Abstract

When a charged particle moves parallel and close to the surface of a metasurface, intense Smith-Purcell radiation can be observed at resonant frequencies. Here, we present a systematic investigation on the Smith-Purcell radiation and evanescent-to-propagating wave conversion in metal-groove metasurfaces. Based on a coupled mode theory, analytic formulas are derived for the resonant frequency, Q-factor, and wave conversion efficiency at resonant frequency. The accuracy of the formulas is verified by numerical simulations. It is found that the resonant frequency and Q-factor depend on the depth and filling ratio of the grooves, respectively. A high Q-factor can be obtained by decreasing the filling ratio of the grooves. As the Q-factor increases, the wave conversion efficiency at resonant frequency increase but exhibits an upper limit. Such an upper bound of efficiency (Cr,max = 4) can be approached at a moderate Q-factor (Q = 16) or an optimal filling ratio of the grooves (fs = 0.05). Our results may benefit the construction of compact high-power free-electron light sources.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient terahertz and infrared Smith–Purcell radiation from metal-slot metasurfaces

Yanan Song, Jiayuan Du, Ningxiao Jiang, Liu Liu, and Xinhua Hu
Opt. Lett. 43(16) 3858-3861 (2018)

Vortex Smith–Purcell radiation generation with holographic grating

Mengxuan Wang, Fang Liu, Yuechai Lin, Kaiyu Cui, Xue Feng, Wei Zhang, and Yidong Huang
Photon. Res. 8(8) 1309-1315 (2020)

Reflection control by metal-dielectric-metal metasurfaces using offset micropatches at infrared wavelengths

Shinpei Ogawa and Masafumi Kimata
OSA Continuum 3(6) 1568-1578 (2020)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
    [Crossref]
  2. P. A. Cerenkov, “Visible emission of clean liquids by action of gamma radiation,” Dokl. Akad. Nauk SSSR 2, 451 (1934).
  3. P. M. van den Berg, “Smith-Purcell radiation from a line charge moving parallel to a reflection grating,” J. Opt. Soc. Am. 63(6), 689–698 (1973).
    [Crossref]
  4. P. M. van den Berg, “Smith-Purcell radiation from a point charge moving parallel to a reflection grating,” J. Opt. Soc. Am. 63(12), 1588–1597 (1973).
    [Crossref]
  5. L. Schachter and A. Ron, “Smith-Purcell free-electron laser,” Phys. Rev. A 40(2), 876–896 (1989).
    [Crossref]
  6. K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
    [Crossref]
  7. K. J. Woods, J. E. Walsh, R. E. Stoner, H. G. Kirk, and R. C. Fernow, “Forward directed Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 74(19), 3808–3811 (1995).
    [Crossref]
  8. J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
    [Crossref]
  9. S. E. Korbly and A. S. Kesar, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
    [Crossref]
  10. Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6(2), 262–267 (2016).
    [Crossref]
  11. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref]
  12. S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref]
  13. N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
    [Crossref]
  14. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref]
  15. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref]
  16. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
    [Crossref]
  17. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
    [Crossref]
  18. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
    [Crossref]
  19. G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
    [Crossref]
  20. Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, and Y. Liu, “Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures,” Adv. Opt. Mater. 7(14), 1801666 (2019).
    [Crossref]
  21. T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
    [Crossref]
  22. Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
    [Crossref]
  23. L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
    [Crossref]
  24. R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
    [Crossref]
  25. I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
    [Crossref]
  26. Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov radiation from photonic bound states in the continuum: towards compact free-electron lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
    [Crossref]
  27. Y. Ye, F. Liu, M. Wang, L. Tai, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Deep-ultraviolet Smith–Purcell radiation,” Optica 6(5), 592–597 (2019).
    [Crossref]
  28. Z. Su, F. Cheng, L. Li, and Y. Liu, “Complete control of Smith-Purcell radiation by graphene metasurfaces,” ACS Photonics 6(8), 1947–1954 (2019).
    [Crossref]
  29. P. Zhang, L. Wang, Y. Zhang, A. Aimidula, and M. Tang, “Intensive vertical orientation Smith-Purcell radiation from the 2D well-array metasurface,” Opt. Express 27(4), 3952 (2019).
    [Crossref]
  30. W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
    [Crossref]
  31. Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858 (2018).
    [Crossref]
  32. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref]
  33. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  34. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099 (1983).
    [Crossref]

2019 (5)

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, and Y. Liu, “Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures,” Adv. Opt. Mater. 7(14), 1801666 (2019).
[Crossref]

Y. Ye, F. Liu, M. Wang, L. Tai, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Deep-ultraviolet Smith–Purcell radiation,” Optica 6(5), 592–597 (2019).
[Crossref]

Z. Su, F. Cheng, L. Li, and Y. Liu, “Complete control of Smith-Purcell radiation by graphene metasurfaces,” ACS Photonics 6(8), 1947–1954 (2019).
[Crossref]

P. Zhang, L. Wang, Y. Zhang, A. Aimidula, and M. Tang, “Intensive vertical orientation Smith-Purcell radiation from the 2D well-array metasurface,” Opt. Express 27(4), 3952 (2019).
[Crossref]

2018 (3)

Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858 (2018).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov radiation from photonic bound states in the continuum: towards compact free-electron lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

2017 (4)

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
[Crossref]

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

2016 (3)

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[Crossref]

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6(2), 262–267 (2016).
[Crossref]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

2015 (1)

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

2014 (3)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref]

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
[Crossref]

2013 (1)

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref]

2012 (1)

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

2006 (1)

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

2005 (2)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

S. E. Korbly and A. S. Kesar, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
[Crossref]

1998 (1)

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

1995 (2)

K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
[Crossref]

K. J. Woods, J. E. Walsh, R. E. Stoner, H. G. Kirk, and R. C. Fernow, “Forward directed Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 74(19), 3808–3811 (1995).
[Crossref]

1989 (1)

L. Schachter and A. Ron, “Smith-Purcell free-electron laser,” Phys. Rev. A 40(2), 876–896 (1989).
[Crossref]

1983 (1)

1973 (2)

1953 (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

1934 (1)

P. A. Cerenkov, “Visible emission of clean liquids by action of gamma radiation,” Dokl. Akad. Nauk SSSR 2, 451 (1934).

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Aimidula, A.

Alexander, R. W.

Altug, H.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

Arie, A.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref]

Cai, Z.

Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, and Y. Liu, “Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures,” Adv. Opt. Mater. 7(14), 1801666 (2019).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Cerenkov, P. A.

P. A. Cerenkov, “Visible emission of clean liquids by action of gamma radiation,” Dokl. Akad. Nauk SSSR 2, 451 (1934).

Chang, H.

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

Chen, H.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[Crossref]

Chen, J.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Chen, J. W.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Chen, L.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Chen, M.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[Crossref]

Cheng, F.

Z. Su, F. Cheng, L. Li, and Y. Liu, “Complete control of Smith-Purcell radiation by graphene metasurfaces,” ACS Photonics 6(8), 1947–1954 (2019).
[Crossref]

Choi, D. Y.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Chu, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Chui, S. T.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Cui, K.

Du, J.

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref]

Feng, X.

Fernow, R. C.

K. J. Woods, J. E. Walsh, R. E. Stoner, H. G. Kirk, and R. C. Fernow, “Forward directed Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 74(19), 3808–3811 (1995).
[Crossref]

Fujita, Y.

K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Garcia-Vidal, F.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

Garcia-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Goldstein, M.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Han, D.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Hasebe, S.

K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
[Crossref]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref]

He, Q.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Hong, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Hong, X.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

Hu, G.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

Hu, X.

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov radiation from photonic bound states in the continuum: towards compact free-electron lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858 (2018).
[Crossref]

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Huang, Y.

Ikezawa, M.

K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
[Crossref]

Ishi, K.

K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
[Crossref]

Jiang, N.

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov radiation from photonic bound states in the continuum: towards compact free-electron lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858 (2018).
[Crossref]

Joannopoulos, J. D.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Kaminer, I.

R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
[Crossref]

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Kenney, M.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Kesar, A. S.

S. E. Korbly and A. S. Kesar, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
[Crossref]

Kimmitt, M. F.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Kirk, H. G.

K. J. Woods, J. E. Walsh, R. E. Stoner, H. G. Kirk, and R. C. Fernow, “Forward directed Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 74(19), 3808–3811 (1995).
[Crossref]

Kivshar, Y. S.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Kleiner, V.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref]

Kobayashi, K.

K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
[Crossref]

Kooi, S. E.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Korbly, S. E.

S. E. Korbly and A. S. Kesar, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
[Crossref]

Kuan, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Lai, Y. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Leitis, A.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Lereah, Y.

R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
[Crossref]

Li, G.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Li, L.

Z. Su, F. Cheng, L. Li, and Y. Liu, “Complete control of Smith-Purcell radiation by graphene metasurfaces,” ACS Photonics 6(8), 1947–1954 (2019).
[Crossref]

Li, T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Li, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Li, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref]

Liu, F.

Liu, L.

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov radiation from photonic bound states in the continuum: towards compact free-electron lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858 (2018).
[Crossref]

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

Liu, M.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Liu, S.

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6(2), 262–267 (2016).
[Crossref]

Liu, W.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
[Crossref]

Liu, X.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Liu, Y.

Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, and Y. Liu, “Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures,” Adv. Opt. Mater. 7(14), 1801666 (2019).
[Crossref]

Z. Su, F. Cheng, L. Li, and Y. Liu, “Complete control of Smith-Purcell radiation by graphene metasurfaces,” ACS Photonics 6(8), 1947–1954 (2019).
[Crossref]

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[Crossref]

Long, L. L.

Lopez, J. J.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Lu, P.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

Lu, S. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Luo, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Ma, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Maguid, E.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref]

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Matsuyama, T.

K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
[Crossref]

Muhlenbernd, H.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Naumov, A.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Neshev, D. N.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Ordal, M. A.

Ozeri, D.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Peng, R.

Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, and Y. Liu, “Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures,” Adv. Opt. Mater. 7(14), 1801666 (2019).
[Crossref]

Platt, C.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Pu, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Purcell, E. M.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Qiu, C. W.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

Remez, R.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
[Crossref]

Ron, A.

L. Schachter and A. Ron, “Smith-Purcell free-electron laser,” Phys. Rev. A 40(2), 876–896 (1989).
[Crossref]

Roques-Carmes, C.

R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
[Crossref]

Schachter, L.

L. Schachter and A. Ron, “Smith-Purcell free-electron laser,” Phys. Rev. A 40(2), 876–896 (1989).
[Crossref]

Shapira, N.

R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
[Crossref]

Shen, Y.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Shibata, Y.

K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
[Crossref]

Shiloh, R.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Shitrit, N.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref]

Skirlo, S. A.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Smith, S. J.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Soljacic, M.

R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
[Crossref]

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Song, Y.

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov radiation from photonic bound states in the continuum: towards compact free-electron lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858 (2018).
[Crossref]

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

Stoner, R. E.

K. J. Woods, J. E. Walsh, R. E. Stoner, H. G. Kirk, and R. C. Fernow, “Forward directed Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 74(19), 3808–3811 (1995).
[Crossref]

Su, V. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Su, Z.

Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, and Y. Liu, “Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures,” Adv. Opt. Mater. 7(14), 1801666 (2019).
[Crossref]

Z. Su, F. Cheng, L. Li, and Y. Liu, “Complete control of Smith-Purcell radiation by graphene metasurfaces,” ACS Photonics 6(8), 1947–1954 (2019).
[Crossref]

Sun, S. L.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Tai, L.

Takahashi, T.

K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
[Crossref]

Takami, K.

K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
[Crossref]

Tang, M.

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Tirole, R.

R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
[Crossref]

Tittl, A.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Tsai, D. P.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Urata, J.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

van den Berg, P. M.

Veksler, D.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref]

Walsh, J. E.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

K. J. Woods, J. E. Walsh, R. E. Stoner, H. G. Kirk, and R. C. Fernow, “Forward directed Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 74(19), 3808–3811 (1995).
[Crossref]

Wang, B.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

Wang, K.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

Wang, L.

Wang, M.

Wang, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Wang, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Wang, Z.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[Crossref]

Ward, C. A.

Woods, K. J.

K. J. Woods, J. E. Walsh, R. E. Stoner, H. G. Kirk, and R. C. Fernow, “Forward directed Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 74(19), 3808–3811 (1995).
[Crossref]

Wu, J.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

Wu, P. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Xiao, S. Y.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Xiong, B.

Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, and Y. Liu, “Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures,” Adv. Opt. Mater. 7(14), 1801666 (2019).
[Crossref]

Xu, B.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Xu, H.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

Xu, Q.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Xu, Y.

Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, and Y. Liu, “Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures,” Adv. Opt. Mater. 7(14), 1801666 (2019).
[Crossref]

Xu, Z.

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
[Crossref]

Yang, Y.

R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
[Crossref]

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Yao, K.

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[Crossref]

Ye, Y.

Yesilkoy, F.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Yin, J.

Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, and Y. Liu, “Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures,” Adv. Opt. Mater. 7(14), 1801666 (2019).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Yulevich, I.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref]

Zentgraf, T.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zhan, T.

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Zhang, C.

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

Zhang, P.

Zhang, S.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zhang, W.

Zhang, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Zhang, Y.

P. Zhang, L. Wang, Y. Zhang, A. Aimidula, and M. Tang, “Intensive vertical orientation Smith-Purcell radiation from the 2D well-array metasurface,” Opt. Express 27(4), 3952 (2019).
[Crossref]

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6(2), 262–267 (2016).
[Crossref]

Zhao, W.

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

Zhao, Z.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Zhen, B.

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Zheng, G.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zhou, L.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Zhou, Y.

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6(2), 262–267 (2016).
[Crossref]

Zhu, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Zi, J.

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov radiation from photonic bound states in the continuum: towards compact free-electron lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

ACS Photonics (1)

Z. Su, F. Cheng, L. Li, and Y. Liu, “Complete control of Smith-Purcell radiation by graphene metasurfaces,” ACS Photonics 6(8), 1947–1954 (2019).
[Crossref]

Adv. Opt. Mater. (1)

Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, and Y. Liu, “Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures,” Adv. Opt. Mater. 7(14), 1801666 (2019).
[Crossref]

Appl. Opt. (1)

Dokl. Akad. Nauk SSSR (1)

P. A. Cerenkov, “Visible emission of clean liquids by action of gamma radiation,” Dokl. Akad. Nauk SSSR 2, 451 (1934).

IEEE Trans. Terahertz Sci. Technol. (1)

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6(2), 262–267 (2016).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Opt. Soc. Am. (2)

Nat. Commun. (1)

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Nat. Mater. (1)

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Nat. Nanotechnol. (1)

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Nat. Photonics (1)

G. Hu, X. Hong, K. Wang, J. Wu, H. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, “Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface,” Nat. Photonics 13(7), 467–472 (2019).
[Crossref]

New J. Phys. (1)

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Phys. Rev. (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Phys. Rev. A (2)

R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith-Purcell radiation,” Phys. Rev. A 96(6), 061801 (2017).
[Crossref]

L. Schachter and A. Ron, “Smith-Purcell free-electron laser,” Phys. Rev. A 40(2), 876–896 (1989).
[Crossref]

Phys. Rev. Appl. (1)

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov radiation from photonic bound states in the continuum: towards compact free-electron lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

Phys. Rev. B (2)

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

T. Zhan, D. Han, X. Hu, X. Liu, S. T. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B 89(24), 245434 (2014).
[Crossref]

Phys. Rev. E (1)

K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, and Y. Fujita, “Observation of coherent Smith-Purcell radiation from short-bunched electrons,” Phys. Rev. E 51(6), R5212–R5215 (1995).
[Crossref]

Phys. Rev. Lett. (5)

K. J. Woods, J. E. Walsh, R. E. Stoner, H. G. Kirk, and R. C. Fernow, “Forward directed Smith-Purcell radiation from relativistic electrons,” Phys. Rev. Lett. 74(19), 3808–3811 (1995).
[Crossref]

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

S. E. Korbly and A. S. Kesar, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
[Crossref]

Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith-Purcell emission with Babinet metasurfaces,” Phys. Rev. Lett. 117(15), 157401 (2016).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref]

Phys. Rev. X (1)

I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. Lopez, R. Remez, S. A. Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder,” Phys. Rev. X 7(1), 011003 (2017).
[Crossref]

Sci. Adv. (1)

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Science (4)

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of the Smith-Purcell emission from a metal-groove metasurface consisting of a metallic slab with a periodic groove array. The grooves have a period of p, depth of h, and width of Δ. The metasurface is in the x-y plane and the grooves are along the y direction. Above and close to the metasurface, a uniform sheet of charged particles moves with a velocity v along the x direction. Consequently, evanescent waves 1 and 2, and propagating waves 3, 4, and 5 can occur in the system, with magnetic fields along the y direction. (b) A unit cell for the metasurface in (a).
Fig. 2.
Fig. 2. (a) Conversion efficiency Cr as a function of frequency for the metal-groove metasurface in Fig. 1(a). The incident evanescent wave 1 has a parallel component of wavevector kx1 = 2π /p, and the outgoing propagating wave has a wavevector along the z direction (i.e., kx3 = 0). The metasurface is made of perfect electric conductor, and has parameters of p = 60 µm, h = 0.8p, and Δ = 0.1p. The conversion efficiency has a maximum at resonant frequency fR . (b) and (c) Distribution of |H| and Re(H) at fR in a unit cell of the metasurface, respectively. In (b), red and white colors relates to positive and zero values. In (c), red and blue colors corresponds to positive and negative values. The swift charged particles have parameters of I0 = 1 A/m, v = pfR, z0 = p/5. The results are obtained by finite-element simulations.
Fig. 3.
Fig. 3. Conversion efficiencies as a function of frequency for metal-groove metasurfaces with different groove width. (a) Δ = 0.4p, (b) Δ = 0.2p, (c) Δ = 0.1p, and (d) Δ = 0.01p. Other parameters are the same with those in Fig. 2(a). The black and red curves are obtained by finite-element simulations and Eq. (10), respectively.
Fig. 4.
Fig. 4. (a) Resonant frequency fR, (b) Q-factor, (c) conversion efficiency Cr at fR and (d) Cr /Q as a function of the ratio of groove width to period. Other parameters are the same with those in Fig. 3. The black and red curves are for metal-groove metasurfaces made of perfect electric conductor, which are obtained by finite-element simulations and Eq. (10), respectively. The green curves are obtained by finite-element simulations for Au-groove metasurfaces with p = 60 µm. Other parameters are the same with those in Fig. 4.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H I = H 1 exp ( i k x 1 x + i k z 1 z ) + H 2 exp ( i k x 1 x i k z 1 z ) + H 3 exp ( i k x 3 x + i k z 3 z ) ,
H I I = H 4 exp ( i k z 4 z ) + H 5 exp ( i k z 4 z )
H I   =   H I I  for  0 < x < Δ ,
z H I   = { z H I I  for  0 < x < Δ 0  for  Δ < x < p   .
b 1 ( H 1 + H 2 ) + b 2 H 3 =   H 4 + H 5 ,
b 3 ( H 1 H 2 ) =   H 4 H 5 ,
b 4 H 3 =   H 4 H 5 ,
H 5 = b 5 H 4 ,
| H 3 | 2 = C r | H 1 | 2 ,
C r = 4 | b 2 b 1 + ( 1 + b 5 ) b 4 ( 1 b 5 ) b 1 + b 4 b 3 | 2 .
C r = 4 1 + 4 Q 2 ( f / f R 1 ) ,
f R = c ( 2 m 1 ) 4 ( h + f s / k x 1 ) ,   Q = ( 2 m 1 ) π 4 f s .
f R = c 4 ( h + f s / k x 1 ) ,   Q = π 4 f s .

Metrics