Abstract

Metamaterials with large axial anisotropy posses a nearly flat dispersion profile in k (wave vector) space and thus offer an effective solution to overcome the diffraction limit by supporting the propagating high - k extraordinary modes. However, existing analytical models reveal that resonant high - k slab modes and the polarization dependent ordinary waves cause image distortion in metamaterial slabs. In this paper, we consider a two-dimensional (2D), local, highly anisotropic metamaterial slab as an imaging device and apply a standard transfer matrix approach to calculate the transmission properties of the slab at terahertz (THz) frequencies. Our simple analytical model reveals that resonances induced by the reflections are the main source of deteriorating the image quality, thus requires effective post-processing methods to remove them. For that, we apply an ultra-short super-Gaussian windowing function to minimize the resonant behavior of the metamaterial slabs, observing good imaging over the frequency band of interest. Our numerical method offers a pathway to mitigate observed image artefacts, and are applicable to a range of highly anisotropic metamaterial slabs, e.g., wire metamaterials, layered metamaterials and magnifying hyperlenses. Finally, finite element based software is used to model the 2D metamaterial slab to verify the analytical models.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Removing image artefacts in wire array metamaterials

Md. Samiul Habib, Alessandro Tuniz, Korbinian J. Kaltenecker, Quentin Chateiller, Isadora Perrin, Shaghik Atakaramians, Simon C. Fleming, Alexander Argyros, and Boris T. Kuhlmey
Opt. Express 24(16) 17989-18002 (2016)

Towards subdiffraction imaging with wire array metamaterial hyperlenses at MIR frequencies

Juliano G. Hayashi, Alessio Stefani, Sergei Antipov, Richard Lwin, Stuart D. Jackson, Darren D. Hudson, Simon Fleming, Alexander Argyros, and Boris T. Kuhlmey
Opt. Express 27(15) 21420-21434 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref]
  2. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  3. P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
    [Crossref]
  4. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
    [Crossref]
  5. A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706–2708 (2013).
    [Crossref]
  6. P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
    [Crossref]
  7. B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
    [Crossref]
  8. A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
    [Crossref]
  9. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref]
  10. I. Aghanejad, K. J. Chau, and L. Markley, “Avoiding imaging artifacts from resonant modes in metamaterial superlenses,” Phys. Rev. B 100(3), 035137 (2019).
    [Crossref]
  11. A. Forouzmand, H. M. Bernety, and A. B. Yakovlev, “Graphene-loaded wire medium for tunable broadband subwavelength imaging,” Phys. Rev. B 92(8), 085402 (2015).
    [Crossref]
  12. Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12(10), 103045 (2010).
    [Crossref]
  13. K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroadband perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
    [Crossref]
  14. M. S. Habib, A. Tuniz, K. J. Kaltenecker, Q. Chateiller, I. Perrin, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Removing image artefacts in wire array metamaterials,” Opt. Express 24(16), 17989–18002 (2016).
    [Crossref]
  15. M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “A prism based magnifying hyperlens with broad-band imaging,” Appl. Phys. Lett. 110(10), 101106 (2017).
    [Crossref]
  16. M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, and B. T. Kuhlmey, “Analysis of a hyperprism for exciting high-k modes and subdiffraction imaging,” Phys. Rev. B 100(11), 115146 (2019).
    [Crossref]
  17. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
    [Crossref]
  18. J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4× 4 transfer-matrix method,” Phys. Rev. B 77(9), 094201 (2008).
    [Crossref]
  19. A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. M. de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39(11), 3286–3289 (2014).
    [Crossref]
  20. P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73(5), 056607 (2006).
    [Crossref]
  21. M. G. Silveirinha, “Additional boundary condition for the wire medium,” IEEE Trans. Antennas Propag. 54(6), 1766–1780 (2006).
    [Crossref]
  22. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  23. K. Rustomji, R. Abdeddaim, C. M. de Sterke, B. Kuhlmey, and S. Enoch, “Measurement and simulation of the polarization-dependent purcell factor in a microwave fishnet metamaterial,” Phys. Rev. B 95(3), 035156 (2017).
    [Crossref]

2019 (2)

I. Aghanejad, K. J. Chau, and L. Markley, “Avoiding imaging artifacts from resonant modes in metamaterial superlenses,” Phys. Rev. B 100(3), 035137 (2019).
[Crossref]

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, and B. T. Kuhlmey, “Analysis of a hyperprism for exciting high-k modes and subdiffraction imaging,” Phys. Rev. B 100(11), 115146 (2019).
[Crossref]

2017 (2)

K. Rustomji, R. Abdeddaim, C. M. de Sterke, B. Kuhlmey, and S. Enoch, “Measurement and simulation of the polarization-dependent purcell factor in a microwave fishnet metamaterial,” Phys. Rev. B 95(3), 035156 (2017).
[Crossref]

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “A prism based magnifying hyperlens with broad-band imaging,” Appl. Phys. Lett. 110(10), 101106 (2017).
[Crossref]

2016 (2)

2015 (1)

A. Forouzmand, H. M. Bernety, and A. B. Yakovlev, “Graphene-loaded wire medium for tunable broadband subwavelength imaging,” Phys. Rev. B 92(8), 085402 (2015).
[Crossref]

2014 (1)

2013 (2)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706–2708 (2013).
[Crossref]

2012 (1)

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

2010 (3)

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12(10), 103045 (2010).
[Crossref]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

2008 (1)

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4× 4 transfer-matrix method,” Phys. Rev. B 77(9), 094201 (2008).
[Crossref]

2007 (1)

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[Crossref]

2006 (4)

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73(5), 056607 (2006).
[Crossref]

M. G. Silveirinha, “Additional boundary condition for the wire medium,” IEEE Trans. Antennas Propag. 54(6), 1766–1780 (2006).
[Crossref]

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdeddaim, R.

K. Rustomji, R. Abdeddaim, C. M. de Sterke, B. Kuhlmey, and S. Enoch, “Measurement and simulation of the polarization-dependent purcell factor in a microwave fishnet metamaterial,” Phys. Rev. B 95(3), 035156 (2017).
[Crossref]

Aghanejad, I.

I. Aghanejad, K. J. Chau, and L. Markley, “Avoiding imaging artifacts from resonant modes in metamaterial superlenses,” Phys. Rev. B 100(3), 035137 (2019).
[Crossref]

Argyros, A.

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “A prism based magnifying hyperlens with broad-band imaging,” Appl. Phys. Lett. 110(10), 101106 (2017).
[Crossref]

M. S. Habib, A. Tuniz, K. J. Kaltenecker, Q. Chateiller, I. Perrin, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Removing image artefacts in wire array metamaterials,” Opt. Express 24(16), 17989–18002 (2016).
[Crossref]

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroadband perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. M. de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39(11), 3286–3289 (2014).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706–2708 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

Atakaramians, S.

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, and B. T. Kuhlmey, “Analysis of a hyperprism for exciting high-k modes and subdiffraction imaging,” Phys. Rev. B 100(11), 115146 (2019).
[Crossref]

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “A prism based magnifying hyperlens with broad-band imaging,” Appl. Phys. Lett. 110(10), 101106 (2017).
[Crossref]

M. S. Habib, A. Tuniz, K. J. Kaltenecker, Q. Chateiller, I. Perrin, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Removing image artefacts in wire array metamaterials,” Opt. Express 24(16), 17989–18002 (2016).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Belov, P. A.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12(10), 103045 (2010).
[Crossref]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[Crossref]

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73(5), 056607 (2006).
[Crossref]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

Bernety, H. M.

A. Forouzmand, H. M. Bernety, and A. B. Yakovlev, “Graphene-loaded wire medium for tunable broadband subwavelength imaging,” Phys. Rev. B 92(8), 085402 (2015).
[Crossref]

Casse, B.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Chateiller, Q.

Chau, K. J.

I. Aghanejad, K. J. Chau, and L. Markley, “Avoiding imaging artifacts from resonant modes in metamaterial superlenses,” Phys. Rev. B 100(3), 035137 (2019).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

de Sterke, C. M.

K. Rustomji, R. Abdeddaim, C. M. de Sterke, B. Kuhlmey, and S. Enoch, “Measurement and simulation of the polarization-dependent purcell factor in a microwave fishnet metamaterial,” Phys. Rev. B 95(3), 035156 (2017).
[Crossref]

A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. M. de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39(11), 3286–3289 (2014).
[Crossref]

Dubrovka, R. F.

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12(10), 103045 (2010).
[Crossref]

Enoch, S.

K. Rustomji, R. Abdeddaim, C. M. de Sterke, B. Kuhlmey, and S. Enoch, “Measurement and simulation of the polarization-dependent purcell factor in a microwave fishnet metamaterial,” Phys. Rev. B 95(3), 035156 (2017).
[Crossref]

Fischer, B. M.

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroadband perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706–2708 (2013).
[Crossref]

Fleming, S. C.

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, and B. T. Kuhlmey, “Analysis of a hyperprism for exciting high-k modes and subdiffraction imaging,” Phys. Rev. B 100(11), 115146 (2019).
[Crossref]

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “A prism based magnifying hyperlens with broad-band imaging,” Appl. Phys. Lett. 110(10), 101106 (2017).
[Crossref]

M. S. Habib, A. Tuniz, K. J. Kaltenecker, Q. Chateiller, I. Perrin, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Removing image artefacts in wire array metamaterials,” Opt. Express 24(16), 17989–18002 (2016).
[Crossref]

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroadband perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706–2708 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

Forouzmand, A.

A. Forouzmand, H. M. Bernety, and A. B. Yakovlev, “Graphene-loaded wire medium for tunable broadband subwavelength imaging,” Phys. Rev. B 92(8), 085402 (2015).
[Crossref]

Gultepe, E.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Habib, M. S.

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, and B. T. Kuhlmey, “Analysis of a hyperprism for exciting high-k modes and subdiffraction imaging,” Phys. Rev. B 100(11), 115146 (2019).
[Crossref]

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “A prism based magnifying hyperlens with broad-band imaging,” Appl. Phys. Lett. 110(10), 101106 (2017).
[Crossref]

M. S. Habib, A. Tuniz, K. J. Kaltenecker, Q. Chateiller, I. Perrin, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Removing image artefacts in wire array metamaterials,” Opt. Express 24(16), 17989–18002 (2016).
[Crossref]

Hao, J.

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4× 4 transfer-matrix method,” Phys. Rev. B 77(9), 094201 (2008).
[Crossref]

Hao, Y.

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12(10), 103045 (2010).
[Crossref]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

Huang, Y.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Ireland, D.

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaltenecker, K. J.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kuhlmey, B.

K. Rustomji, R. Abdeddaim, C. M. de Sterke, B. Kuhlmey, and S. Enoch, “Measurement and simulation of the polarization-dependent purcell factor in a microwave fishnet metamaterial,” Phys. Rev. B 95(3), 035156 (2017).
[Crossref]

Kuhlmey, B. T.

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, and B. T. Kuhlmey, “Analysis of a hyperprism for exciting high-k modes and subdiffraction imaging,” Phys. Rev. B 100(11), 115146 (2019).
[Crossref]

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “A prism based magnifying hyperlens with broad-band imaging,” Appl. Phys. Lett. 110(10), 101106 (2017).
[Crossref]

M. S. Habib, A. Tuniz, K. J. Kaltenecker, Q. Chateiller, I. Perrin, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Removing image artefacts in wire array metamaterials,” Opt. Express 24(16), 17989–18002 (2016).
[Crossref]

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroadband perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. M. de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39(11), 3286–3289 (2014).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706–2708 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

Lu, W.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Lwin, R.

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

Markley, L.

I. Aghanejad, K. J. Chau, and L. Markley, “Avoiding imaging artifacts from resonant modes in metamaterial superlenses,” Phys. Rev. B 100(3), 035137 (2019).
[Crossref]

Menon, L.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Palikaras, G.

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12(10), 103045 (2010).
[Crossref]

Palikaras, G. K.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

Parini, C.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

Parini, C. G.

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12(10), 103045 (2010).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

Perrin, I.

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Poladian, L.

Rahman, A.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

Rustomji, K.

K. Rustomji, R. Abdeddaim, C. M. de Sterke, B. Kuhlmey, and S. Enoch, “Measurement and simulation of the polarization-dependent purcell factor in a microwave fishnet metamaterial,” Phys. Rev. B 95(3), 035156 (2017).
[Crossref]

Silveirinha, M. G.

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[Crossref]

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73(5), 056607 (2006).
[Crossref]

M. G. Silveirinha, “Additional boundary condition for the wire medium,” IEEE Trans. Antennas Propag. 54(6), 1766–1780 (2006).
[Crossref]

Simovski, C. R.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12(10), 103045 (2010).
[Crossref]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[Crossref]

Sridhar, S.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

Stefani, A.

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, and B. T. Kuhlmey, “Analysis of a hyperprism for exciting high-k modes and subdiffraction imaging,” Phys. Rev. B 100(11), 115146 (2019).
[Crossref]

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “A prism based magnifying hyperlens with broad-band imaging,” Appl. Phys. Lett. 110(10), 101106 (2017).
[Crossref]

Sudhakaran, S.

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

Tuniz, A.

Walther, M.

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroadband perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706–2708 (2013).
[Crossref]

Yakovlev, A. B.

A. Forouzmand, H. M. Bernety, and A. B. Yakovlev, “Graphene-loaded wire medium for tunable broadband subwavelength imaging,” Phys. Rev. B 92(8), 085402 (2015).
[Crossref]

Zhao, Y.

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12(10), 103045 (2010).
[Crossref]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

Zhou, L.

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4× 4 transfer-matrix method,” Phys. Rev. B 77(9), 094201 (2008).
[Crossref]

Appl. Phys. Lett. (3)

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
[Crossref]

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “A prism based magnifying hyperlens with broad-band imaging,” Appl. Phys. Lett. 110(10), 101106 (2017).
[Crossref]

IEEE Trans. Antennas Propag. (1)

M. G. Silveirinha, “Additional boundary condition for the wire medium,” IEEE Trans. Antennas Propag. 54(6), 1766–1780 (2006).
[Crossref]

J. Visualized Exp. (1)

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

Nat. Commun. (1)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706–2708 (2013).
[Crossref]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

New J. Phys. (1)

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12(10), 103045 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Phys. Rev. B (9)

I. Aghanejad, K. J. Chau, and L. Markley, “Avoiding imaging artifacts from resonant modes in metamaterial superlenses,” Phys. Rev. B 100(3), 035137 (2019).
[Crossref]

A. Forouzmand, H. M. Bernety, and A. B. Yakovlev, “Graphene-loaded wire medium for tunable broadband subwavelength imaging,” Phys. Rev. B 92(8), 085402 (2015).
[Crossref]

M. S. Habib, A. Stefani, S. Atakaramians, S. C. Fleming, and B. T. Kuhlmey, “Analysis of a hyperprism for exciting high-k modes and subdiffraction imaging,” Phys. Rev. B 100(11), 115146 (2019).
[Crossref]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[Crossref]

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4× 4 transfer-matrix method,” Phys. Rev. B 77(9), 094201 (2008).
[Crossref]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

K. Rustomji, R. Abdeddaim, C. M. de Sterke, B. Kuhlmey, and S. Enoch, “Measurement and simulation of the polarization-dependent purcell factor in a microwave fishnet metamaterial,” Phys. Rev. B 95(3), 035156 (2017).
[Crossref]

Phys. Rev. E (1)

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73(5), 056607 (2006).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) A 2D schematic of the highly anisotropic metamaterial slab. The two subwavelength slits are indicated by red color. (b) Simulated propagation of light through a 2 mm long metamaterial slab. The intensity distribution, $|E_x|^{2}$ is taken at 0.3 THz. The vertical black dotted line indicates the location of the exported field.
Fig. 2.
Fig. 2. (a) 2D map of the transmission coefficient calculated from the local transfer matrix method. (b) Transmission coefficient as a function of normalized spatial frequency, $k_x/k_0$ at 0.28 THz and 0.30 THz. (c) Calculated frequency dependent intensity profile as a function of position and frequency. (d) Calculated intensity profile at 0.28 THz and 0.30 THz. Horizontal black dotted lines in (c) indicate the location of the imaged slits. The top-hat function in (d) is shown in red color.
Fig. 3.
Fig. 3. (a) 2D map of the transmission coefficient calculated from [20]. (b) Transmission coefficient as a function of normalized spatial frequency, $k_x/k_0$ at 0.28 THz and 0.30 THz. (c) Calculated frequency dependent intensity profile as a function of position and frequency. (d) Calculated intensity profile at 0.28 THz and 0.30 THz. Horizontal black dotted lines in (c) indicate the location of the imaged slits. The top-hat function in (d) is shown in red color.
Fig. 4.
Fig. 4. (a) Simulated frequency dependent intensity profile as a function of position and frequency. Horizontal black dotted lines indicate the location of the imaged slits. (b) Intensity profile of the imaged slits at 0.28 THz and 0.30 THz. The input source field is shown in red color.
Fig. 5.
Fig. 5. (a) Simulated temporal intensity profile as a function of position and time. (b) Temporal electric field profile taken at the centre of the upper slit. Inset shows temporal field profile after applying the post-processing method. (c) Frequency dependent intensity profile after applying the super-Gaussian window function. (d) Intensity profile of the imaged slits before processing (dotted green) and after processing (solid blue).
Fig. 6.
Fig. 6. FOM of the unprocessed data (solid red), after applying the super-Gaussian function (solid blue), and rect function (dotted green).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{H} = { e i k z 0 z + R e i k z 0 z , z < 0 A e i k z m z + B e i k z m z , 0 z L T e i k z 0 ( z L ) , z > 0
T ( k x ) = 4 ε x x ε k z 0 e i k z m L ( ε x x k z m + ε k z 0 ) 2 ( ε x x k z m ε k z 0 ) 2 e 2 i k z m L ,
g ( t ) = e ( t τ ) 4 ,
F O M = ( 1 + ( O I ) 2 d x O 2 d x I 2 d x ) 1 ,

Metrics