Abstract

We report significant improvement in the performance of TEM00 alexandrite laser operation by employing high power fibre-coupled red diode pumping, novel cavity design, and active direct Shack-Hartmann wavefront sensor measurement of pump-induced lensing. We demonstrate 12.7 W of laser power in low-order ($M^2\sim 5$) mode operation from a compact double-end-pumped cavity, and with novel cavity design, a record power of 7.4 W in TEM00 operation with excellent beam quality ($M^2\leq 1.1$). With single-end pumping, laser power of 4.7 W ($M^2\sim 1.3$) was achieved with slope efficiencies as high as 54.9 %; a record efficiency for red-diode-pumped alexandrite. Using a birefringent filter, continuous laser wavelength tuning from 725-808 nm is achieved in diffraction-limited TEM00 mode, with laser power of 4.7 W at 765 nm, and >1 W across 730-805 nm, which is a higher tunable power than any other directly diode-pumped vibronic laser, to the best of our knowledge.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Litvinova, I. E. Rafailov, A. V. Dunaev, S. G. Sokolovski, and E. U. Rafailov, “Non-invasive biomedical research and diagnostics enabled by innovative compact lasers,” Prog. Quantum Electron. 56, 1–14 (2017).
    [Crossref]
  2. M. Strotkamp, A. Munk, B. Jungbluth, H.-D. Hoffmann, and J. Höffner, “Diode-pumped alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11(4), 413–422 (2019).
    [Crossref]
  3. S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 w narrow linewidth laser source at 780nm for laser cooling and manipulation of rubidium,” Opt. Express 20(8), 8915–8919 (2012).
    [Crossref]
  4. K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond ti:sapphire laser with up to 450 mw average power,” Opt. Express 23(23), 30043–30048 (2015).
    [Crossref]
  5. P. F. Moulton, J. G. Cederberg, K. T. Stevens, G. Foundos, M. Koselja, and J. Preclikova, “Optimized InGaN-diode pumping of ti:sapphire crystals,” Opt. Mater. Express 9(5), 2131–2146 (2019).
    [Crossref]
  6. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped cr:colquiriite lasers,” Opt. Express 17(16), 14374–14388 (2009).
    [Crossref]
  7. U. Demirbas and I. Baali, “Power and efficiency scaling of diode pumped cr:lisaf lasers: 770-1110nm tuning range and frequency doubling to 387-463nm,” Opt. Lett. 40(20), 4615–4618 (2015).
    [Crossref]
  8. U. Demirbas, “Power scaling potential of continuous-wave cr:lisaf and cr:licaf lasers in thin-disk geometry,” Appl. Opt. 57(35), 10207–10217 (2018).
    [Crossref]
  9. J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
    [Crossref]
  10. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers, (Optical Society of America, 1990), p. CL3.
  11. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 w diode end-pumped alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
    [Crossref]
  12. W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw alexandrite lasers under diode end-pumping,” Opt. Express 26(6), 7771–7785 (2018).
    [Crossref]
  13. G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped alexandrite lasers in q-switched and cavity-dumped q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
    [Crossref]
  14. A. Munk, M. Strotkamp, M. Walochnik, B. Jungbluth, M. Traub, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped q-switched alexandrite laser in single longitudinal mode operation with watt-level output power,” Opt. Lett. 43(22), 5492–5495 (2018).
    [Crossref]
  15. A. T. Coney, A. Minassian, and M. J. Damzen, “High-energy diode-pumped alexandrite oscillator and amplifier development for satellite-based lidar,” in Laser Congress 2018 (ASSL), (Optical Society of America, 2018), p. ATu5A.7.
  16. P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “Led-pumped alexandrite laser oscillator and amplifier,” Opt. Lett. 42(20), 4191–4194 (2017).
    [Crossref]
  17. X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave alexandrite ring laser with wavelength tunability,” Opt. Express 26(24), 31129–31136 (2018).
    [Crossref]
  18. M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped alexandrite slab lasers,” Opt. Express 25(10), 11622–11636 (2017).
    [Crossref]
  19. A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
    [Crossref]
  20. G. Tawy and M. J. Damzen, “Tunable, dual wavelength and self-q-switched alexandrite laser using crystal birefringence control,” Opt. Express 27(13), 17507–17520 (2019).
    [Crossref]
  21. I. Yorulmaz, E. Beyatli, A. Kurt, A. Sennaroglu, and U. Demirbas, “Efficient and low-threshold alexandrite laser pumped by a single-mode diode,” Opt. Mater. Express 4(4), 776–789 (2014).
    [Crossref]
  22. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25(1), 107–117 (1986).
    [Crossref]
  23. G. Tawy, J. Wang, and M. J. Damzen, “Pump-induced lensing effects in diode pumped alexandrite lasers,” Opt. Express 27(24), 35865–35883 (2019).
    [Crossref]

2019 (4)

2018 (5)

2017 (3)

2016 (1)

2015 (2)

2014 (2)

2012 (1)

2009 (1)

1986 (1)

1980 (1)

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Altin, P. A.

Aschoff, H. E.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers, (Optical Society of America, 1990), p. CL3.

Baali, I.

Balembois, F.

Barbet, A.

Bennetts, S.

Beyatli, E.

Birge, J. R.

Blanchot, J.-P.

Cederberg, J. G.

Chin, T.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers, (Optical Society of America, 1990), p. CL3.

Close, J. D.

Coney, A. T.

A. T. Coney, A. Minassian, and M. J. Damzen, “High-energy diode-pumped alexandrite oscillator and amplifier development for satellite-based lidar,” in Laser Congress 2018 (ASSL), (Optical Society of America, 2018), p. ATu5A.7.

Damzen, M. J.

G. Tawy and M. J. Damzen, “Tunable, dual wavelength and self-q-switched alexandrite laser using crystal birefringence control,” Opt. Express 27(13), 17507–17520 (2019).
[Crossref]

G. Tawy, J. Wang, and M. J. Damzen, “Pump-induced lensing effects in diode pumped alexandrite lasers,” Opt. Express 27(24), 35865–35883 (2019).
[Crossref]

X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave alexandrite ring laser with wavelength tunability,” Opt. Express 26(24), 31129–31136 (2018).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw alexandrite lasers under diode end-pumping,” Opt. Express 26(6), 7771–7785 (2018).
[Crossref]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped alexandrite slab lasers,” Opt. Express 25(10), 11622–11636 (2017).
[Crossref]

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped alexandrite lasers in q-switched and cavity-dumped q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
[Crossref]

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 w diode end-pumped alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
[Crossref]

A. T. Coney, A. Minassian, and M. J. Damzen, “High-energy diode-pumped alexandrite oscillator and amplifier development for satellite-based lidar,” in Laser Congress 2018 (ASSL), (Optical Society of America, 2018), p. ATu5A.7.

Debs, J. E.

Demirbas, U.

Druon, F.

Dunaev, A. V.

K. S. Litvinova, I. E. Rafailov, A. V. Dunaev, S. G. Sokolovski, and E. U. Rafailov, “Non-invasive biomedical research and diagnostics enabled by innovative compact lasers,” Prog. Quantum Electron. 56, 1–14 (2017).
[Crossref]

Foundos, G.

Fujimoto, J. G.

Georges, P.

Gürel, K.

Hakobyan, S.

Hoffmann, H.-D.

Hoffmann, M.

Höffner, J.

Jenssen, H.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Jungbluth, B.

Kärtner, F. X.

Kerridge-Johns, W. R.

Kolodziejski, L. A.

Koselja, M.

Kuhn, C. C. N.

Kuper, J. W.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers, (Optical Society of America, 1990), p. CL3.

Kurt, A.

Li, D.

Litvinova, K. S.

K. S. Litvinova, I. E. Rafailov, A. V. Dunaev, S. G. Sokolovski, and E. U. Rafailov, “Non-invasive biomedical research and diagnostics enabled by innovative compact lasers,” Prog. Quantum Electron. 56, 1–14 (2017).
[Crossref]

Lübken, F.-J.

Magni, V.

McDonald, G. D.

Minassian, A.

Morris, R.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Moulton, P. F.

Munk, A.

O’Dell, E.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Peterson, O.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Petrich, G. S.

Pichon, P.

Poprawe, R.

Preclikova, J.

Rafailov, E. U.

K. S. Litvinova, I. E. Rafailov, A. V. Dunaev, S. G. Sokolovski, and E. U. Rafailov, “Non-invasive biomedical research and diagnostics enabled by innovative compact lasers,” Prog. Quantum Electron. 56, 1–14 (2017).
[Crossref]

Rafailov, I. E.

K. S. Litvinova, I. E. Rafailov, A. V. Dunaev, S. G. Sokolovski, and E. U. Rafailov, “Non-invasive biomedical research and diagnostics enabled by innovative compact lasers,” Prog. Quantum Electron. 56, 1–14 (2017).
[Crossref]

Resan, B.

Robins, N. P.

Rohrbacher, A.

Sané, S. S.

Saraceno, C. J.

Sathian, J.

Schilt, S.

Sennaroglu, A.

Sheng, X.

Sokolovski, S. G.

K. S. Litvinova, I. E. Rafailov, A. V. Dunaev, S. G. Sokolovski, and E. U. Rafailov, “Non-invasive biomedical research and diagnostics enabled by innovative compact lasers,” Prog. Quantum Electron. 56, 1–14 (2017).
[Crossref]

Stevens, K. T.

Strotkamp, M.

Südmeyer, T.

Tawy, G.

Teppitaksak, A.

Thomas, G. M.

Traub, M.

Walling, J.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Walochnik, M.

Wang, J.

Weingarten, K.

Wittwer, V. J.

Yorulmaz, I.

Appl. Opt. (2)

CEAS Space J. (1)

M. Strotkamp, A. Munk, B. Jungbluth, H.-D. Hoffmann, and J. Höffner, “Diode-pumped alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11(4), 413–422 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Opt. Express (11)

U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped cr:colquiriite lasers,” Opt. Express 17(16), 14374–14388 (2009).
[Crossref]

S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 w narrow linewidth laser source at 780nm for laser cooling and manipulation of rubidium,” Opt. Express 20(8), 8915–8919 (2012).
[Crossref]

K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond ti:sapphire laser with up to 450 mw average power,” Opt. Express 23(23), 30043–30048 (2015).
[Crossref]

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 w diode end-pumped alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw alexandrite lasers under diode end-pumping,” Opt. Express 26(6), 7771–7785 (2018).
[Crossref]

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped alexandrite lasers in q-switched and cavity-dumped q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
[Crossref]

X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave alexandrite ring laser with wavelength tunability,” Opt. Express 26(24), 31129–31136 (2018).
[Crossref]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped alexandrite slab lasers,” Opt. Express 25(10), 11622–11636 (2017).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
[Crossref]

G. Tawy and M. J. Damzen, “Tunable, dual wavelength and self-q-switched alexandrite laser using crystal birefringence control,” Opt. Express 27(13), 17507–17520 (2019).
[Crossref]

G. Tawy, J. Wang, and M. J. Damzen, “Pump-induced lensing effects in diode pumped alexandrite lasers,” Opt. Express 27(24), 35865–35883 (2019).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (2)

Prog. Quantum Electron. (1)

K. S. Litvinova, I. E. Rafailov, A. V. Dunaev, S. G. Sokolovski, and E. U. Rafailov, “Non-invasive biomedical research and diagnostics enabled by innovative compact lasers,” Prog. Quantum Electron. 56, 1–14 (2017).
[Crossref]

Other (2)

A. T. Coney, A. Minassian, and M. J. Damzen, “High-energy diode-pumped alexandrite oscillator and amplifier development for satellite-based lidar,” in Laser Congress 2018 (ASSL), (Optical Society of America, 2018), p. ATu5A.7.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers, (Optical Society of America, 1990), p. CL3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. (a) Schematic of fibre-delivered double-end-pumped compact L-shaped alexandrite laser. (b) Measured Gaussian and ‘top-hat’ pump profile.
Fig. 2.
Fig. 2. Double-end-pumped Gaussian profile pumping results of alexandrite laser: (a) laser power, and (b) laser beam quality as a function of absorbed pump power.
Fig. 3.
Fig. 3. Double-end-pumped top-hat profile pumping results of alexandrite laser: (a) laser power, and (b) laser beam quality as a function of absorbed pump power.
Fig. 4.
Fig. 4. Schematic of single-end-pumped alexandrite laser for enhanced TEM00 operation. (A birefringent filter (BiFi) was used for wavelength tuning in an extended cavity version).
Fig. 5.
Fig. 5. Laser power as a function of absorbed pump power for single-end-pumped alexandrite laser for TEM00 operation with $w_p= {150}\; $µm.
Fig. 6.
Fig. 6. (a) Laser power as a function of absorbed pump power for single-end-pumped alexandrite laser with $w_p= {225}\; $µm (b) Laser power as a function of wavelength.
Fig. 7.
Fig. 7. Laser power measured over 10 minutes.
Fig. 8.
Fig. 8. Schematic of double-end-pumped L-shaped alexandrite laser with $R= {200}\; \textrm{mm}$ radius of curvature convex mirror.
Fig. 9.
Fig. 9. Laser power as a function of absorbed pump power for double-end-pumped TEM00 alexandrite laser with $w_p= {225}\; $µm.
Fig. 10.
Fig. 10. (a) Cavity model using pump-induced lens at pump-face of the crystal. (b) Beam width at the lens ($w_l$) as a function of pump-induced lens focal length ($f$) with different $L_2$. $R= {300}\; \textrm{mm}$ and $L_1= {5}\; \textrm{mm}$ are both fixed.
Fig. 11.
Fig. 11. (a) Shack-Hartmann measured lens dioptric power of pump-induced lens as a function of the absorbed pump power under both non-lasing and lasing conditions. (b) Beam width at crystal ($w_l$) as a function of absorbed pump power using cavity model based on measured lens dioptric power for three cavity lengths $L=L_1+L_2$ ($\textrm {A}= {15}\; \textrm{mm}$; $\textrm {B}= {30}\; \textrm{mm}$; $\textrm {C}= {50}\; \textrm{mm}$) with experimental inset showing experimental laser beam profile.
Fig. 12.
Fig. 12. Laser power as a function of absorbed pump power for single-end-pumped alexandrite laser with (a) $w_p= {225}\; $µm at five temperatures and (b) with $w_p= {300}\; $µm at two temperatures.
Fig. 13.
Fig. 13. Laser mode width radius as a function of absorbed pump power at 10 and 40 °C. Predicted values are based on measurement of the dioptric lens power under lasing conditions. Measured values are direct imaging of the OC.

Metrics