Abstract

We estimated the crack formation process by analyzing the crack type and thermal stress of 2 at.% and 4 at.% ceramic Nd:YAGs damaged by pump power in an end-pumped ceramic laser. Lateral cracks, radial cracks, and median cracks occurred sequentially in the ceramic Nd:YAG when the tensile stress caused by the pump power increased over 160 MPa and decreased.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939 (2000).
    [Crossref]
  2. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
    [Crossref]
  3. R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, T. Narita, J.-Y. Ko, I. Shoji, and T. Taira, “Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser,” Opt. Express 12(10), 2293 (2004).
    [Crossref]
  4. D. L. Kim, C. M. Ok, B. H. Jung, and B. T. Kim, “Optimization of pumping conditions with consideration of the thermal effects at ceramic Nd:YAG laser,” Optik 181, 1085–1090 (2019).
    [Crossref]
  5. D. L. Kim and B. T. Kim, “Laser output power losses in ceramic Nd:YAG lasers due to thermal effects,” Optik 127(20), 9738–9742 (2016).
    [Crossref]
  6. D. L. Kim and B. T. Kim, “Improved measurements of thermally induced birefringence effects in a laser material using a half-wave plate,” Opt. Commun. 283(24), 5111–5116 (2010).
    [Crossref]
  7. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234 (2002).
    [Crossref]
  8. D. L. Kim and B. T. Kim, “Fracture characteristics of ceramic Nd:YAG,” Opt. Express 22(9), 11331 (2014).
    [Crossref]
  9. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1970), Chap. 13.
  10. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses (Dover, 2011), Chap. 8.
  11. David J. Green, An Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, 1998), Chap. 8.
  12. D. Munz and T. Fett, Ceramics (Springer, 1998), Chap. 3.
  13. R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11(2-3), 245–254 (1999).
    [Crossref]
  14. S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
    [Crossref]
  15. Y. Shen, W.-b. Liu, N. Zong, J. Li, Y. Bo, X.-q. Feng, F.-q. Li, Y.-b. Pan, Y.-d. Guo, P.-y. Wang, W. Tu, Q.-j. Peng, J.-y. Zhang, W. Lei, D.-f. Cui, and Z.-y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965 (2014).
    [Crossref]

2019 (1)

D. L. Kim, C. M. Ok, B. H. Jung, and B. T. Kim, “Optimization of pumping conditions with consideration of the thermal effects at ceramic Nd:YAG laser,” Optik 181, 1085–1090 (2019).
[Crossref]

2016 (1)

D. L. Kim and B. T. Kim, “Laser output power losses in ceramic Nd:YAG lasers due to thermal effects,” Optik 127(20), 9738–9742 (2016).
[Crossref]

2014 (2)

2010 (1)

D. L. Kim and B. T. Kim, “Improved measurements of thermally induced birefringence effects in a laser material using a half-wave plate,” Opt. Commun. 283(24), 5111–5116 (2010).
[Crossref]

2004 (2)

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, T. Narita, J.-Y. Ko, I. Shoji, and T. Taira, “Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser,” Opt. Express 12(10), 2293 (2004).
[Crossref]

2002 (1)

2000 (1)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939 (2000).
[Crossref]

1999 (1)

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11(2-3), 245–254 (1999).
[Crossref]

1992 (1)

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Bisson, J.-F.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Bo, Y.

Boley, B. A.

B. A. Boley and J. H. Weiner, Theory of Thermal Stresses (Dover, 2011), Chap. 8.

Bowers, M. S.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Cousins, A. K.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Cui, D.-f.

Feng, X.-q.

Feng, Y.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Fett, T.

D. Munz and T. Fett, Ceramics (Springer, 1998), Chap. 3.

Goodier, J. N.

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1970), Chap. 13.

Green, David J.

David J. Green, An Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, 1998), Chap. 8.

Guo, Y.-d.

Ikesue, A.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234 (2002).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939 (2000).
[Crossref]

Jung, B. H.

D. L. Kim, C. M. Ok, B. H. Jung, and B. T. Kim, “Optimization of pumping conditions with consideration of the thermal effects at ceramic Nd:YAG laser,” Optik 181, 1085–1090 (2019).
[Crossref]

Kaminskii, A. A.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Kawai, R.

Kim, B. T.

D. L. Kim, C. M. Ok, B. H. Jung, and B. T. Kim, “Optimization of pumping conditions with consideration of the thermal effects at ceramic Nd:YAG laser,” Optik 181, 1085–1090 (2019).
[Crossref]

D. L. Kim and B. T. Kim, “Laser output power losses in ceramic Nd:YAG lasers due to thermal effects,” Optik 127(20), 9738–9742 (2016).
[Crossref]

D. L. Kim and B. T. Kim, “Fracture characteristics of ceramic Nd:YAG,” Opt. Express 22(9), 11331 (2014).
[Crossref]

D. L. Kim and B. T. Kim, “Improved measurements of thermally induced birefringence effects in a laser material using a half-wave plate,” Opt. Commun. 283(24), 5111–5116 (2010).
[Crossref]

Kim, D. L.

D. L. Kim, C. M. Ok, B. H. Jung, and B. T. Kim, “Optimization of pumping conditions with consideration of the thermal effects at ceramic Nd:YAG laser,” Optik 181, 1085–1090 (2019).
[Crossref]

D. L. Kim and B. T. Kim, “Laser output power losses in ceramic Nd:YAG lasers due to thermal effects,” Optik 127(20), 9738–9742 (2016).
[Crossref]

D. L. Kim and B. T. Kim, “Fracture characteristics of ceramic Nd:YAG,” Opt. Express 22(9), 11331 (2014).
[Crossref]

D. L. Kim and B. T. Kim, “Improved measurements of thermally induced birefringence effects in a laser material using a half-wave plate,” Opt. Commun. 283(24), 5111–5116 (2010).
[Crossref]

Ko, J.-Y.

Kurimura, S.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234 (2002).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939 (2000).
[Crossref]

Lei, W.

Li, F.-q.

Li, J.

Liu, W.-b.

Lu, J.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Lupei, V.

Miyasaka, Y.

Munz, D.

D. Munz and T. Fett, Ceramics (Springer, 1998), Chap. 3.

Narita, T.

Neuenschwander, B.

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11(2-3), 245–254 (1999).
[Crossref]

Ohtomo, T.

Ok, C. M.

D. L. Kim, C. M. Ok, B. H. Jung, and B. T. Kim, “Optimization of pumping conditions with consideration of the thermal effects at ceramic Nd:YAG laser,” Optik 181, 1085–1090 (2019).
[Crossref]

Otsuka, K.

Pan, Y.-b.

Peng, Q.-j.

Sato, Y.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234 (2002).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939 (2000).
[Crossref]

Seamans, J. F.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Shen, Y.

Shirakawa, A.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Shoji, I.

Taira, T.

Takaichi, K.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Tidwell, S. C.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Timoshenko, S. P.

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1970), Chap. 13.

Tu, W.

Ueda, K.-I.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Uematsu, T.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Wang, P.-y.

Weber, H. P.

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11(2-3), 245–254 (1999).
[Crossref]

Weber, R.

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11(2-3), 245–254 (1999).
[Crossref]

Weiner, J. H.

B. A. Boley and J. H. Weiner, Theory of Thermal Stresses (Dover, 2011), Chap. 8.

Xu, Z.-y.

Yagi, H.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Yanagitani, T.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Yoshida, K.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234 (2002).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939 (2000).
[Crossref]

Zhang, J.-y.

Zong, N.

Appl. Phys. B (1)

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+: Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Appl. Phys. Lett. (1)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Opt. Commun. (1)

D. L. Kim and B. T. Kim, “Improved measurements of thermally induced birefringence effects in a laser material using a half-wave plate,” Opt. Commun. 283(24), 5111–5116 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11(2-3), 245–254 (1999).
[Crossref]

Optik (2)

D. L. Kim, C. M. Ok, B. H. Jung, and B. T. Kim, “Optimization of pumping conditions with consideration of the thermal effects at ceramic Nd:YAG laser,” Optik 181, 1085–1090 (2019).
[Crossref]

D. L. Kim and B. T. Kim, “Laser output power losses in ceramic Nd:YAG lasers due to thermal effects,” Optik 127(20), 9738–9742 (2016).
[Crossref]

Other (4)

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1970), Chap. 13.

B. A. Boley and J. H. Weiner, Theory of Thermal Stresses (Dover, 2011), Chap. 8.

David J. Green, An Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, 1998), Chap. 8.

D. Munz and T. Fett, Ceramics (Springer, 1998), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Crack types in fractured ceramic Nd:YAGs. (a) 2 at.% ceramic Nd:YAG and (b) 4 at.% ceramic Nd:YAG.
Fig. 2.
Fig. 2. Temperature and stress distributions. (a) $2\;\textrm{at}.{\%}$ ceramic Nd:YAG and (b) $4\;\textrm{at}.{\%}$ ceramic Nd:YAG.
Fig. 3.
Fig. 3. Stress distributions. (a) 2 at.% ceramic Nd:YAG and (b) 4 at.% ceramic Nd:YAG.
Fig. 4.
Fig. 4. Crack formation process.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ max = φ α E Δ T rod 1 ν
σ z ( r ) = 1 2 Δ T rod ( 2 r 2 R rod 2 ) ( α E 1 ν )
σ θ θ = P π R 2 ( 1 2 ν 2 ) { cos φ 1 2 se c 2 ( φ 2 ) }

Metrics