
[Crossref]

1983 (1)

1980 (1)

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[Crossref]

1979 (1)

A. M. Smith, “Automated birefringence measurement system,” J. Phys. E: Sci. Instrum. 12(10), 927–930 (1979).
[Crossref]

1978 (1)

V. Ramaswamy, R. D. Standley, D. Sze, and W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57(3), 635–651 (1978).
[Crossref]

Ayala, J. E.

Ayala-Díaz, C.

D. Tentori, C. Ayala-Díaz, and A. García-Weidner, “Birefringence Matrix for a Twisted Single-Mode Fiber: Photoelastic and Geometrical Contributions,” Opt. Fiber Technol. 18(1), 14–20 (2012).
[Crossref]

D. Tentori, C. Ayala-Díaz, E. Ledezma-Sillas, F. Treviño-Martínez, and A. Garcia-Weidner, “Birefringence matrix for a twisted single-mode fiber: Geometrical contribution,” Opt. Commun. 282(5), 830–834 (2009).
[Crossref]

D. Tentori, C. Ayala-Díaz, F. Treviño-Martínez, and F. J. Mendieta-Jiménez, “Evaluation of the residual birefringence of single-mode erbium-doped silica fibers,” Opt. Commun. 271(1), 73–80 (2007).
[Crossref]

F. Treviño-Martínez, D. Tentori, C. Ayala-Díaz, and F. J. Mendieta-Jiménez, “Birefringence assessment of single-mode optical fibers,” Opt. Express 13(7), 2556–2563 (2005).
[Crossref]

Barlow, A. J.

A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” J. Lightwave Technol. 3(1), 135–145 (1985).
[Crossref]

Chartier, T.

Chipman, R. A.

Duan, W.

Y. Yang, W. Duan, and M. Ye, “High precision measurement technology for beat length of birefringence optical fiber,” Meas. Sci. Technol. 24(2), 025201 (2013).
[Crossref]

Ebendorff-Heidepriem, H.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, A. François, S. Sukhbi, and S. Surinder, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(1), 12 (2016).
[Crossref]

Escamilla, B. I.

François, A.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, A. François, S. Sukhbi, and S. Surinder, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(1), 12 (2016).
[Crossref]

French, W. G.

V. Ramaswamy, R. D. Standley, D. Sze, and W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57(3), 635–651 (1978).
[Crossref]

Garcia-Weidner, A.

D. Tentori, A. Garcia-Weidner, and E. Kuzin, “On the birefringence evaluation of single-mode fibers,” Rev. mex. fis. 62(4), 381–392 (2016).

D. Tentori and A. Garcia-Weidner, “Right- and left-handed twist in optical fibers,” Rev. mex. fis. 60(1), 69–74 (2014).

D. Tentori, C. Ayala-Díaz, E. Ledezma-Sillas, F. Treviño-Martínez, and A. Garcia-Weidner, “Birefringence matrix for a twisted single-mode fiber: Geometrical contribution,” Opt. Commun. 282(5), 830–834 (2009).
[Crossref]

García-Weidner, A.

D. Tentori, C. Ayala-Díaz, and A. García-Weidner, “Birefringence Matrix for a Twisted Single-Mode Fiber: Photoelastic and Geometrical Contributions,” Opt. Fiber Technol. 18(1), 14–20 (2012).
[Crossref]

Gisin, N.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. Von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

Hauge, P. S.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[Crossref]

Haus, J. W.

Hideur, A.

Huttner, B.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. Von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

Jia, P.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, A. François, S. Sukhbi, and S. Surinder, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(1), 12 (2016).
[Crossref]

Ju, H.

Klantsataya, E.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, A. François, S. Sukhbi, and S. Surinder, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(1), 12 (2016).
[Crossref]

Kliger, D. S.

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized light in optics and spectroscopy (Academic Press, 1990).

Kuzin, E.

D. Tentori, A. Garcia-Weidner, and E. Kuzin, “On the birefringence evaluation of single-mode fibers,” Rev. mex. fis. 62(4), 381–392 (2016).

Kuzin, E. A.

Ledezma-Sillas, E.

D. Tentori, C. Ayala-Díaz, E. Ledezma-Sillas, F. Treviño-Martínez, and A. Garcia-Weidner, “Birefringence matrix for a twisted single-mode fiber: Geometrical contribution,” Opt. Commun. 282(5), 830–834 (2009).
[Crossref]

Lee, E. C.

Lewis, J. W.

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized light in optics and spectroscopy (Academic Press, 1990).

Li, C.

S. Xu, H. Shao, C. Li, F. Xing, Y. Wang, and W. Li, “A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor,” Sensors 17(7), 1556 (2017).
[Crossref]

Li, W.

S. Xu, H. Shao, C. Li, F. Xing, Y. Wang, and W. Li, “A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor,” Sensors 17(7), 1556 (2017).
[Crossref]

Lu, S. Y.

Mendieta-Jiménez, F. J.

D. Tentori, C. Ayala-Díaz, F. Treviño-Martínez, and F. J. Mendieta-Jiménez, “Evaluation of the residual birefringence of single-mode erbium-doped silica fibers,” Opt. Commun. 271(1), 73–80 (2007).
[Crossref]

F. Treviño-Martínez, D. Tentori, C. Ayala-Díaz, and F. J. Mendieta-Jiménez, “Birefringence assessment of single-mode optical fibers,” Opt. Express 13(7), 2556–2563 (2005).
[Crossref]

Monro, T.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, A. François, S. Sukhbi, and S. Surinder, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(1), 12 (2016).
[Crossref]

Muller, R. H.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[Crossref]

Nguyen, T. T.

Özkul, C.

Passy, R.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. Von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

Ramaswamy, V.

V. Ramaswamy, R. D. Standley, D. Sze, and W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57(3), 635–651 (1978).
[Crossref]

Randall, C. E.

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized light in optics and spectroscopy (Academic Press, 1990).

Rashleigh, S. C.

Reecht, J.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. Von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

Sanchez, F.

Shao, H.

S. Xu, H. Shao, C. Li, F. Xing, Y. Wang, and W. Li, “A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor,” Sensors 17(7), 1556 (2017).
[Crossref]

Singh, S.

S. Singh and S. Singh, “Limitations on Hybrid WDM/OTDM Multicast Overlay System Imposed by Nonlinear Polarization Effect and its Mitigation,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

S. Singh and S. Singh, “Limitations on Hybrid WDM/OTDM Multicast Overlay System Imposed by Nonlinear Polarization Effect and its Mitigation,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

Smith, A. M.

A. M. Smith, “Automated birefringence measurement system,” J. Phys. E: Sci. Instrum. 12(10), 927–930 (1979).
[Crossref]

Smith, C. G.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[Crossref]

Standley, R. D.

V. Ramaswamy, R. D. Standley, D. Sze, and W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57(3), 635–651 (1978).
[Crossref]

Stéphan, G. M.

Sukhbi, S.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, A. François, S. Sukhbi, and S. Surinder, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(1), 12 (2016).
[Crossref]

Surinder, S.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, A. François, S. Sukhbi, and S. Surinder, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(1), 12 (2016).
[Crossref]

Sze, D.

V. Ramaswamy, R. D. Standley, D. Sze, and W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57(3), 635–651 (1978).
[Crossref]

Tentori, D.

D. Tentori, A. Garcia-Weidner, and E. Kuzin, “On the birefringence evaluation of single-mode fibers,” Rev. mex. fis. 62(4), 381–392 (2016).

D. Tentori and A. Garcia-Weidner, “Right- and left-handed twist in optical fibers,” Rev. mex. fis. 60(1), 69–74 (2014).

D. Tentori, C. Ayala-Díaz, and A. García-Weidner, “Birefringence Matrix for a Twisted Single-Mode Fiber: Photoelastic and Geometrical Contributions,” Opt. Fiber Technol. 18(1), 14–20 (2012).
[Crossref]

D. Tentori, C. Ayala-Díaz, E. Ledezma-Sillas, F. Treviño-Martínez, and A. Garcia-Weidner, “Birefringence matrix for a twisted single-mode fiber: Geometrical contribution,” Opt. Commun. 282(5), 830–834 (2009).
[Crossref]

D. Tentori, C. Ayala-Díaz, F. Treviño-Martínez, and F. J. Mendieta-Jiménez, “Evaluation of the residual birefringence of single-mode erbium-doped silica fibers,” Opt. Commun. 271(1), 73–80 (2007).
[Crossref]

F. Treviño-Martínez, D. Tentori, C. Ayala-Díaz, and F. J. Mendieta-Jiménez, “Birefringence assessment of single-mode optical fibers,” Opt. Express 13(7), 2556–2563 (2005).
[Crossref]

Treviño-Martínez, F.

D. Tentori, C. Ayala-Díaz, E. Ledezma-Sillas, F. Treviño-Martínez, and A. Garcia-Weidner, “Birefringence matrix for a twisted single-mode fiber: Geometrical contribution,” Opt. Commun. 282(5), 830–834 (2009).
[Crossref]

D. Tentori, C. Ayala-Díaz, F. Treviño-Martínez, and F. J. Mendieta-Jiménez, “Evaluation of the residual birefringence of single-mode erbium-doped silica fibers,” Opt. Commun. 271(1), 73–80 (2007).
[Crossref]

F. Treviño-Martínez, D. Tentori, C. Ayala-Díaz, and F. J. Mendieta-Jiménez, “Birefringence assessment of single-mode optical fibers,” Opt. Express 13(7), 2556–2563 (2005).
[Crossref]

Von der Weid, J. P.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. Von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

Wang, Y.

S. Xu, H. Shao, C. Li, F. Xing, Y. Wang, and W. Li, “A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor,” Sensors 17(7), 1556 (2017).
[Crossref]

Wolf, E.

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5-6), 263–267 (2003).
[Crossref]

Xing, F.

S. Xu, H. Shao, C. Li, F. Xing, Y. Wang, and W. Li, “A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor,” Sensors 17(7), 1556 (2017).
[Crossref]

Xu, S.

S. Xu, H. Shao, C. Li, F. Xing, Y. Wang, and W. Li, “A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor,” Sensors 17(7), 1556 (2017).
[Crossref]

Yang, Y.

Y. Yang, W. Duan, and M. Ye, “High precision measurement technology for beat length of birefringence optical fiber,” Meas. Sci. Technol. 24(2), 025201 (2013).
[Crossref]

Ye, M.

Y. Yang, W. Duan, and M. Ye, “High precision measurement technology for beat length of birefringence optical fiber,” Meas. Sci. Technol. 24(2), 025201 (2013).
[Crossref]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

V. Ramaswamy, R. D. Standley, D. Sze, and W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57(3), 635–651 (1978).
[Crossref]

IEEE Photonics J. (1)

S. Singh and S. Singh, “Limitations on Hybrid WDM/OTDM Multicast Overlay System Imposed by Nonlinear Polarization Effect and its Mitigation,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. Von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photonics Technol. Lett. 10(10), 1458–1460 (1998).
[Crossref]

J. Lightwave Technol. (1)

A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” J. Lightwave Technol. 3(1), 135–145 (1985).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. E: Sci. Instrum. (1)

A. M. Smith, “Automated birefringence measurement system,” J. Phys. E: Sci. Instrum. 12(10), 927–930 (1979).
[Crossref]

Meas. Sci. Technol. (1)

Y. Yang, W. Duan, and M. Ye, “High precision measurement technology for beat length of birefringence optical fiber,” Meas. Sci. Technol. 24(2), 025201 (2013).
[Crossref]

Opt. Commun. (2)

D. Tentori, C. Ayala-Díaz, E. Ledezma-Sillas, F. Treviño-Martínez, and A. Garcia-Weidner, “Birefringence matrix for a twisted single-mode fiber: Geometrical contribution,” Opt. Commun. 282(5), 830–834 (2009).
[Crossref]

D. Tentori, C. Ayala-Díaz, F. Treviño-Martínez, and F. J. Mendieta-Jiménez, “Evaluation of the residual birefringence of single-mode erbium-doped silica fibers,” Opt. Commun. 271(1), 73–80 (2007).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

D. Tentori, C. Ayala-Díaz, and A. García-Weidner, “Birefringence Matrix for a Twisted Single-Mode Fiber: Photoelastic and Geometrical Contributions,” Opt. Fiber Technol. 18(1), 14–20 (2012).
[Crossref]

Opt. Lett. (2)

Phys. Lett. A (1)

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5-6), 263–267 (2003).
[Crossref]

Rev. mex. fis. (2)

D. Tentori and A. Garcia-Weidner, “Right- and left-handed twist in optical fibers,” Rev. mex. fis. 60(1), 69–74 (2014).

D. Tentori, A. Garcia-Weidner, and E. Kuzin, “On the birefringence evaluation of single-mode fibers,” Rev. mex. fis. 62(4), 381–392 (2016).

Sensors (2)

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, A. François, S. Sukhbi, and S. Surinder, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(1), 12 (2016).
[Crossref]

S. Xu, H. Shao, C. Li, F. Xing, Y. Wang, and W. Li, “A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor,” Sensors 17(7), 1556 (2017).
[Crossref]

Surf. Sci. (1)

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[Crossref]

Other (1)

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized light in optics and spectroscopy (Academic Press, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Experimental configuration used to characterize a helically wound SMF-28e sample.
Fig. 2.
Fig. 2. Comparison between the simulation and the experimental result of the evolution of the output SOP in a SMF-28e fiber sample (900 µm jacket) using a linear input SOP. The sub-index E indicates experimental results, and sub-index S designates theoretical results.
Fig. 3.
Fig. 3. Comparison between the simulation and the experimental result of the evolution of the output SOP in a SMF-28e fiber sample (3 mm jacket) using a linear input SOP. The sub-index E indicates experimental results, and sub-index S designates theoretical results.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S out = M ret S in ,
M ret = [ 1 0 0 0 0 1 2 sin 2 ( 2 μ ) sin 2 ( δ 2 ) sin ( δ ) sin ( 2 μ ) sin 2 ( δ 2 ) sin ( 4 μ ) 0 sin ( δ ) sin ( 2 μ ) cos ( δ ) sin ( δ ) cos ( 2 μ ) 0 sin 2 ( δ 2 ) sen ( 4 μ ) sin ( δ ) cos ( 2 μ ) 1 2 cos 2 ( 2 μ ) sin 2 ( δ 2 ) ] ,
S in ( α ) = [ 1 cos ( 2 α ) sin ( 2 α ) 0 ] .
S out = R ( θ ) M ret R ( θ ) S in ,
R ( θ ) = [ 1 0 0 0 0 cos ( 2 θ ) sin ( 2 θ ) 0 0 sin ( 2 θ ) cos ( 2 θ ) 0 0 0 0 1 ] .
S out = [ 1 sen ( 2 α ) [ cos 2 ( 2 μ ) sin 2 ( δ 2 ) sin ( 4 θ ) + sin ( δ ) sin ( 2 μ ) ] + cos ( 2 α ) [ cos ( δ ) sin 2 ( 2 θ ) + cos 2 ( 2 θ ) ( 1 2 sin 2 ( δ 2 ) sin 2 ( 2 μ ) ) ] cos ( 2 α ) [ cos 2 ( 2 μ ) sin 2 ( δ 2 ) sin ( 4 θ ) sin ( δ ) sin ( 2 μ ) ] + s in ( 2 α ) [ cos ( δ ) cos 2 ( 2 θ ) + sin 2 ( 2 θ ) ( 1 2 sin 2 ( δ 2 ) sin 2 ( 2 μ ) ) ] cos [ 2 ( α θ ) ] sin 2 ( δ 2 ) sin ( 4 μ ) cos ( 2 μ ) sin ( δ ) sin [ 2 ( α θ ) ] ] ,
2 θ = 2 α in + ( α out 2 α in ) 2 ,
α out = a tan ( S 2 S 1 ) .
S out = [ 1 cos ( 2 θ ) [ cos 2 ( δ 2 ) + cos ( 4 μ ) sin 2 ( δ 2 ) ] + sin ( δ ) sin ( 2 μ ) sin ( 2 θ ) cos ( 2 θ ) sin ( δ ) sin ( 2 μ ) + sin ( 2 θ ) [ cos 2 ( δ 2 ) + cos ( 4 μ ) sin 2 ( δ 2 ) ] sin 2 ( δ 2 ) sin ( 4 μ ) ] .
tan ( 2 μ ) = 1 S 1out cos ( 2 θ ) S 2out sin ( 2 θ ) S 3out ,
cos [ 2 ( α θ ) ] sin 2 ( δ 2 ) sin ( 4 μ ) cos ( 2 μ ) sin ( δ ) sin [ 2 ( α θ ) ] = 0
tan ( δ 2 ) = tan [ 2 ( α θ ) ] sin ( 2 μ )

Metrics