Abstract

The effect of hybridization of a clay fluorohectorite (FHT) nanosheet with a π-conjugated organic compound, α,β,γ,δ-tetrakis(1-methylpyridinium-4-yl)porphyrin p-toluene-sulfonate (TMPyP), on its optical manipulation is investigated. Although the hybridized FHT is optically trapped essentially in the same manner as that of neat FHT, the hybridization with TMPyP allows for manipulation of FHT with lower laser intensity or a shorter period, or both. This is ascribed to the larger refractive index and polarizability of TMPyP compared with neat FHT.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tweezing and manipulating the distribution of gold nanorods (GNRs) on a tapered optical fiber to develop a plasmonic structure

Navneet Kaur, Joshua O. Trevisanutto, and Gautam Das
OSA Continuum 3(9) 2415-2422 (2020)

Sensitivity and phase response of FBG based acousto-optic sensors for real-time MRI applications

Yusuf Samet Yaras, Dursun Korel Yildirim, Ozgur Kocaturk, and F. Levent Degertekin
OSA Continuum 3(3) 447-458 (2020)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. F. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref]
  2. J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
    [Crossref]
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref]
  4. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
    [Crossref]
  5. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70(7), 3829–3836 (1991).
    [Crossref]
  6. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref]
  7. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
    [Crossref]
  8. H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
    [Crossref]
  9. Y. Tsuboi, T. Shoji, and N. Kitamura, “Optical trapping of amino acids in aqueous solutions,” J. Phys. Chem. C 114(12), 5589–5593 (2010).
    [Crossref]
  10. T. Shoji, N. Kitamura, and Y. Tsuboi, “Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
    [Crossref]
  11. M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone:  implications for cloud-droplet properties,” J. Am. Chem. Soc. 126(51), 16710–16711 (2004).
    [Crossref]
  12. N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, “Control of the molecular alignment inside liquid crystal droplets by use of laser tweezers,” Small 1(6), 656–661 (2005).
    [Crossref]
  13. K. Inaba, K. Imaizumi, K. Katayama, M. Ichiyama, A. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243(14), 3829–3833 (2006).
    [Crossref]
  14. A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
    [Crossref]
  15. H. Ajiki, T. Iida, T. Ishikawa, S. Uryu, and H. Ishihara, “Size- and orientation-selective optical manipulation of single-walled carbon nanotubes: a theoretical study,” Phys. Rev. 80(11), 115437 (2009).
    [Crossref]
  16. N. Miyamoto and T. Nakato, “Liquid crystalline nanosheet colloids with controlled particle size obtained by exfoliating single crystal of layered niobate K4Nb6O17,” J. Phys. Chem. B 108(20), 6152–6159 (2004).
    [Crossref]
  17. T. Nakato, K. Nakamura, Y. Shimada, Y. Shido, T. Houryu, Y. Iimura, and H. Miyata, “Electrooptic eesponse of colloidal liquid crystals of inorganic oxide nanosheets prepared by exfoliation of a layered niobate,” J. Phys. Chem. C 115(18), 8934–8939 (2011).
    [Crossref]
  18. T. Nakato, Y. Nono, E. Mouri, and M. Nakata, “Panoscopic organization of anisotropic colloidal structures from photofunctional inorganic nanosheet liquid crystals,” Phys. Chem. Chem. Phys. 16(3), 955–962 (2014).
    [Crossref]
  19. T. Nakato, Y. Nono, and E. Mouri, “Textural diversity of hierarchical macroscopic structures of colloidal liquid crystalline nanosheets organized under electric fields,” Colloids Surf., A 522(5), 373–381 (2017).
    [Crossref]
  20. M. Tominaga, Y. Higashi, T. Kumamoto, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “Optical trapping and orientation manipulation of 2D inorganic materials using a linearly polarized laser beam,” Clays Clay Miner. 66(2), 138–145 (2018).
    [Crossref]
  21. Y. Higashi, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “A Laser beam induced optical manipulatin of a smectite,” Clay Sci. 22(3), 79–83 (2018).
    [Crossref]
  22. T. Nakato, K. Saito, A. Ikeda, Y. Higashi, Y. Suzuki, and J. Kawamata, “Optical trapping of inorganic oxide nanosheets colloidally dispersed in water: effects of refractivity,” Clay Sci. 23(2), 25–30 (2019).
    [Crossref]
  23. T. Nakato, Y. Higashi, W. Ishitobi, T. Nagashita, M. Tominaga, Y. Suzuki, T. Iwai, and J. Kawamata, “Microscope observation of morphology of colloidally dispersed niobate nanosheets combined with optical trapping,” Langmuir 35(16), 5568–5573 (2019).
    [Crossref]
  24. M. Tominaga, T. Nagashita, T. Kumamoto, Y. Higashi, T. Iwai, T. Nakato, Y. Suzuki, and J. Kawamata, “Radiation pressure induced hierarchical structure of liquid crystalline inorganic nanosheets,” ACS Photonics 5(4), 1288–1293 (2018).
    [Crossref]
  25. T. Nagashita, Y. Higashi, A. Ikeda, M. Tominaga, T. Kumamoto, Y. Suzuki, T. Nakato, and J. Kawamata, “Laser beam induced orientation control of a nanosheet liquid crystal by employing an objective lens with a low numerical aperture,” Clay Sci. 22(1), 13–17 (2018).
    [Crossref]
  26. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals Volume 2 (Academic Press, Orlando, 1987), Chap. III-5.
  27. M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, and J. Breu, “Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity,” Langmuir 29(4), 1280–1285 (2013).
    [Crossref]
  28. S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, and J. Breu, “In-depth insights into the key steps of delamination of charged 2D nanomaterials,” Langmuir 32(41), 10582–10588 (2016).
    [Crossref]
  29. J. Breu, W. Seidl, A. J. Stoll, K. G. Lange, and T. U. Probst, “Charge homogeneity in synthetic fluorohectorite,” Chem. Mater. 13(11), 4213–4220 (2001).
    [Crossref]
  30. Z. Chernia and D. Gill, “Flattening of TMPyP adsorbed on laponite. evidence in observed and calculated UV−vis spectra,” Langmuir 15(5), 1625–1633 (1999).
    [Crossref]
  31. P. M. Dias, D. L. A. De Faria, and V. R. L. Constantino, “Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays,” J. Inclusion Phenom. Mol. Recognit. Chem. 38(1/4), 251–266 (2000).
    [Crossref]
  32. S. Takagi, T. Shimada, T. Yui, and H. Inoue, “High density adsorption of porphyrins onto clay layer without aggregation: characterization of smectite-cationic porphyrin complex,” Chem. Lett. 30(2), 128–129 (2001).
    [Crossref]
  33. Y. Ohtani, H. Nishinaka, S. Hoshino, T. Shimada, and S. Takagi, “Anisotropic photochemical energy transfer in clay/porphyrin system prepared by size-matching effect and Langmuir–Blodgett technique,” J. Photochem. Photobiol., A 313, 15–18 (2015).
    [Crossref]
  34. H. C. van de Hulst, Light Scattering by Small Particles, (Dover Publishing, New York, 1981).
  35. H. Monjushiro, A. Hirai, and H. Watarai, “Size dependence of laser-photophoretic efficiency of polystyrene microparticles in water,” Langmuir 16(22), 8539–8542 (2000).
    [Crossref]
  36. T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
    [Crossref]
  37. C. E. Marshall, “The orientation of anisotropic particles in an electric field. Part I. General. Part II. Application to the determination of the double refraction of clays,” Trans. Faraday Soc. 26, 173–189 (1930).
    [Crossref]
  38. Q. R. Marvin, Chemical Research, Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet (Development & Engineering center, U.S. Army Armament Munitions Chemical Command. 1987), Chap. 4.
  39. I. E. Borissevitchi, A. G. Bezerra-jr, A. S. L. Gomes, R. E. De Araujo, C. B. De Araujo, K. M. T. Oliveira, and M. Trsic, “Z-scan studies and quantum chemical calculations of meso-tetrakis(p-sulfonatophenyl)porphyrin and meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin and their Fe(III) and Mn(III) complexes,” J. Porphyrins Phthalocyanines 05(01), 51–57 (2001).
    [Crossref]
  40. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
    [Crossref]
  41. N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
    [Crossref]
  42. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
    [Crossref]
  43. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. D. Physik 4, 378–445 (1908).
  44. R. Improta, C. Ferrante, R. Bozio, and V. Barone, “The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PCM/TD-DFT study,” Phys. Chem. Chem. Phys. 11(22), 4664–4673 (2009).
    [Crossref]

2020 (1)

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

2019 (2)

T. Nakato, K. Saito, A. Ikeda, Y. Higashi, Y. Suzuki, and J. Kawamata, “Optical trapping of inorganic oxide nanosheets colloidally dispersed in water: effects of refractivity,” Clay Sci. 23(2), 25–30 (2019).
[Crossref]

T. Nakato, Y. Higashi, W. Ishitobi, T. Nagashita, M. Tominaga, Y. Suzuki, T. Iwai, and J. Kawamata, “Microscope observation of morphology of colloidally dispersed niobate nanosheets combined with optical trapping,” Langmuir 35(16), 5568–5573 (2019).
[Crossref]

2018 (4)

M. Tominaga, T. Nagashita, T. Kumamoto, Y. Higashi, T. Iwai, T. Nakato, Y. Suzuki, and J. Kawamata, “Radiation pressure induced hierarchical structure of liquid crystalline inorganic nanosheets,” ACS Photonics 5(4), 1288–1293 (2018).
[Crossref]

T. Nagashita, Y. Higashi, A. Ikeda, M. Tominaga, T. Kumamoto, Y. Suzuki, T. Nakato, and J. Kawamata, “Laser beam induced orientation control of a nanosheet liquid crystal by employing an objective lens with a low numerical aperture,” Clay Sci. 22(1), 13–17 (2018).
[Crossref]

M. Tominaga, Y. Higashi, T. Kumamoto, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “Optical trapping and orientation manipulation of 2D inorganic materials using a linearly polarized laser beam,” Clays Clay Miner. 66(2), 138–145 (2018).
[Crossref]

Y. Higashi, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “A Laser beam induced optical manipulatin of a smectite,” Clay Sci. 22(3), 79–83 (2018).
[Crossref]

2017 (1)

T. Nakato, Y. Nono, and E. Mouri, “Textural diversity of hierarchical macroscopic structures of colloidal liquid crystalline nanosheets organized under electric fields,” Colloids Surf., A 522(5), 373–381 (2017).
[Crossref]

2016 (1)

S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, and J. Breu, “In-depth insights into the key steps of delamination of charged 2D nanomaterials,” Langmuir 32(41), 10582–10588 (2016).
[Crossref]

2015 (1)

Y. Ohtani, H. Nishinaka, S. Hoshino, T. Shimada, and S. Takagi, “Anisotropic photochemical energy transfer in clay/porphyrin system prepared by size-matching effect and Langmuir–Blodgett technique,” J. Photochem. Photobiol., A 313, 15–18 (2015).
[Crossref]

2014 (1)

T. Nakato, Y. Nono, E. Mouri, and M. Nakata, “Panoscopic organization of anisotropic colloidal structures from photofunctional inorganic nanosheet liquid crystals,” Phys. Chem. Chem. Phys. 16(3), 955–962 (2014).
[Crossref]

2013 (2)

M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, and J. Breu, “Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity,” Langmuir 29(4), 1280–1285 (2013).
[Crossref]

T. Shoji, N. Kitamura, and Y. Tsuboi, “Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
[Crossref]

2011 (2)

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref]

T. Nakato, K. Nakamura, Y. Shimada, Y. Shido, T. Houryu, Y. Iimura, and H. Miyata, “Electrooptic eesponse of colloidal liquid crystals of inorganic oxide nanosheets prepared by exfoliation of a layered niobate,” J. Phys. Chem. C 115(18), 8934–8939 (2011).
[Crossref]

2010 (1)

Y. Tsuboi, T. Shoji, and N. Kitamura, “Optical trapping of amino acids in aqueous solutions,” J. Phys. Chem. C 114(12), 5589–5593 (2010).
[Crossref]

2009 (2)

H. Ajiki, T. Iida, T. Ishikawa, S. Uryu, and H. Ishihara, “Size- and orientation-selective optical manipulation of single-walled carbon nanotubes: a theoretical study,” Phys. Rev. 80(11), 115437 (2009).
[Crossref]

R. Improta, C. Ferrante, R. Bozio, and V. Barone, “The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PCM/TD-DFT study,” Phys. Chem. Chem. Phys. 11(22), 4664–4673 (2009).
[Crossref]

2008 (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[Crossref]

2006 (2)

K. Inaba, K. Imaizumi, K. Katayama, M. Ichiyama, A. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243(14), 3829–3833 (2006).
[Crossref]

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref]

2005 (1)

N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, “Control of the molecular alignment inside liquid crystal droplets by use of laser tweezers,” Small 1(6), 656–661 (2005).
[Crossref]

2004 (2)

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone:  implications for cloud-droplet properties,” J. Am. Chem. Soc. 126(51), 16710–16711 (2004).
[Crossref]

N. Miyamoto and T. Nakato, “Liquid crystalline nanosheet colloids with controlled particle size obtained by exfoliating single crystal of layered niobate K4Nb6O17,” J. Phys. Chem. B 108(20), 6152–6159 (2004).
[Crossref]

2002 (1)

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

2001 (3)

I. E. Borissevitchi, A. G. Bezerra-jr, A. S. L. Gomes, R. E. De Araujo, C. B. De Araujo, K. M. T. Oliveira, and M. Trsic, “Z-scan studies and quantum chemical calculations of meso-tetrakis(p-sulfonatophenyl)porphyrin and meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin and their Fe(III) and Mn(III) complexes,” J. Porphyrins Phthalocyanines 05(01), 51–57 (2001).
[Crossref]

J. Breu, W. Seidl, A. J. Stoll, K. G. Lange, and T. U. Probst, “Charge homogeneity in synthetic fluorohectorite,” Chem. Mater. 13(11), 4213–4220 (2001).
[Crossref]

S. Takagi, T. Shimada, T. Yui, and H. Inoue, “High density adsorption of porphyrins onto clay layer without aggregation: characterization of smectite-cationic porphyrin complex,” Chem. Lett. 30(2), 128–129 (2001).
[Crossref]

2000 (2)

P. M. Dias, D. L. A. De Faria, and V. R. L. Constantino, “Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays,” J. Inclusion Phenom. Mol. Recognit. Chem. 38(1/4), 251–266 (2000).
[Crossref]

H. Monjushiro, A. Hirai, and H. Watarai, “Size dependence of laser-photophoretic efficiency of polystyrene microparticles in water,” Langmuir 16(22), 8539–8542 (2000).
[Crossref]

1999 (2)

Z. Chernia and D. Gill, “Flattening of TMPyP adsorbed on laponite. evidence in observed and calculated UV−vis spectra,” Langmuir 15(5), 1625–1633 (1999).
[Crossref]

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

1996 (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[Crossref]

1994 (2)

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[Crossref]

1991 (1)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70(7), 3829–3836 (1991).
[Crossref]

1990 (1)

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

1986 (1)

1930 (1)

C. E. Marshall, “The orientation of anisotropic particles in an electric field. Part I. General. Part II. Application to the determination of the double refraction of clays,” Trans. Faraday Soc. 26, 173–189 (1930).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. D. Physik 4, 378–445 (1908).

Ajiki, H.

H. Ajiki, T. Iida, T. Ishikawa, S. Uryu, and H. Ishihara, “Size- and orientation-selective optical manipulation of single-walled carbon nanotubes: a theoretical study,” Phys. Rev. 80(11), 115437 (2009).
[Crossref]

Albuquerque, R. Q.

S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, and J. Breu, “In-depth insights into the key steps of delamination of charged 2D nanomaterials,” Langmuir 32(41), 10582–10588 (2016).
[Crossref]

Arimondo, E.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[Crossref]

Ashida, A.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichiyama, A. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243(14), 3829–3833 (2006).
[Crossref]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. F. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref]

Barone, V.

R. Improta, C. Ferrante, R. Bozio, and V. Barone, “The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PCM/TD-DFT study,” Phys. Chem. Chem. Phys. 11(22), 4664–4673 (2009).
[Crossref]

Bezerra-jr, A. G.

I. E. Borissevitchi, A. G. Bezerra-jr, A. S. L. Gomes, R. E. De Araujo, C. B. De Araujo, K. M. T. Oliveira, and M. Trsic, “Z-scan studies and quantum chemical calculations of meso-tetrakis(p-sulfonatophenyl)porphyrin and meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin and their Fe(III) and Mn(III) complexes,” J. Porphyrins Phthalocyanines 05(01), 51–57 (2001).
[Crossref]

Bjorkholm, J. F.

Block, S. M.

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref]

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref]

Borissevitchi, I. E.

I. E. Borissevitchi, A. G. Bezerra-jr, A. S. L. Gomes, R. E. De Araujo, C. B. De Araujo, K. M. T. Oliveira, and M. Trsic, “Z-scan studies and quantum chemical calculations of meso-tetrakis(p-sulfonatophenyl)porphyrin and meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin and their Fe(III) and Mn(III) complexes,” J. Porphyrins Phthalocyanines 05(01), 51–57 (2001).
[Crossref]

Bozio, R.

R. Improta, C. Ferrante, R. Bozio, and V. Barone, “The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PCM/TD-DFT study,” Phys. Chem. Chem. Phys. 11(22), 4664–4673 (2009).
[Crossref]

Breu, J.

S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, and J. Breu, “In-depth insights into the key steps of delamination of charged 2D nanomaterials,” Langmuir 32(41), 10582–10588 (2016).
[Crossref]

M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, and J. Breu, “Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity,” Langmuir 29(4), 1280–1285 (2013).
[Crossref]

J. Breu, W. Seidl, A. J. Stoll, K. G. Lange, and T. U. Probst, “Charge homogeneity in synthetic fluorohectorite,” Chem. Mater. 13(11), 4213–4220 (2001).
[Crossref]

Browne, H.

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref]

Chemla, D. S.

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals Volume 2 (Academic Press, Orlando, 1987), Chap. III-5.

Chernia, Z.

Z. Chernia and D. Gill, “Flattening of TMPyP adsorbed on laponite. evidence in observed and calculated UV−vis spectra,” Langmuir 15(5), 1625–1633 (1999).
[Crossref]

Chu, S.

Constantino, V. R. L.

P. M. Dias, D. L. A. De Faria, and V. R. L. Constantino, “Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays,” J. Inclusion Phenom. Mol. Recognit. Chem. 38(1/4), 251–266 (2000).
[Crossref]

De Araujo, C. B.

I. E. Borissevitchi, A. G. Bezerra-jr, A. S. L. Gomes, R. E. De Araujo, C. B. De Araujo, K. M. T. Oliveira, and M. Trsic, “Z-scan studies and quantum chemical calculations of meso-tetrakis(p-sulfonatophenyl)porphyrin and meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin and their Fe(III) and Mn(III) complexes,” J. Porphyrins Phthalocyanines 05(01), 51–57 (2001).
[Crossref]

De Araujo, R. E.

I. E. Borissevitchi, A. G. Bezerra-jr, A. S. L. Gomes, R. E. De Araujo, C. B. De Araujo, K. M. T. Oliveira, and M. Trsic, “Z-scan studies and quantum chemical calculations of meso-tetrakis(p-sulfonatophenyl)porphyrin and meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin and their Fe(III) and Mn(III) complexes,” J. Porphyrins Phthalocyanines 05(01), 51–57 (2001).
[Crossref]

De Faria, D. L. A.

P. M. Dias, D. L. A. De Faria, and V. R. L. Constantino, “Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays,” J. Inclusion Phenom. Mol. Recognit. Chem. 38(1/4), 251–266 (2000).
[Crossref]

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[Crossref]

Dias, P. M.

P. M. Dias, D. L. A. De Faria, and V. R. L. Constantino, “Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays,” J. Inclusion Phenom. Mol. Recognit. Chem. 38(1/4), 251–266 (2000).
[Crossref]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. F. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref]

Feldmann, J.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref]

Ferrante, C.

R. Improta, C. Ferrante, R. Bozio, and V. Barone, “The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PCM/TD-DFT study,” Phys. Chem. Chem. Phys. 11(22), 4664–4673 (2009).
[Crossref]

Finer, J. T.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[Crossref]

Förster, S.

S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, and J. Breu, “In-depth insights into the key steps of delamination of charged 2D nanomaterials,” Langmuir 32(41), 10582–10588 (2016).
[Crossref]

Fujiwara, H.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

Gill, D.

Z. Chernia and D. Gill, “Flattening of TMPyP adsorbed on laponite. evidence in observed and calculated UV−vis spectra,” Langmuir 15(5), 1625–1633 (1999).
[Crossref]

Goldstein, L. S. B.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref]

Gomes, A. S. L.

I. E. Borissevitchi, A. G. Bezerra-jr, A. S. L. Gomes, R. E. De Araujo, C. B. De Araujo, K. M. T. Oliveira, and M. Trsic, “Z-scan studies and quantum chemical calculations of meso-tetrakis(p-sulfonatophenyl)porphyrin and meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin and their Fe(III) and Mn(III) complexes,” J. Porphyrins Phthalocyanines 05(01), 51–57 (2001).
[Crossref]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[Crossref]

Higashi, Y.

T. Nakato, K. Saito, A. Ikeda, Y. Higashi, Y. Suzuki, and J. Kawamata, “Optical trapping of inorganic oxide nanosheets colloidally dispersed in water: effects of refractivity,” Clay Sci. 23(2), 25–30 (2019).
[Crossref]

T. Nakato, Y. Higashi, W. Ishitobi, T. Nagashita, M. Tominaga, Y. Suzuki, T. Iwai, and J. Kawamata, “Microscope observation of morphology of colloidally dispersed niobate nanosheets combined with optical trapping,” Langmuir 35(16), 5568–5573 (2019).
[Crossref]

M. Tominaga, T. Nagashita, T. Kumamoto, Y. Higashi, T. Iwai, T. Nakato, Y. Suzuki, and J. Kawamata, “Radiation pressure induced hierarchical structure of liquid crystalline inorganic nanosheets,” ACS Photonics 5(4), 1288–1293 (2018).
[Crossref]

M. Tominaga, Y. Higashi, T. Kumamoto, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “Optical trapping and orientation manipulation of 2D inorganic materials using a linearly polarized laser beam,” Clays Clay Miner. 66(2), 138–145 (2018).
[Crossref]

Y. Higashi, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “A Laser beam induced optical manipulatin of a smectite,” Clay Sci. 22(3), 79–83 (2018).
[Crossref]

T. Nagashita, Y. Higashi, A. Ikeda, M. Tominaga, T. Kumamoto, Y. Suzuki, T. Nakato, and J. Kawamata, “Laser beam induced orientation control of a nanosheet liquid crystal by employing an objective lens with a low numerical aperture,” Clay Sci. 22(1), 13–17 (2018).
[Crossref]

Hirai, A.

H. Monjushiro, A. Hirai, and H. Watarai, “Size dependence of laser-photophoretic efficiency of polystyrene microparticles in water,” Langmuir 16(22), 8539–8542 (2000).
[Crossref]

Hirsemann, D.

M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, and J. Breu, “Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity,” Langmuir 29(4), 1280–1285 (2013).
[Crossref]

Hoshino, S.

Y. Ohtani, H. Nishinaka, S. Hoshino, T. Shimada, and S. Takagi, “Anisotropic photochemical energy transfer in clay/porphyrin system prepared by size-matching effect and Langmuir–Blodgett technique,” J. Photochem. Photobiol., A 313, 15–18 (2015).
[Crossref]

Houryu, T.

T. Nakato, K. Nakamura, Y. Shimada, Y. Shido, T. Houryu, Y. Iimura, and H. Miyata, “Electrooptic eesponse of colloidal liquid crystals of inorganic oxide nanosheets prepared by exfoliation of a layered niobate,” J. Phys. Chem. C 115(18), 8934–8939 (2011).
[Crossref]

Ichiyama, M.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichiyama, A. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243(14), 3829–3833 (2006).
[Crossref]

Iida, T.

H. Ajiki, T. Iida, T. Ishikawa, S. Uryu, and H. Ishihara, “Size- and orientation-selective optical manipulation of single-walled carbon nanotubes: a theoretical study,” Phys. Rev. 80(11), 115437 (2009).
[Crossref]

K. Inaba, K. Imaizumi, K. Katayama, M. Ichiyama, A. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243(14), 3829–3833 (2006).
[Crossref]

Iimura, Y.

T. Nakato, K. Nakamura, Y. Shimada, Y. Shido, T. Houryu, Y. Iimura, and H. Miyata, “Electrooptic eesponse of colloidal liquid crystals of inorganic oxide nanosheets prepared by exfoliation of a layered niobate,” J. Phys. Chem. C 115(18), 8934–8939 (2011).
[Crossref]

Ikeda, A.

T. Nakato, K. Saito, A. Ikeda, Y. Higashi, Y. Suzuki, and J. Kawamata, “Optical trapping of inorganic oxide nanosheets colloidally dispersed in water: effects of refractivity,” Clay Sci. 23(2), 25–30 (2019).
[Crossref]

T. Nagashita, Y. Higashi, A. Ikeda, M. Tominaga, T. Kumamoto, Y. Suzuki, T. Nakato, and J. Kawamata, “Laser beam induced orientation control of a nanosheet liquid crystal by employing an objective lens with a low numerical aperture,” Clay Sci. 22(1), 13–17 (2018).
[Crossref]

Imaizumi, K.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichiyama, A. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243(14), 3829–3833 (2006).
[Crossref]

Improta, R.

R. Improta, C. Ferrante, R. Bozio, and V. Barone, “The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PCM/TD-DFT study,” Phys. Chem. Chem. Phys. 11(22), 4664–4673 (2009).
[Crossref]

Inaba, K.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichiyama, A. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243(14), 3829–3833 (2006).
[Crossref]

Inaba, T.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

Inoue, H.

S. Takagi, T. Shimada, T. Yui, and H. Inoue, “High density adsorption of porphyrins onto clay layer without aggregation: characterization of smectite-cationic porphyrin complex,” Chem. Lett. 30(2), 128–129 (2001).
[Crossref]

Ishihara, H.

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

H. Ajiki, T. Iida, T. Ishikawa, S. Uryu, and H. Ishihara, “Size- and orientation-selective optical manipulation of single-walled carbon nanotubes: a theoretical study,” Phys. Rev. 80(11), 115437 (2009).
[Crossref]

K. Inaba, K. Imaizumi, K. Katayama, M. Ichiyama, A. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243(14), 3829–3833 (2006).
[Crossref]

Ishikawa, T.

H. Ajiki, T. Iida, T. Ishikawa, S. Uryu, and H. Ishihara, “Size- and orientation-selective optical manipulation of single-walled carbon nanotubes: a theoretical study,” Phys. Rev. 80(11), 115437 (2009).
[Crossref]

Ishitobi, W.

T. Nakato, Y. Higashi, W. Ishitobi, T. Nagashita, M. Tominaga, Y. Suzuki, T. Iwai, and J. Kawamata, “Microscope observation of morphology of colloidally dispersed niobate nanosheets combined with optical trapping,” Langmuir 35(16), 5568–5573 (2019).
[Crossref]

Itoh, K.

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

Itoh, T.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichiyama, A. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243(14), 3829–3833 (2006).
[Crossref]

Iwai, T.

T. Nakato, Y. Higashi, W. Ishitobi, T. Nagashita, M. Tominaga, Y. Suzuki, T. Iwai, and J. Kawamata, “Microscope observation of morphology of colloidally dispersed niobate nanosheets combined with optical trapping,” Langmuir 35(16), 5568–5573 (2019).
[Crossref]

M. Tominaga, T. Nagashita, T. Kumamoto, Y. Higashi, T. Iwai, T. Nakato, Y. Suzuki, and J. Kawamata, “Radiation pressure induced hierarchical structure of liquid crystalline inorganic nanosheets,” ACS Photonics 5(4), 1288–1293 (2018).
[Crossref]

Juodkazis, S.

N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, “Control of the molecular alignment inside liquid crystal droplets by use of laser tweezers,” Small 1(6), 656–661 (2005).
[Crossref]

Kalo, H.

M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, and J. Breu, “Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity,” Langmuir 29(4), 1280–1285 (2013).
[Crossref]

Katayama, K.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichiyama, A. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243(14), 3829–3833 (2006).
[Crossref]

Kawamata, J.

T. Nakato, Y. Higashi, W. Ishitobi, T. Nagashita, M. Tominaga, Y. Suzuki, T. Iwai, and J. Kawamata, “Microscope observation of morphology of colloidally dispersed niobate nanosheets combined with optical trapping,” Langmuir 35(16), 5568–5573 (2019).
[Crossref]

T. Nakato, K. Saito, A. Ikeda, Y. Higashi, Y. Suzuki, and J. Kawamata, “Optical trapping of inorganic oxide nanosheets colloidally dispersed in water: effects of refractivity,” Clay Sci. 23(2), 25–30 (2019).
[Crossref]

M. Tominaga, Y. Higashi, T. Kumamoto, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “Optical trapping and orientation manipulation of 2D inorganic materials using a linearly polarized laser beam,” Clays Clay Miner. 66(2), 138–145 (2018).
[Crossref]

Y. Higashi, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “A Laser beam induced optical manipulatin of a smectite,” Clay Sci. 22(3), 79–83 (2018).
[Crossref]

T. Nagashita, Y. Higashi, A. Ikeda, M. Tominaga, T. Kumamoto, Y. Suzuki, T. Nakato, and J. Kawamata, “Laser beam induced orientation control of a nanosheet liquid crystal by employing an objective lens with a low numerical aperture,” Clay Sci. 22(1), 13–17 (2018).
[Crossref]

M. Tominaga, T. Nagashita, T. Kumamoto, Y. Higashi, T. Iwai, T. Nakato, Y. Suzuki, and J. Kawamata, “Radiation pressure induced hierarchical structure of liquid crystalline inorganic nanosheets,” ACS Photonics 5(4), 1288–1293 (2018).
[Crossref]

King, M. D.

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone:  implications for cloud-droplet properties,” J. Am. Chem. Soc. 126(51), 16710–16711 (2004).
[Crossref]

Kitamura, N.

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

T. Shoji, N. Kitamura, and Y. Tsuboi, “Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
[Crossref]

Y. Tsuboi, T. Shoji, and N. Kitamura, “Optical trapping of amino acids in aqueous solutions,” J. Phys. Chem. C 114(12), 5589–5593 (2010).
[Crossref]

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70(7), 3829–3836 (1991).
[Crossref]

Klenerman, D.

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref]

Koshioka, M.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70(7), 3829–3836 (1991).
[Crossref]

Kumamoto, T.

T. Nagashita, Y. Higashi, A. Ikeda, M. Tominaga, T. Kumamoto, Y. Suzuki, T. Nakato, and J. Kawamata, “Laser beam induced orientation control of a nanosheet liquid crystal by employing an objective lens with a low numerical aperture,” Clay Sci. 22(1), 13–17 (2018).
[Crossref]

M. Tominaga, T. Nagashita, T. Kumamoto, Y. Higashi, T. Iwai, T. Nakato, Y. Suzuki, and J. Kawamata, “Radiation pressure induced hierarchical structure of liquid crystalline inorganic nanosheets,” ACS Photonics 5(4), 1288–1293 (2018).
[Crossref]

M. Tominaga, Y. Higashi, T. Kumamoto, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “Optical trapping and orientation manipulation of 2D inorganic materials using a linearly polarized laser beam,” Clays Clay Miner. 66(2), 138–145 (2018).
[Crossref]

Kunz, D. A.

M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, and J. Breu, “Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity,” Langmuir 29(4), 1280–1285 (2013).
[Crossref]

Lange, K. G.

J. Breu, W. Seidl, A. J. Stoll, K. G. Lange, and T. U. Probst, “Charge homogeneity in synthetic fluorohectorite,” Chem. Mater. 13(11), 4213–4220 (2001).
[Crossref]

Li, H.

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref]

Lutich, A. A.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref]

Malagnino, N.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

Marshall, C. E.

C. E. Marshall, “The orientation of anisotropic particles in an electric field. Part I. General. Part II. Application to the determination of the double refraction of clays,” Trans. Faraday Soc. 26, 173–189 (1930).
[Crossref]

Martin, T.

S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, and J. Breu, “In-depth insights into the key steps of delamination of charged 2D nanomaterials,” Langmuir 32(41), 10582–10588 (2016).
[Crossref]

Marvin, Q. R.

Q. R. Marvin, Chemical Research, Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet (Development & Engineering center, U.S. Army Armament Munitions Chemical Command. 1987), Chap. 4.

Masuhara, H.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70(7), 3829–3836 (1991).
[Crossref]

Matsuo, S.

N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, “Control of the molecular alignment inside liquid crystal droplets by use of laser tweezers,” Small 1(6), 656–661 (2005).
[Crossref]

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. D. Physik 4, 378–445 (1908).

Misawa, H.

N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, “Control of the molecular alignment inside liquid crystal droplets by use of laser tweezers,” Small 1(6), 656–661 (2005).
[Crossref]

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70(7), 3829–3836 (1991).
[Crossref]

Miyamoto, N.

N. Miyamoto and T. Nakato, “Liquid crystalline nanosheet colloids with controlled particle size obtained by exfoliating single crystal of layered niobate K4Nb6O17,” J. Phys. Chem. B 108(20), 6152–6159 (2004).
[Crossref]

Miyata, H.

T. Nakato, K. Nakamura, Y. Shimada, Y. Shido, T. Houryu, Y. Iimura, and H. Miyata, “Electrooptic eesponse of colloidal liquid crystals of inorganic oxide nanosheets prepared by exfoliation of a layered niobate,” J. Phys. Chem. C 115(18), 8934–8939 (2011).
[Crossref]

Miyawaki, S.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

Monjushiro, H.

H. Monjushiro, A. Hirai, and H. Watarai, “Size dependence of laser-photophoretic efficiency of polystyrene microparticles in water,” Langmuir 16(22), 8539–8542 (2000).
[Crossref]

Mouri, E.

T. Nakato, Y. Nono, and E. Mouri, “Textural diversity of hierarchical macroscopic structures of colloidal liquid crystalline nanosheets organized under electric fields,” Colloids Surf., A 522(5), 373–381 (2017).
[Crossref]

T. Nakato, Y. Nono, E. Mouri, and M. Nakata, “Panoscopic organization of anisotropic colloidal structures from photofunctional inorganic nanosheet liquid crystals,” Phys. Chem. Chem. Phys. 16(3), 955–962 (2014).
[Crossref]

Murakoshi, K.

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

Murazawa, N.

N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, “Control of the molecular alignment inside liquid crystal droplets by use of laser tweezers,” Small 1(6), 656–661 (2005).
[Crossref]

Nagashita, T.

T. Nakato, Y. Higashi, W. Ishitobi, T. Nagashita, M. Tominaga, Y. Suzuki, T. Iwai, and J. Kawamata, “Microscope observation of morphology of colloidally dispersed niobate nanosheets combined with optical trapping,” Langmuir 35(16), 5568–5573 (2019).
[Crossref]

M. Tominaga, T. Nagashita, T. Kumamoto, Y. Higashi, T. Iwai, T. Nakato, Y. Suzuki, and J. Kawamata, “Radiation pressure induced hierarchical structure of liquid crystalline inorganic nanosheets,” ACS Photonics 5(4), 1288–1293 (2018).
[Crossref]

M. Tominaga, Y. Higashi, T. Kumamoto, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “Optical trapping and orientation manipulation of 2D inorganic materials using a linearly polarized laser beam,” Clays Clay Miner. 66(2), 138–145 (2018).
[Crossref]

Y. Higashi, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “A Laser beam induced optical manipulatin of a smectite,” Clay Sci. 22(3), 79–83 (2018).
[Crossref]

T. Nagashita, Y. Higashi, A. Ikeda, M. Tominaga, T. Kumamoto, Y. Suzuki, T. Nakato, and J. Kawamata, “Laser beam induced orientation control of a nanosheet liquid crystal by employing an objective lens with a low numerical aperture,” Clay Sci. 22(1), 13–17 (2018).
[Crossref]

Nakamura, K.

T. Nakato, K. Nakamura, Y. Shimada, Y. Shido, T. Houryu, Y. Iimura, and H. Miyata, “Electrooptic eesponse of colloidal liquid crystals of inorganic oxide nanosheets prepared by exfoliation of a layered niobate,” J. Phys. Chem. C 115(18), 8934–8939 (2011).
[Crossref]

Nakata, M.

T. Nakato, Y. Nono, E. Mouri, and M. Nakata, “Panoscopic organization of anisotropic colloidal structures from photofunctional inorganic nanosheet liquid crystals,” Phys. Chem. Chem. Phys. 16(3), 955–962 (2014).
[Crossref]

Nakato, T.

T. Nakato, K. Saito, A. Ikeda, Y. Higashi, Y. Suzuki, and J. Kawamata, “Optical trapping of inorganic oxide nanosheets colloidally dispersed in water: effects of refractivity,” Clay Sci. 23(2), 25–30 (2019).
[Crossref]

T. Nakato, Y. Higashi, W. Ishitobi, T. Nagashita, M. Tominaga, Y. Suzuki, T. Iwai, and J. Kawamata, “Microscope observation of morphology of colloidally dispersed niobate nanosheets combined with optical trapping,” Langmuir 35(16), 5568–5573 (2019).
[Crossref]

M. Tominaga, T. Nagashita, T. Kumamoto, Y. Higashi, T. Iwai, T. Nakato, Y. Suzuki, and J. Kawamata, “Radiation pressure induced hierarchical structure of liquid crystalline inorganic nanosheets,” ACS Photonics 5(4), 1288–1293 (2018).
[Crossref]

Y. Higashi, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “A Laser beam induced optical manipulatin of a smectite,” Clay Sci. 22(3), 79–83 (2018).
[Crossref]

M. Tominaga, Y. Higashi, T. Kumamoto, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “Optical trapping and orientation manipulation of 2D inorganic materials using a linearly polarized laser beam,” Clays Clay Miner. 66(2), 138–145 (2018).
[Crossref]

T. Nagashita, Y. Higashi, A. Ikeda, M. Tominaga, T. Kumamoto, Y. Suzuki, T. Nakato, and J. Kawamata, “Laser beam induced orientation control of a nanosheet liquid crystal by employing an objective lens with a low numerical aperture,” Clay Sci. 22(1), 13–17 (2018).
[Crossref]

T. Nakato, Y. Nono, and E. Mouri, “Textural diversity of hierarchical macroscopic structures of colloidal liquid crystalline nanosheets organized under electric fields,” Colloids Surf., A 522(5), 373–381 (2017).
[Crossref]

T. Nakato, Y. Nono, E. Mouri, and M. Nakata, “Panoscopic organization of anisotropic colloidal structures from photofunctional inorganic nanosheet liquid crystals,” Phys. Chem. Chem. Phys. 16(3), 955–962 (2014).
[Crossref]

T. Nakato, K. Nakamura, Y. Shimada, Y. Shido, T. Houryu, Y. Iimura, and H. Miyata, “Electrooptic eesponse of colloidal liquid crystals of inorganic oxide nanosheets prepared by exfoliation of a layered niobate,” J. Phys. Chem. C 115(18), 8934–8939 (2011).
[Crossref]

N. Miyamoto and T. Nakato, “Liquid crystalline nanosheet colloids with controlled particle size obtained by exfoliating single crystal of layered niobate K4Nb6O17,” J. Phys. Chem. B 108(20), 6152–6159 (2004).
[Crossref]

Nedev, S.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref]

Nishinaka, H.

Y. Ohtani, H. Nishinaka, S. Hoshino, T. Shimada, and S. Takagi, “Anisotropic photochemical energy transfer in clay/porphyrin system prepared by size-matching effect and Langmuir–Blodgett technique,” J. Photochem. Photobiol., A 313, 15–18 (2015).
[Crossref]

Nono, Y.

T. Nakato, Y. Nono, and E. Mouri, “Textural diversity of hierarchical macroscopic structures of colloidal liquid crystalline nanosheets organized under electric fields,” Colloids Surf., A 522(5), 373–381 (2017).
[Crossref]

T. Nakato, Y. Nono, E. Mouri, and M. Nakata, “Panoscopic organization of anisotropic colloidal structures from photofunctional inorganic nanosheet liquid crystals,” Phys. Chem. Chem. Phys. 16(3), 955–962 (2014).
[Crossref]

Ohlinger, A.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref]

Ohtani, Y.

Y. Ohtani, H. Nishinaka, S. Hoshino, T. Shimada, and S. Takagi, “Anisotropic photochemical energy transfer in clay/porphyrin system prepared by size-matching effect and Langmuir–Blodgett technique,” J. Photochem. Photobiol., A 313, 15–18 (2015).
[Crossref]

Oliveira, K. M. T.

I. E. Borissevitchi, A. G. Bezerra-jr, A. S. L. Gomes, R. E. De Araujo, C. B. De Araujo, K. M. T. Oliveira, and M. Trsic, “Z-scan studies and quantum chemical calculations of meso-tetrakis(p-sulfonatophenyl)porphyrin and meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin and their Fe(III) and Mn(III) complexes,” J. Porphyrins Phthalocyanines 05(01), 51–57 (2001).
[Crossref]

Pesce, G.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

Probst, T. U.

J. Breu, W. Seidl, A. J. Stoll, K. G. Lange, and T. U. Probst, “Charge homogeneity in synthetic fluorohectorite,” Chem. Mater. 13(11), 4213–4220 (2001).
[Crossref]

Putz, B.

M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, and J. Breu, “Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity,” Langmuir 29(4), 1280–1285 (2013).
[Crossref]

Rosenfeldt, S.

S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, and J. Breu, “In-depth insights into the key steps of delamination of charged 2D nanomaterials,” Langmuir 32(41), 10582–10588 (2016).
[Crossref]

Saito, K.

T. Nakato, K. Saito, A. Ikeda, Y. Higashi, Y. Suzuki, and J. Kawamata, “Optical trapping of inorganic oxide nanosheets colloidally dispersed in water: effects of refractivity,” Clay Sci. 23(2), 25–30 (2019).
[Crossref]

Saitoh, J.

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

Sasaki, K.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70(7), 3829–3836 (1991).
[Crossref]

Sasso, A.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

Sato, S.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

Schlenk, M.

S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, and J. Breu, “In-depth insights into the key steps of delamination of charged 2D nanomaterials,” Langmuir 32(41), 10582–10588 (2016).
[Crossref]

Schmidt, M.

M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, and J. Breu, “Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity,” Langmuir 29(4), 1280–1285 (2013).
[Crossref]

Schnapp, B. J.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref]

Seidl, W.

J. Breu, W. Seidl, A. J. Stoll, K. G. Lange, and T. U. Probst, “Charge homogeneity in synthetic fluorohectorite,” Chem. Mater. 13(11), 4213–4220 (2001).
[Crossref]

Senker, J.

M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, and J. Breu, “Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity,” Langmuir 29(4), 1280–1285 (2013).
[Crossref]

Shido, Y.

T. Nakato, K. Nakamura, Y. Shimada, Y. Shido, T. Houryu, Y. Iimura, and H. Miyata, “Electrooptic eesponse of colloidal liquid crystals of inorganic oxide nanosheets prepared by exfoliation of a layered niobate,” J. Phys. Chem. C 115(18), 8934–8939 (2011).
[Crossref]

Shimada, T.

Y. Ohtani, H. Nishinaka, S. Hoshino, T. Shimada, and S. Takagi, “Anisotropic photochemical energy transfer in clay/porphyrin system prepared by size-matching effect and Langmuir–Blodgett technique,” J. Photochem. Photobiol., A 313, 15–18 (2015).
[Crossref]

S. Takagi, T. Shimada, T. Yui, and H. Inoue, “High density adsorption of porphyrins onto clay layer without aggregation: characterization of smectite-cationic porphyrin complex,” Chem. Lett. 30(2), 128–129 (2001).
[Crossref]

Shimada, Y.

T. Nakato, K. Nakamura, Y. Shimada, Y. Shido, T. Houryu, Y. Iimura, and H. Miyata, “Electrooptic eesponse of colloidal liquid crystals of inorganic oxide nanosheets prepared by exfoliation of a layered niobate,” J. Phys. Chem. C 115(18), 8934–8939 (2011).
[Crossref]

Shoji, T.

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

T. Shoji, N. Kitamura, and Y. Tsuboi, “Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
[Crossref]

Y. Tsuboi, T. Shoji, and N. Kitamura, “Optical trapping of amino acids in aqueous solutions,” J. Phys. Chem. C 114(12), 5589–5593 (2010).
[Crossref]

Simmons, R. M.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[Crossref]

Spudich, J. A.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[Crossref]

Stoll, A. J.

J. Breu, W. Seidl, A. J. Stoll, K. G. Lange, and T. U. Probst, “Charge homogeneity in synthetic fluorohectorite,” Chem. Mater. 13(11), 4213–4220 (2001).
[Crossref]

Stöter, M.

S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, and J. Breu, “In-depth insights into the key steps of delamination of charged 2D nanomaterials,” Langmuir 32(41), 10582–10588 (2016).
[Crossref]

M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, and J. Breu, “Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity,” Langmuir 29(4), 1280–1285 (2013).
[Crossref]

Suzuki, Y.

T. Nakato, Y. Higashi, W. Ishitobi, T. Nagashita, M. Tominaga, Y. Suzuki, T. Iwai, and J. Kawamata, “Microscope observation of morphology of colloidally dispersed niobate nanosheets combined with optical trapping,” Langmuir 35(16), 5568–5573 (2019).
[Crossref]

T. Nakato, K. Saito, A. Ikeda, Y. Higashi, Y. Suzuki, and J. Kawamata, “Optical trapping of inorganic oxide nanosheets colloidally dispersed in water: effects of refractivity,” Clay Sci. 23(2), 25–30 (2019).
[Crossref]

M. Tominaga, T. Nagashita, T. Kumamoto, Y. Higashi, T. Iwai, T. Nakato, Y. Suzuki, and J. Kawamata, “Radiation pressure induced hierarchical structure of liquid crystalline inorganic nanosheets,” ACS Photonics 5(4), 1288–1293 (2018).
[Crossref]

M. Tominaga, Y. Higashi, T. Kumamoto, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “Optical trapping and orientation manipulation of 2D inorganic materials using a linearly polarized laser beam,” Clays Clay Miner. 66(2), 138–145 (2018).
[Crossref]

Y. Higashi, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “A Laser beam induced optical manipulatin of a smectite,” Clay Sci. 22(3), 79–83 (2018).
[Crossref]

T. Nagashita, Y. Higashi, A. Ikeda, M. Tominaga, T. Kumamoto, Y. Suzuki, T. Nakato, and J. Kawamata, “Laser beam induced orientation control of a nanosheet liquid crystal by employing an objective lens with a low numerical aperture,” Clay Sci. 22(1), 13–17 (2018).
[Crossref]

Svoboda, K.

Takagi, S.

Y. Ohtani, H. Nishinaka, S. Hoshino, T. Shimada, and S. Takagi, “Anisotropic photochemical energy transfer in clay/porphyrin system prepared by size-matching effect and Langmuir–Blodgett technique,” J. Photochem. Photobiol., A 313, 15–18 (2015).
[Crossref]

S. Takagi, T. Shimada, T. Yui, and H. Inoue, “High density adsorption of porphyrins onto clay layer without aggregation: characterization of smectite-cationic porphyrin complex,” Chem. Lett. 30(2), 128–129 (2001).
[Crossref]

Thompson, K. C.

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone:  implications for cloud-droplet properties,” J. Am. Chem. Soc. 126(51), 16710–16711 (2004).
[Crossref]

Tominaga, M.

T. Nakato, Y. Higashi, W. Ishitobi, T. Nagashita, M. Tominaga, Y. Suzuki, T. Iwai, and J. Kawamata, “Microscope observation of morphology of colloidally dispersed niobate nanosheets combined with optical trapping,” Langmuir 35(16), 5568–5573 (2019).
[Crossref]

M. Tominaga, T. Nagashita, T. Kumamoto, Y. Higashi, T. Iwai, T. Nakato, Y. Suzuki, and J. Kawamata, “Radiation pressure induced hierarchical structure of liquid crystalline inorganic nanosheets,” ACS Photonics 5(4), 1288–1293 (2018).
[Crossref]

M. Tominaga, Y. Higashi, T. Kumamoto, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “Optical trapping and orientation manipulation of 2D inorganic materials using a linearly polarized laser beam,” Clays Clay Miner. 66(2), 138–145 (2018).
[Crossref]

T. Nagashita, Y. Higashi, A. Ikeda, M. Tominaga, T. Kumamoto, Y. Suzuki, T. Nakato, and J. Kawamata, “Laser beam induced orientation control of a nanosheet liquid crystal by employing an objective lens with a low numerical aperture,” Clay Sci. 22(1), 13–17 (2018).
[Crossref]

Trsic, M.

I. E. Borissevitchi, A. G. Bezerra-jr, A. S. L. Gomes, R. E. De Araujo, C. B. De Araujo, K. M. T. Oliveira, and M. Trsic, “Z-scan studies and quantum chemical calculations of meso-tetrakis(p-sulfonatophenyl)porphyrin and meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin and their Fe(III) and Mn(III) complexes,” J. Porphyrins Phthalocyanines 05(01), 51–57 (2001).
[Crossref]

Tsuboi, Y.

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

T. Shoji, N. Kitamura, and Y. Tsuboi, “Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
[Crossref]

Y. Tsuboi, T. Shoji, and N. Kitamura, “Optical trapping of amino acids in aqueous solutions,” J. Phys. Chem. C 114(12), 5589–5593 (2010).
[Crossref]

Uryu, S.

H. Ajiki, T. Iida, T. Ishikawa, S. Uryu, and H. Ishihara, “Size- and orientation-selective optical manipulation of single-walled carbon nanotubes: a theoretical study,” Phys. Rev. 80(11), 115437 (2009).
[Crossref]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles, (Dover Publishing, New York, 1981).

Ward, A. D.

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone:  implications for cloud-droplet properties,” J. Am. Chem. Soc. 126(51), 16710–16711 (2004).
[Crossref]

Watarai, H.

H. Monjushiro, A. Hirai, and H. Watarai, “Size dependence of laser-photophoretic efficiency of polystyrene microparticles in water,” Langmuir 16(22), 8539–8542 (2000).
[Crossref]

Won, J.

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

Yamada, Y.

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

Yokoyama, T.

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

Yoshii, T.

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

Yui, T.

S. Takagi, T. Shimada, T. Yui, and H. Inoue, “High density adsorption of porphyrins onto clay layer without aggregation: characterization of smectite-cationic porphyrin complex,” Chem. Lett. 30(2), 128–129 (2001).
[Crossref]

Zhou, D.

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref]

Zyss, J.

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals Volume 2 (Academic Press, Orlando, 1987), Chap. III-5.

ACS Photonics (1)

M. Tominaga, T. Nagashita, T. Kumamoto, Y. Higashi, T. Iwai, T. Nakato, Y. Suzuki, and J. Kawamata, “Radiation pressure induced hierarchical structure of liquid crystalline inorganic nanosheets,” ACS Photonics 5(4), 1288–1293 (2018).
[Crossref]

Ann. D. Physik (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. D. Physik 4, 378–445 (1908).

Appl. Phys. Lett. (1)

J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miyawaki, and S. Sato, “Photothermal fixation of laser-trapped polymer microparticles on polymer substrates,” Appl. Phys. Lett. 75(11), 1506–1508 (1999).
[Crossref]

Chem. Lett. (1)

S. Takagi, T. Shimada, T. Yui, and H. Inoue, “High density adsorption of porphyrins onto clay layer without aggregation: characterization of smectite-cationic porphyrin complex,” Chem. Lett. 30(2), 128–129 (2001).
[Crossref]

Chem. Mater. (1)

J. Breu, W. Seidl, A. J. Stoll, K. G. Lange, and T. U. Probst, “Charge homogeneity in synthetic fluorohectorite,” Chem. Mater. 13(11), 4213–4220 (2001).
[Crossref]

Clay Sci. (3)

T. Nagashita, Y. Higashi, A. Ikeda, M. Tominaga, T. Kumamoto, Y. Suzuki, T. Nakato, and J. Kawamata, “Laser beam induced orientation control of a nanosheet liquid crystal by employing an objective lens with a low numerical aperture,” Clay Sci. 22(1), 13–17 (2018).
[Crossref]

Y. Higashi, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “A Laser beam induced optical manipulatin of a smectite,” Clay Sci. 22(3), 79–83 (2018).
[Crossref]

T. Nakato, K. Saito, A. Ikeda, Y. Higashi, Y. Suzuki, and J. Kawamata, “Optical trapping of inorganic oxide nanosheets colloidally dispersed in water: effects of refractivity,” Clay Sci. 23(2), 25–30 (2019).
[Crossref]

Clays Clay Miner. (1)

M. Tominaga, Y. Higashi, T. Kumamoto, T. Nagashita, T. Nakato, Y. Suzuki, and J. Kawamata, “Optical trapping and orientation manipulation of 2D inorganic materials using a linearly polarized laser beam,” Clays Clay Miner. 66(2), 138–145 (2018).
[Crossref]

Colloids Surf., A (1)

T. Nakato, Y. Nono, and E. Mouri, “Textural diversity of hierarchical macroscopic structures of colloidal liquid crystalline nanosheets organized under electric fields,” Colloids Surf., A 522(5), 373–381 (2017).
[Crossref]

J. Am. Chem. Soc. (2)

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref]

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone:  implications for cloud-droplet properties,” J. Am. Chem. Soc. 126(51), 16710–16711 (2004).
[Crossref]

J. Appl. Phys. (1)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70(7), 3829–3836 (1991).
[Crossref]

J. Inclusion Phenom. Mol. Recognit. Chem. (1)

P. M. Dias, D. L. A. De Faria, and V. R. L. Constantino, “Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays,” J. Inclusion Phenom. Mol. Recognit. Chem. 38(1/4), 251–266 (2000).
[Crossref]

J. Nanophotonics (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[Crossref]

J. Photochem. Photobiol., A (1)

Y. Ohtani, H. Nishinaka, S. Hoshino, T. Shimada, and S. Takagi, “Anisotropic photochemical energy transfer in clay/porphyrin system prepared by size-matching effect and Langmuir–Blodgett technique,” J. Photochem. Photobiol., A 313, 15–18 (2015).
[Crossref]

J. Phys. Chem. B (1)

N. Miyamoto and T. Nakato, “Liquid crystalline nanosheet colloids with controlled particle size obtained by exfoliating single crystal of layered niobate K4Nb6O17,” J. Phys. Chem. B 108(20), 6152–6159 (2004).
[Crossref]

J. Phys. Chem. C (3)

T. Nakato, K. Nakamura, Y. Shimada, Y. Shido, T. Houryu, Y. Iimura, and H. Miyata, “Electrooptic eesponse of colloidal liquid crystals of inorganic oxide nanosheets prepared by exfoliation of a layered niobate,” J. Phys. Chem. C 115(18), 8934–8939 (2011).
[Crossref]

Y. Tsuboi, T. Shoji, and N. Kitamura, “Optical trapping of amino acids in aqueous solutions,” J. Phys. Chem. C 114(12), 5589–5593 (2010).
[Crossref]

T. Shoji, N. Kitamura, and Y. Tsuboi, “Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
[Crossref]

J. Porphyrins Phthalocyanines (1)

I. E. Borissevitchi, A. G. Bezerra-jr, A. S. L. Gomes, R. E. De Araujo, C. B. De Araujo, K. M. T. Oliveira, and M. Trsic, “Z-scan studies and quantum chemical calculations of meso-tetrakis(p-sulfonatophenyl)porphyrin and meso-tetrakis(4-N-methyl-pyridiniumyl)porphyrin and their Fe(III) and Mn(III) complexes,” J. Porphyrins Phthalocyanines 05(01), 51–57 (2001).
[Crossref]

Langmuir (5)

Z. Chernia and D. Gill, “Flattening of TMPyP adsorbed on laponite. evidence in observed and calculated UV−vis spectra,” Langmuir 15(5), 1625–1633 (1999).
[Crossref]

H. Monjushiro, A. Hirai, and H. Watarai, “Size dependence of laser-photophoretic efficiency of polystyrene microparticles in water,” Langmuir 16(22), 8539–8542 (2000).
[Crossref]

T. Nakato, Y. Higashi, W. Ishitobi, T. Nagashita, M. Tominaga, Y. Suzuki, T. Iwai, and J. Kawamata, “Microscope observation of morphology of colloidally dispersed niobate nanosheets combined with optical trapping,” Langmuir 35(16), 5568–5573 (2019).
[Crossref]

M. Stöter, D. A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo, B. Putz, J. Senker, and J. Breu, “Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity,” Langmuir 29(4), 1280–1285 (2013).
[Crossref]

S. Rosenfeldt, M. Stöter, M. Schlenk, T. Martin, R. Q. Albuquerque, S. Förster, and J. Breu, “In-depth insights into the key steps of delamination of charged 2D nanomaterials,” Langmuir 32(41), 10582–10588 (2016).
[Crossref]

Nano Lett. (1)

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref]

Nature (2)

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994).
[Crossref]

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref]

Opt. Commun. (2)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[Crossref]

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (2)

T. Nakato, Y. Nono, E. Mouri, and M. Nakata, “Panoscopic organization of anisotropic colloidal structures from photofunctional inorganic nanosheet liquid crystals,” Phys. Chem. Chem. Phys. 16(3), 955–962 (2014).
[Crossref]

R. Improta, C. Ferrante, R. Bozio, and V. Barone, “The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: a PCM/TD-DFT study,” Phys. Chem. Chem. Phys. 11(22), 4664–4673 (2009).
[Crossref]

Phys. Rev. (1)

H. Ajiki, T. Iida, T. Ishikawa, S. Uryu, and H. Ishihara, “Size- and orientation-selective optical manipulation of single-walled carbon nanotubes: a theoretical study,” Phys. Rev. 80(11), 115437 (2009).
[Crossref]

Phys. Status Solidi B (1)

K. Inaba, K. Imaizumi, K. Katayama, M. Ichiyama, A. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Status Solidi B 243(14), 3829–3833 (2006).
[Crossref]

Sci. Rep. (1)

T. Shoji, K. Itoh, J. Saitoh, N. Kitamura, T. Yoshii, K. Murakoshi, Y. Yamada, T. Yokoyama, H. Ishihara, and Y. Tsuboi, “Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution,” Sci. Rep. 10(1), 3349–3358 (2020).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

Small (1)

N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, “Control of the molecular alignment inside liquid crystal droplets by use of laser tweezers,” Small 1(6), 656–661 (2005).
[Crossref]

Trans. Faraday Soc. (1)

C. E. Marshall, “The orientation of anisotropic particles in an electric field. Part I. General. Part II. Application to the determination of the double refraction of clays,” Trans. Faraday Soc. 26, 173–189 (1930).
[Crossref]

Other (3)

Q. R. Marvin, Chemical Research, Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet (Development & Engineering center, U.S. Army Armament Munitions Chemical Command. 1987), Chap. 4.

H. C. van de Hulst, Light Scattering by Small Particles, (Dover Publishing, New York, 1981).

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals Volume 2 (Academic Press, Orlando, 1987), Chap. III-5.

Supplementary Material (4)

NameDescription
» Visualization 1       Microscope observation of Brownian motion of neat FHT
» Visualization 2       Microscope observation of Brownian motion of FHT hybridized with porphyrin Derivative
» Visualization 3       Microscope observation of optical trapping behavior of neat FHT
» Visualization 4       Microscope observation of optical trapping behavior of FHT hybridized with porphyrin Derivative

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Chemical structure of TMPyP (left), and absorption spectrum (right) of neat FHT (dashed line) and FHT hybridized with TMPyP (solid line) dispersed in water.
Fig. 2.
Fig. 2. Schematic representation of the optical configuration.
Fig. 3.
Fig. 3. Microscopy images of (a) neat FHT and (b) FHT hybridized with TMPyP.
Fig. 4.
Fig. 4. Bright-field optical microscopy images of (a–e) neat FHT and (f–j) FHT with TMPyP when illuminated by a 15 mW laser beam. These images indicate (a, f) before illumination and after (b, g) 7 s, (c, h) 10 s, (d, i) 230 s and (e, j) 240 s of continuous laser illumination. The white double arrows indicate the polarization direction.
Fig. 5.
Fig. 5. Optical microscopy images of the repeatedly trapped FHT hybridized with TMPyP by on-off switching of the laser illumination. Before laser irradiation (a), after 300 s of continuous laser illumination (b), 300 s after laser illumination was ceased (c) and after 20 cycles of on-off switching of the laser illumination (d).
Fig. 6.
Fig. 6. Schematic diagram of nanosheet dynamics under illumination of a focused laser beam.

Tables (2)

Tables Icon

Table 1. Minimum laser power required to manipulate neat FHT and FHT with TMPyP within 300 s.

Tables Icon

Table 2. Laser power and time required for the optical trapping of 92 µm2 of neat FHT and 89 µm2 of FHT with TMPyP.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F = Q p r n 1 P c
C p r = C e x t g C s c a = ( 1 g ) C s c a + C a b s
g = 2 π 0 π cos θ p ( θ ) sin θ d θ .
C p r = ( 1 g ) C s c a
U = 1 2 α E 2 + t ( E × B )

Metrics