Abstract

Simultaneous diagnosis and treatment during chemotherapy is an attractive topic in nano-oncology. Here, Capecitabine, as a well-known chemodrug, demonstrates notable fluorescence properties according to laser induced fluorescence (LIF) spectroscopy. Capecitabine is vastly used for breast and colon cancer therapy, while its excitation wavelength lies over UV region (180-350 nm). ArF laser with an excitation wavelength at 193 nm is exploited to stimulate the fluorophore molecules. As a biocompatible fluorophore, Capecitabine reveals predominant fluorescence characteristics for simultaneous diagnosis during chemotherapeutic treatment. The laser energy and repetition rate affect on the spectral properties of Capecitabine have been studied in this work to find out the optimal exposure condition. Moreover, the spectral shifts in terms of fluorophore concentrations are obtained for the purpose of fluorescence imaging. Here, lucid red shift in terms of chemodrug concentration and the red shift in various GO densities at certain Capecitabine concentrations are reported. Spectral red shift of Capecitabine directly addresses the concentration distribution and penetration depth of the chemodrug. As a consequence, LIF spectroscopy of Capecitabine is beneficial for fluorescence imaging and confocal mapping of cancerous tissues during simultaneous diagnosis/imaging and treatment. Similarly, LIF of RdB as a reference fluorophore is carried out to compare its fluorescence properties with those parameters in the chemodrugs of interest.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

17 July 2020: Typographical corrections were made to the author listing and author affiliations.

References

  • View by:
  • |
  • |
  • |

  1. S. Nussbaumer, P. Bonnabry, J. L. Veuthey, and S. F. Souverain, “Analysis of anticancer drugs: a review,” Talanta 85(5), 2265–2289 (2011).
    [Crossref]
  2. M. Li, N. Zhang, and M. Li, “Capecitabine treatment of HCT-15 colon cancer cells induces apoptosis via mitochondrial pathway,” Trop. J. Pharm. Res. 16(7), 1529–1536 (2017).
    [Crossref]
  3. M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
    [Crossref]
  4. J. L. Fischel, P. Formento, J. Ciccolini, P. Rostagno, M. C. Etienne, J. Catalin, and G. Milano, “Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity,” Br. J. Cancer 86(7), 1162–1168 (2002).
    [Crossref]
  5. F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
    [Crossref]
  6. F. Ghasemi, P. Parvin, N. Hosseini Motlagh, A. Bavali, and R. Karimi, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” Optical Molecular Probes, Imaging and Drug Delivery.Optical Society of America (pp. JT3A-40) (2015).
  7. N. Hosseini Motlagh, P. Parvin, M. Refahizadeh, and A. Bavali, “Fluorescence properties of doxorubicin coupled carbon nanocarriers,” Appl. Opt. 56(26), 7498–7503 (2017).
    [Crossref]
  8. Sh. Anwar, A. H. Firdous, A. U. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
    [Crossref]
  9. D.A. Krohn, T. MacDougall, and A. Mendez, “Fiber optic sensors: fundamentals and applications Bellingham,” WA: Spie Press (2014)
  10. F. Ghasemi, P. Parvin, N. S. H. Motlagh, A. Amjadi, and S. Abachi, “” Laser induced breakdown spectroscopy and acoustic response techniques to discriminate healthy and cancerous breast tissues,”,” Appl. Opt. 55(29), 8227–8235 (2016).
    [Crossref]
  11. P. A. Valdes, F. Leblond, K. D. Paulsen, A. Kim, B. C. Wilson, O. M. Conde, B. T. Harris, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
    [Crossref]
  12. M. keraji, F.H. Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response, to discriminate malignant and normal tissues,” Proc. of OSA-SPIE Germany (p. 87980A) (2013)
  13. F. Ghasemi, P. Parvin, N. S. H. Motlagh, and S. Abachi, “LIF spectroscopy of stained malignant breast tissues,” Biomed. Opt. Express 8(2), 512–523 (2017).
    [Crossref]
  14. F. Ghasemi, P. Parvin, J. Reif, S. Abachi, M. R. Mohebbifar, and M. R. Razzaghi, “Laser induced breakdown spectroscopy for the diagnosis of several malignant tissue samples,”,” J. Laser Appl. 29(4), 042005 (2017).
    [Crossref]
  15. N. S. H. Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, and S. Jelvani, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
    [Crossref]
  16. N. S. H. Motlagh, P. Parvin, F. Ghasemi, and F. Atyabi, “Fluorescence properties of several chemotherapy drugs: Doxorubicin, Paclitaxel and Bleomycin,” Biomed. Opt. Express 7(6), 2400 (2016).
    [Crossref]
  17. E. Piórkowska, M. Kaza, J. Fitatiuk, I. Szlaska, T. Pawinski, and P. J. Rudzki, “Rapid and simplified HPLC-UV method with on-line wavelengths switching for determination of capecitabine in human plasma,” Pharmazie 69(7), 500–505 (2014).
    [Crossref]
  18. I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
    [Crossref]
  19. A. Farkouh, W. Scheithauer, P. Buchner, A. Georgopoulos, J. Schueller, B. Gruenberger, and M. Czejka, “Clinical pharmacokinetics of capecitabine and its metabolites in combination with the monoclonal antibody bevacizumab,” Anticancer Res. 34(7), 3669–3673 (2014).
  20. A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour, “Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions,” Appl. Opt. 53(24), 5398–5409 (2014).
    [Crossref]
  21. A. Bavali, P. Parvin, S. Z. Mortazavi, and S. S. Nourazar, “Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution,”,” Biomed. Opt. Express 6(5), 1679–1693 (2015).
    [Crossref]
  22. S. K. Panigrahi and A. K. Mishra, “Study on the dependence of fluorescence intensity on optical density of solutions: the use of fluorescence observation field for inner filter effect corrections,” Photochem. Photobiol. Sci. 18(2), 583–591 (2019).
    [Crossref]
  23. A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
    [Crossref]
  24. J. R. Lakowicz, “Principles of fluorescence spectroscopy,” Springer Science & Business Media (2013)
  25. A. Bavali, P. Parvin, M. Tavassoli, and M. R. Mohebbifar, “Angular distribution of laser-induced fluorescence emission of active dyes in scattering media,”,” Appl. Opt. 57(7), B32–B38 (2018).
    [Crossref]
  26. M. C. Gather and S. H. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nat. Commun. 5(1), 5722 (2014).
    [Crossref]
  27. R. Altkorn and R. N. Zare, “Effects of saturation on laser-induced fluorescence measurements of population and polarization,” Ann. Rev. Phys. Chem. 35(1), 265–289 (1984).
    [Crossref]
  28. W. W. Liu, “Intensity Clamping During Femtosecond Laser Filamentation,” Chin. J. Phys. 52(1), 465–489 (2014).
    [Crossref]
  29. B. Valeur and M.N. Berberan-Santos, “Molecular Fluorescence: Principles and Applications,” Wiley-VCH (2002)
  30. U. Brackmann. “Laser dyes,” Göttingen (Germany) Lambda Physik AG. D 37079 (2000).
  31. P. Zheng and N. Wu, “Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review,” Chem. Asian J. 12(18), 2343–2353 (2017).
    [Crossref]
  32. H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
    [Crossref]
  33. I. A. Z. Al-Ansari, “Role of Solvent Polarity and Hydrogen-Bonding on Excited-State Fluorescence of 3-[(E)-{4-[Dimethylamino] benzylidene} amino]-2-naphthoic Acid (DMAMN): Isomerization vs Rotomerization,” J. Phys. Chem. A 122(7), 1838–1854 (2018).
    [Crossref]
  34. B. Wardle, “Principles and applications of photochemistry,” John Wiley & Sons (2009)
  35. T. Parasassi, E. K. Krasnowska, L. Bagatolli, and E. Gratton, “Laurdan and Prodan as polarity-sensitive fluorescent membrane probes,” J. Fluoresc. 8(4), 365–373 (1998).
    [Crossref]

2019 (2)

S. K. Panigrahi and A. K. Mishra, “Study on the dependence of fluorescence intensity on optical density of solutions: the use of fluorescence observation field for inner filter effect corrections,” Photochem. Photobiol. Sci. 18(2), 583–591 (2019).
[Crossref]

H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
[Crossref]

2018 (2)

I. A. Z. Al-Ansari, “Role of Solvent Polarity and Hydrogen-Bonding on Excited-State Fluorescence of 3-[(E)-{4-[Dimethylamino] benzylidene} amino]-2-naphthoic Acid (DMAMN): Isomerization vs Rotomerization,” J. Phys. Chem. A 122(7), 1838–1854 (2018).
[Crossref]

A. Bavali, P. Parvin, M. Tavassoli, and M. R. Mohebbifar, “Angular distribution of laser-induced fluorescence emission of active dyes in scattering media,”,” Appl. Opt. 57(7), B32–B38 (2018).
[Crossref]

2017 (5)

P. Zheng and N. Wu, “Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review,” Chem. Asian J. 12(18), 2343–2353 (2017).
[Crossref]

M. Li, N. Zhang, and M. Li, “Capecitabine treatment of HCT-15 colon cancer cells induces apoptosis via mitochondrial pathway,” Trop. J. Pharm. Res. 16(7), 1529–1536 (2017).
[Crossref]

N. Hosseini Motlagh, P. Parvin, M. Refahizadeh, and A. Bavali, “Fluorescence properties of doxorubicin coupled carbon nanocarriers,” Appl. Opt. 56(26), 7498–7503 (2017).
[Crossref]

F. Ghasemi, P. Parvin, N. S. H. Motlagh, and S. Abachi, “LIF spectroscopy of stained malignant breast tissues,” Biomed. Opt. Express 8(2), 512–523 (2017).
[Crossref]

F. Ghasemi, P. Parvin, J. Reif, S. Abachi, M. R. Mohebbifar, and M. R. Razzaghi, “Laser induced breakdown spectroscopy for the diagnosis of several malignant tissue samples,”,” J. Laser Appl. 29(4), 042005 (2017).
[Crossref]

2016 (3)

2015 (2)

Sh. Anwar, A. H. Firdous, A. U. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

A. Bavali, P. Parvin, S. Z. Mortazavi, and S. S. Nourazar, “Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution,”,” Biomed. Opt. Express 6(5), 1679–1693 (2015).
[Crossref]

2014 (5)

A. Farkouh, W. Scheithauer, P. Buchner, A. Georgopoulos, J. Schueller, B. Gruenberger, and M. Czejka, “Clinical pharmacokinetics of capecitabine and its metabolites in combination with the monoclonal antibody bevacizumab,” Anticancer Res. 34(7), 3669–3673 (2014).

A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour, “Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions,” Appl. Opt. 53(24), 5398–5409 (2014).
[Crossref]

E. Piórkowska, M. Kaza, J. Fitatiuk, I. Szlaska, T. Pawinski, and P. J. Rudzki, “Rapid and simplified HPLC-UV method with on-line wavelengths switching for determination of capecitabine in human plasma,” Pharmazie 69(7), 500–505 (2014).
[Crossref]

W. W. Liu, “Intensity Clamping During Femtosecond Laser Filamentation,” Chin. J. Phys. 52(1), 465–489 (2014).
[Crossref]

M. C. Gather and S. H. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nat. Commun. 5(1), 5722 (2014).
[Crossref]

2011 (2)

P. A. Valdes, F. Leblond, K. D. Paulsen, A. Kim, B. C. Wilson, O. M. Conde, B. T. Harris, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref]

S. Nussbaumer, P. Bonnabry, J. L. Veuthey, and S. F. Souverain, “Analysis of anticancer drugs: a review,” Talanta 85(5), 2265–2289 (2011).
[Crossref]

2008 (1)

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

2004 (1)

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

2002 (1)

J. L. Fischel, P. Formento, J. Ciccolini, P. Rostagno, M. C. Etienne, J. Catalin, and G. Milano, “Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity,” Br. J. Cancer 86(7), 1162–1168 (2002).
[Crossref]

1999 (1)

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref]

1998 (1)

T. Parasassi, E. K. Krasnowska, L. Bagatolli, and E. Gratton, “Laurdan and Prodan as polarity-sensitive fluorescent membrane probes,” J. Fluoresc. 8(4), 365–373 (1998).
[Crossref]

1991 (1)

M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
[Crossref]

1984 (1)

R. Altkorn and R. N. Zare, “Effects of saturation on laser-induced fluorescence measurements of population and polarization,” Ann. Rev. Phys. Chem. 35(1), 265–289 (1984).
[Crossref]

Abachi, S.

Al-Ansari, I. A. Z.

I. A. Z. Al-Ansari, “Role of Solvent Polarity and Hydrogen-Bonding on Excited-State Fluorescence of 3-[(E)-{4-[Dimethylamino] benzylidene} amino]-2-naphthoic Acid (DMAMN): Isomerization vs Rotomerization,” J. Phys. Chem. A 122(7), 1838–1854 (2018).
[Crossref]

Alhaique, F.

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref]

Altkorn, R.

R. Altkorn and R. N. Zare, “Effects of saturation on laser-induced fluorescence measurements of population and polarization,” Ann. Rev. Phys. Chem. 35(1), 265–289 (1984).
[Crossref]

Amadori, D.

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

Amjadi, A.

Anwar, Sh.

Sh. Anwar, A. H. Firdous, A. U. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

Atyabi, F.

N. S. H. Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, and S. Jelvani, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
[Crossref]

N. S. H. Motlagh, P. Parvin, F. Ghasemi, and F. Atyabi, “Fluorescence properties of several chemotherapy drugs: Doxorubicin, Paclitaxel and Bleomycin,” Biomed. Opt. Express 7(6), 2400 (2016).
[Crossref]

Bagatolli, L.

T. Parasassi, E. K. Krasnowska, L. Bagatolli, and E. Gratton, “Laurdan and Prodan as polarity-sensitive fluorescent membrane probes,” J. Fluoresc. 8(4), 365–373 (1998).
[Crossref]

Barone, C.

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

Bavali, A.

Berberan-Santos, M.N.

B. Valeur and M.N. Berberan-Santos, “Molecular Fluorescence: Principles and Applications,” Wiley-VCH (2002)

Bertetto, O.

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

Bonnabry, P.

S. Nussbaumer, P. Bonnabry, J. L. Veuthey, and S. F. Souverain, “Analysis of anticancer drugs: a review,” Talanta 85(5), 2265–2289 (2011).
[Crossref]

Brackmann, U.

U. Brackmann. “Laser dyes,” Göttingen (Germany) Lambda Physik AG. D 37079 (2000).

Buchner, P.

A. Farkouh, W. Scheithauer, P. Buchner, A. Georgopoulos, J. Schueller, B. Gruenberger, and M. Czejka, “Clinical pharmacokinetics of capecitabine and its metabolites in combination with the monoclonal antibody bevacizumab,” Anticancer Res. 34(7), 3669–3673 (2014).

Bünermann, O.

H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
[Crossref]

Catalin, J.

J. L. Fischel, P. Formento, J. Ciccolini, P. Rostagno, M. C. Etienne, J. Catalin, and G. Milano, “Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity,” Br. J. Cancer 86(7), 1162–1168 (2002).
[Crossref]

Ciccolini, J.

J. L. Fischel, P. Formento, J. Ciccolini, P. Rostagno, M. C. Etienne, J. Catalin, and G. Milano, “Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity,” Br. J. Cancer 86(7), 1162–1168 (2002).
[Crossref]

Conde, O. M.

P. A. Valdes, F. Leblond, K. D. Paulsen, A. Kim, B. C. Wilson, O. M. Conde, B. T. Harris, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref]

Czejka, M.

A. Farkouh, W. Scheithauer, P. Buchner, A. Georgopoulos, J. Schueller, B. Gruenberger, and M. Czejka, “Clinical pharmacokinetics of capecitabine and its metabolites in combination with the monoclonal antibody bevacizumab,” Anticancer Res. 34(7), 3669–3673 (2014).

Di Costanzo, F.

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

Ding, F.

H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
[Crossref]

Dorenkamp, Y.

H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
[Crossref]

Etienne, M. C.

J. L. Fischel, P. Formento, J. Ciccolini, P. Rostagno, M. C. Etienne, J. Catalin, and G. Milano, “Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity,” Br. J. Cancer 86(7), 1162–1168 (2002).
[Crossref]

Farkouh, A.

A. Farkouh, W. Scheithauer, P. Buchner, A. Georgopoulos, J. Schueller, B. Gruenberger, and M. Czejka, “Clinical pharmacokinetics of capecitabine and its metabolites in combination with the monoclonal antibody bevacizumab,” Anticancer Res. 34(7), 3669–3673 (2014).

Firdous, A. H.

Sh. Anwar, A. H. Firdous, A. U. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

Fischel, J. L.

J. L. Fischel, P. Formento, J. Ciccolini, P. Rostagno, M. C. Etienne, J. Catalin, and G. Milano, “Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity,” Br. J. Cancer 86(7), 1162–1168 (2002).
[Crossref]

Fitatiuk, J.

E. Piórkowska, M. Kaza, J. Fitatiuk, I. Szlaska, T. Pawinski, and P. J. Rudzki, “Rapid and simplified HPLC-UV method with on-line wavelengths switching for determination of capecitabine in human plasma,” Pharmazie 69(7), 500–505 (2014).
[Crossref]

Formento, P.

J. L. Fischel, P. Formento, J. Ciccolini, P. Rostagno, M. C. Etienne, J. Catalin, and G. Milano, “Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity,” Br. J. Cancer 86(7), 1162–1168 (2002).
[Crossref]

Fujimura, T.

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

Fushida, S.

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

Gather, M. C.

M. C. Gather and S. H. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nat. Commun. 5(1), 5722 (2014).
[Crossref]

Georgopoulos, A.

A. Farkouh, W. Scheithauer, P. Buchner, A. Georgopoulos, J. Schueller, B. Gruenberger, and M. Czejka, “Clinical pharmacokinetics of capecitabine and its metabolites in combination with the monoclonal antibody bevacizumab,” Anticancer Res. 34(7), 3669–3673 (2014).

Gerstner, J. B.

M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
[Crossref]

Ghasemi, F.

F. Ghasemi, P. Parvin, N. S. H. Motlagh, and S. Abachi, “LIF spectroscopy of stained malignant breast tissues,” Biomed. Opt. Express 8(2), 512–523 (2017).
[Crossref]

F. Ghasemi, P. Parvin, J. Reif, S. Abachi, M. R. Mohebbifar, and M. R. Razzaghi, “Laser induced breakdown spectroscopy for the diagnosis of several malignant tissue samples,”,” J. Laser Appl. 29(4), 042005 (2017).
[Crossref]

N. S. H. Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, and S. Jelvani, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
[Crossref]

N. S. H. Motlagh, P. Parvin, F. Ghasemi, and F. Atyabi, “Fluorescence properties of several chemotherapy drugs: Doxorubicin, Paclitaxel and Bleomycin,” Biomed. Opt. Express 7(6), 2400 (2016).
[Crossref]

F. Ghasemi, P. Parvin, N. S. H. Motlagh, A. Amjadi, and S. Abachi, “” Laser induced breakdown spectroscopy and acoustic response techniques to discriminate healthy and cancerous breast tissues,”,” Appl. Opt. 55(29), 8227–8235 (2016).
[Crossref]

F. Ghasemi, P. Parvin, N. Hosseini Motlagh, A. Bavali, and R. Karimi, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” Optical Molecular Probes, Imaging and Drug Delivery.Optical Society of America (pp. JT3A-40) (2015).

Gratton, E.

T. Parasassi, E. K. Krasnowska, L. Bagatolli, and E. Gratton, “Laurdan and Prodan as polarity-sensitive fluorescent membrane probes,” J. Fluoresc. 8(4), 365–373 (1998).
[Crossref]

Gruenberger, B.

A. Farkouh, W. Scheithauer, P. Buchner, A. Georgopoulos, J. Schueller, B. Gruenberger, and M. Czejka, “Clinical pharmacokinetics of capecitabine and its metabolites in combination with the monoclonal antibody bevacizumab,” Anticancer Res. 34(7), 3669–3673 (2014).

Harris, B. T.

P. A. Valdes, F. Leblond, K. D. Paulsen, A. Kim, B. C. Wilson, O. M. Conde, B. T. Harris, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref]

Hosseini Motlagh, N.

N. Hosseini Motlagh, P. Parvin, M. Refahizadeh, and A. Bavali, “Fluorescence properties of doxorubicin coupled carbon nanocarriers,” Appl. Opt. 56(26), 7498–7503 (2017).
[Crossref]

F. Ghasemi, P. Parvin, N. Hosseini Motlagh, A. Bavali, and R. Karimi, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” Optical Molecular Probes, Imaging and Drug Delivery.Optical Society of America (pp. JT3A-40) (2015).

Jelvani, S.

N. S. H. Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, and S. Jelvani, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
[Crossref]

Jiang, H.

H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
[Crossref]

Kammler, M.

H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
[Crossref]

Kandratsenka, A.

H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
[Crossref]

Kardinal, C. G.

M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
[Crossref]

Karimi, R.

F. Ghasemi, P. Parvin, N. Hosseini Motlagh, A. Bavali, and R. Karimi, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” Optical Molecular Probes, Imaging and Drug Delivery.Optical Society of America (pp. JT3A-40) (2015).

Kaza, M.

E. Piórkowska, M. Kaza, J. Fitatiuk, I. Szlaska, T. Pawinski, and P. J. Rudzki, “Rapid and simplified HPLC-UV method with on-line wavelengths switching for determination of capecitabine in human plasma,” Pharmazie 69(7), 500–505 (2014).
[Crossref]

keraji, M.

M. keraji, F.H. Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response, to discriminate malignant and normal tissues,” Proc. of OSA-SPIE Germany (p. 87980A) (2013)

Kim, A.

P. A. Valdes, F. Leblond, K. D. Paulsen, A. Kim, B. C. Wilson, O. M. Conde, B. T. Harris, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref]

Krasnowska, E. K.

T. Parasassi, E. K. Krasnowska, L. Bagatolli, and E. Gratton, “Laurdan and Prodan as polarity-sensitive fluorescent membrane probes,” J. Fluoresc. 8(4), 365–373 (1998).
[Crossref]

Krohn, D.A.

D.A. Krohn, T. MacDougall, and A. Mendez, “Fiber optic sensors: fundamentals and applications Bellingham,” WA: Spie Press (2014)

Krook, J. E.

M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
[Crossref]

Labianca, R.

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, “Principles of fluorescence spectroscopy,” Springer Science & Business Media (2013)

Leblond, F.

P. A. Valdes, F. Leblond, K. D. Paulsen, A. Kim, B. C. Wilson, O. M. Conde, B. T. Harris, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref]

Levitt, R.

M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
[Crossref]

Li, M.

M. Li, N. Zhang, and M. Li, “Capecitabine treatment of HCT-15 colon cancer cells induces apoptosis via mitochondrial pathway,” Trop. J. Pharm. Res. 16(7), 1529–1536 (2017).
[Crossref]

M. Li, N. Zhang, and M. Li, “Capecitabine treatment of HCT-15 colon cancer cells induces apoptosis via mitochondrial pathway,” Trop. J. Pharm. Res. 16(7), 1529–1536 (2017).
[Crossref]

Liu, W. W.

W. W. Liu, “Intensity Clamping During Femtosecond Laser Filamentation,” Chin. J. Phys. 52(1), 465–489 (2014).
[Crossref]

Longo, F.

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

Luppi, G.

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

MacDougall, T.

D.A. Krohn, T. MacDougall, and A. Mendez, “Fiber optic sensors: fundamentals and applications Bellingham,” WA: Spie Press (2014)

Mailliard, J. A.

M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
[Crossref]

Manby, F. R.

H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
[Crossref]

Mehravaran, H.

M. keraji, F.H. Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response, to discriminate malignant and normal tissues,” Proc. of OSA-SPIE Germany (p. 87980A) (2013)

Memoli, A.

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref]

Mendez, A.

D.A. Krohn, T. MacDougall, and A. Mendez, “Fiber optic sensors: fundamentals and applications Bellingham,” WA: Spie Press (2014)

Merlano, M. C.

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

Milano, G.

J. L. Fischel, P. Formento, J. Ciccolini, P. Rostagno, M. C. Etienne, J. Catalin, and G. Milano, “Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity,” Br. J. Cancer 86(7), 1162–1168 (2002).
[Crossref]

Miller, T. F.

H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
[Crossref]

Mirzaee, F.H.

M. keraji, F.H. Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response, to discriminate malignant and normal tissues,” Proc. of OSA-SPIE Germany (p. 87980A) (2013)

Mishra, A. K.

S. K. Panigrahi and A. K. Mishra, “Study on the dependence of fluorescence intensity on optical density of solutions: the use of fluorescence observation field for inner filter effect corrections,” Photochem. Photobiol. Sci. 18(2), 583–591 (2019).
[Crossref]

Miwa, K.

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

Mohammadian, M.

Mohebbifar, M. R.

A. Bavali, P. Parvin, M. Tavassoli, and M. R. Mohebbifar, “Angular distribution of laser-induced fluorescence emission of active dyes in scattering media,”,” Appl. Opt. 57(7), B32–B38 (2018).
[Crossref]

F. Ghasemi, P. Parvin, J. Reif, S. Abachi, M. R. Mohebbifar, and M. R. Razzaghi, “Laser induced breakdown spectroscopy for the diagnosis of several malignant tissue samples,”,” J. Laser Appl. 29(4), 042005 (2017).
[Crossref]

Morita, A.

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

Mortazavi, S. Z.

Motlagh, N. S. H.

Mousavi Pour, M. R.

Nagai, N.

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

Nawaz, M.

Sh. Anwar, A. H. Firdous, A. U. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

Ninomiya, I.

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

Nishimura, G.

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

Nourazar, S. S.

Nussbaumer, S.

S. Nussbaumer, P. Bonnabry, J. L. Veuthey, and S. F. Souverain, “Analysis of anticancer drugs: a review,” Talanta 85(5), 2265–2289 (2011).
[Crossref]

O’Connell, M. J.

M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
[Crossref]

Ohta, T.

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

Palermiti, L. G.

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref]

Panigrahi, S. K.

S. K. Panigrahi and A. K. Mishra, “Study on the dependence of fluorescence intensity on optical density of solutions: the use of fluorescence observation field for inner filter effect corrections,” Photochem. Photobiol. Sci. 18(2), 583–591 (2019).
[Crossref]

Parasassi, T.

T. Parasassi, E. K. Krasnowska, L. Bagatolli, and E. Gratton, “Laurdan and Prodan as polarity-sensitive fluorescent membrane probes,” J. Fluoresc. 8(4), 365–373 (1998).
[Crossref]

Parvin, P.

A. Bavali, P. Parvin, M. Tavassoli, and M. R. Mohebbifar, “Angular distribution of laser-induced fluorescence emission of active dyes in scattering media,”,” Appl. Opt. 57(7), B32–B38 (2018).
[Crossref]

F. Ghasemi, P. Parvin, J. Reif, S. Abachi, M. R. Mohebbifar, and M. R. Razzaghi, “Laser induced breakdown spectroscopy for the diagnosis of several malignant tissue samples,”,” J. Laser Appl. 29(4), 042005 (2017).
[Crossref]

N. Hosseini Motlagh, P. Parvin, M. Refahizadeh, and A. Bavali, “Fluorescence properties of doxorubicin coupled carbon nanocarriers,” Appl. Opt. 56(26), 7498–7503 (2017).
[Crossref]

F. Ghasemi, P. Parvin, N. S. H. Motlagh, and S. Abachi, “LIF spectroscopy of stained malignant breast tissues,” Biomed. Opt. Express 8(2), 512–523 (2017).
[Crossref]

F. Ghasemi, P. Parvin, N. S. H. Motlagh, A. Amjadi, and S. Abachi, “” Laser induced breakdown spectroscopy and acoustic response techniques to discriminate healthy and cancerous breast tissues,”,” Appl. Opt. 55(29), 8227–8235 (2016).
[Crossref]

N. S. H. Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, and S. Jelvani, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
[Crossref]

N. S. H. Motlagh, P. Parvin, F. Ghasemi, and F. Atyabi, “Fluorescence properties of several chemotherapy drugs: Doxorubicin, Paclitaxel and Bleomycin,” Biomed. Opt. Express 7(6), 2400 (2016).
[Crossref]

A. Bavali, P. Parvin, S. Z. Mortazavi, and S. S. Nourazar, “Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution,”,” Biomed. Opt. Express 6(5), 1679–1693 (2015).
[Crossref]

A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour, “Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions,” Appl. Opt. 53(24), 5398–5409 (2014).
[Crossref]

F. Ghasemi, P. Parvin, N. Hosseini Motlagh, A. Bavali, and R. Karimi, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” Optical Molecular Probes, Imaging and Drug Delivery.Optical Society of America (pp. JT3A-40) (2015).

M. keraji, F.H. Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response, to discriminate malignant and normal tissues,” Proc. of OSA-SPIE Germany (p. 87980A) (2013)

Paulsen, K. D.

P. A. Valdes, F. Leblond, K. D. Paulsen, A. Kim, B. C. Wilson, O. M. Conde, B. T. Harris, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref]

Pawinski, T.

E. Piórkowska, M. Kaza, J. Fitatiuk, I. Szlaska, T. Pawinski, and P. J. Rudzki, “Rapid and simplified HPLC-UV method with on-line wavelengths switching for determination of capecitabine in human plasma,” Pharmazie 69(7), 500–505 (2014).
[Crossref]

Piórkowska, E.

E. Piórkowska, M. Kaza, J. Fitatiuk, I. Szlaska, T. Pawinski, and P. J. Rudzki, “Rapid and simplified HPLC-UV method with on-line wavelengths switching for determination of capecitabine in human plasma,” Pharmazie 69(7), 500–505 (2014).
[Crossref]

Poon, M. A.

M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
[Crossref]

Ravasio, R.

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

Razzaghi, M. R.

F. Ghasemi, P. Parvin, J. Reif, S. Abachi, M. R. Mohebbifar, and M. R. Razzaghi, “Laser induced breakdown spectroscopy for the diagnosis of several malignant tissue samples,”,” J. Laser Appl. 29(4), 042005 (2017).
[Crossref]

Refahizadeh, M.

Rehman, A. U.

Sh. Anwar, A. H. Firdous, A. U. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

Reif, J.

F. Ghasemi, P. Parvin, J. Reif, S. Abachi, M. R. Mohebbifar, and M. R. Razzaghi, “Laser induced breakdown spectroscopy for the diagnosis of several malignant tissue samples,”,” J. Laser Appl. 29(4), 042005 (2017).
[Crossref]

Roberts, D. W.

P. A. Valdes, F. Leblond, K. D. Paulsen, A. Kim, B. C. Wilson, O. M. Conde, B. T. Harris, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref]

Rostagno, P.

J. L. Fischel, P. Formento, J. Ciccolini, P. Rostagno, M. C. Etienne, J. Catalin, and G. Milano, “Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity,” Br. J. Cancer 86(7), 1162–1168 (2002).
[Crossref]

Rudzki, P. J.

E. Piórkowska, M. Kaza, J. Fitatiuk, I. Szlaska, T. Pawinski, and P. J. Rudzki, “Rapid and simplified HPLC-UV method with on-line wavelengths switching for determination of capecitabine in human plasma,” Pharmazie 69(7), 500–505 (2014).
[Crossref]

Scheithauer, W.

A. Farkouh, W. Scheithauer, P. Buchner, A. Georgopoulos, J. Schueller, B. Gruenberger, and M. Czejka, “Clinical pharmacokinetics of capecitabine and its metabolites in combination with the monoclonal antibody bevacizumab,” Anticancer Res. 34(7), 3669–3673 (2014).

Schueller, J.

A. Farkouh, W. Scheithauer, P. Buchner, A. Georgopoulos, J. Schueller, B. Gruenberger, and M. Czejka, “Clinical pharmacokinetics of capecitabine and its metabolites in combination with the monoclonal antibody bevacizumab,” Anticancer Res. 34(7), 3669–3673 (2014).

Sobrero, A.

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

Souverain, S. F.

S. Nussbaumer, P. Bonnabry, J. L. Veuthey, and S. F. Souverain, “Analysis of anticancer drugs: a review,” Talanta 85(5), 2265–2289 (2011).
[Crossref]

Szlaska, I.

E. Piórkowska, M. Kaza, J. Fitatiuk, I. Szlaska, T. Pawinski, and P. J. Rudzki, “Rapid and simplified HPLC-UV method with on-line wavelengths switching for determination of capecitabine in human plasma,” Pharmazie 69(7), 500–505 (2014).
[Crossref]

Takino, T.

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

Tavassoli, M.

Terada, I.

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

Travagli, V.

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref]

Tschetter, L. K.

M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
[Crossref]

Valdes, P. A.

P. A. Valdes, F. Leblond, K. D. Paulsen, A. Kim, B. C. Wilson, O. M. Conde, B. T. Harris, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref]

Valeur, B.

B. Valeur and M.N. Berberan-Santos, “Molecular Fluorescence: Principles and Applications,” Wiley-VCH (2002)

Veuthey, J. L.

S. Nussbaumer, P. Bonnabry, J. L. Veuthey, and S. F. Souverain, “Analysis of anticancer drugs: a review,” Talanta 85(5), 2265–2289 (2011).
[Crossref]

Vinante, O.

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

Wardle, B.

B. Wardle, “Principles and applications of photochemistry,” John Wiley & Sons (2009)

Wieand, H. S.

M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
[Crossref]

Wilson, B. C.

P. A. Valdes, F. Leblond, K. D. Paulsen, A. Kim, B. C. Wilson, O. M. Conde, B. T. Harris, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref]

Wodtke, A. M.

H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
[Crossref]

Wu, N.

P. Zheng and N. Wu, “Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review,” Chem. Asian J. 12(18), 2343–2353 (2017).
[Crossref]

Yoshizumi, T.

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

Yun, S. H.

M. C. Gather and S. H. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nat. Commun. 5(1), 5722 (2014).
[Crossref]

Zare, R. N.

R. Altkorn and R. N. Zare, “Effects of saturation on laser-induced fluorescence measurements of population and polarization,” Ann. Rev. Phys. Chem. 35(1), 265–289 (1984).
[Crossref]

Zhang, N.

M. Li, N. Zhang, and M. Li, “Capecitabine treatment of HCT-15 colon cancer cells induces apoptosis via mitochondrial pathway,” Trop. J. Pharm. Res. 16(7), 1529–1536 (2017).
[Crossref]

Zheng, P.

P. Zheng and N. Wu, “Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review,” Chem. Asian J. 12(18), 2343–2353 (2017).
[Crossref]

Ann. Rev. Phys. Chem. (1)

R. Altkorn and R. N. Zare, “Effects of saturation on laser-induced fluorescence measurements of population and polarization,” Ann. Rev. Phys. Chem. 35(1), 265–289 (1984).
[Crossref]

Anticancer Res. (1)

A. Farkouh, W. Scheithauer, P. Buchner, A. Georgopoulos, J. Schueller, B. Gruenberger, and M. Czejka, “Clinical pharmacokinetics of capecitabine and its metabolites in combination with the monoclonal antibody bevacizumab,” Anticancer Res. 34(7), 3669–3673 (2014).

Appl. Opt. (4)

Biomed. Opt. Express (3)

Br. J. Cancer (1)

J. L. Fischel, P. Formento, J. Ciccolini, P. Rostagno, M. C. Etienne, J. Catalin, and G. Milano, “Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity,” Br. J. Cancer 86(7), 1162–1168 (2002).
[Crossref]

Chem. Asian J. (1)

P. Zheng and N. Wu, “Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review,” Chem. Asian J. 12(18), 2343–2353 (2017).
[Crossref]

Chin. J. Phys. (1)

W. W. Liu, “Intensity Clamping During Femtosecond Laser Filamentation,” Chin. J. Phys. 52(1), 465–489 (2014).
[Crossref]

Clin. Drug Invest. (1)

F. Di Costanzo, R. Ravasio, A. Sobrero, O. Bertetto, O. Vinante, G. Luppi, R. Labianca, D. Amadori, C. Barone, M. C. Merlano, and F. Longo, “Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy for patients with Dukes’ C colon cancer,” Clin. Drug Invest. 28(10), 645–655 (2008).
[Crossref]

Int. J. Cancer (1)

I. Ninomiya, I. Terada, T. Yoshizumi, T. Takino, N. Nagai, A. Morita, S. Fushida, G. Nishimura, T. Fujimura, T. Ohta, and K. Miwa, “Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum,” Int. J. Cancer 112(1), 135–142 (2004).
[Crossref]

J. Biomed. Opt. (1)

P. A. Valdes, F. Leblond, K. D. Paulsen, A. Kim, B. C. Wilson, O. M. Conde, B. T. Harris, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref]

J. Clin. Oncol. (1)

M. A. Poon, M. J. O’Connell, H. S. Wieand, J. E. Krook, J. B. Gerstner, L. K. Tschetter, R. Levitt, C. G. Kardinal, and J. A. Mailliard, “Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer,” J. Clin. Oncol. 9(11), 1967–1972 (1991).
[Crossref]

J. Fluoresc. (1)

T. Parasassi, E. K. Krasnowska, L. Bagatolli, and E. Gratton, “Laurdan and Prodan as polarity-sensitive fluorescent membrane probes,” J. Fluoresc. 8(4), 365–373 (1998).
[Crossref]

J. Laser Appl. (1)

F. Ghasemi, P. Parvin, J. Reif, S. Abachi, M. R. Mohebbifar, and M. R. Razzaghi, “Laser induced breakdown spectroscopy for the diagnosis of several malignant tissue samples,”,” J. Laser Appl. 29(4), 042005 (2017).
[Crossref]

J. Pharm. Biomed. Anal. (1)

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref]

J. Phys. Chem. A (1)

I. A. Z. Al-Ansari, “Role of Solvent Polarity and Hydrogen-Bonding on Excited-State Fluorescence of 3-[(E)-{4-[Dimethylamino] benzylidene} amino]-2-naphthoic Acid (DMAMN): Isomerization vs Rotomerization,” J. Phys. Chem. A 122(7), 1838–1854 (2018).
[Crossref]

Laser Phys. Lett. (2)

N. S. H. Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, and S. Jelvani, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
[Crossref]

Sh. Anwar, A. H. Firdous, A. U. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

Nat. Commun. (1)

M. C. Gather and S. H. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nat. Commun. 5(1), 5722 (2014).
[Crossref]

Pharmazie (1)

E. Piórkowska, M. Kaza, J. Fitatiuk, I. Szlaska, T. Pawinski, and P. J. Rudzki, “Rapid and simplified HPLC-UV method with on-line wavelengths switching for determination of capecitabine in human plasma,” Pharmazie 69(7), 500–505 (2014).
[Crossref]

Photochem. Photobiol. Sci. (1)

S. K. Panigrahi and A. K. Mishra, “Study on the dependence of fluorescence intensity on optical density of solutions: the use of fluorescence observation field for inner filter effect corrections,” Photochem. Photobiol. Sci. 18(2), 583–591 (2019).
[Crossref]

Science (1)

H. Jiang, M. Kammler, F. Ding, Y. Dorenkamp, F. R. Manby, A. M. Wodtke, T. F. Miller, A. Kandratsenka, and O. Bünermann, “Imaging covalent bond formation by H atom scattering from graphene,” Science 364(6438), 379–382 (2019).
[Crossref]

Talanta (1)

S. Nussbaumer, P. Bonnabry, J. L. Veuthey, and S. F. Souverain, “Analysis of anticancer drugs: a review,” Talanta 85(5), 2265–2289 (2011).
[Crossref]

Trop. J. Pharm. Res. (1)

M. Li, N. Zhang, and M. Li, “Capecitabine treatment of HCT-15 colon cancer cells induces apoptosis via mitochondrial pathway,” Trop. J. Pharm. Res. 16(7), 1529–1536 (2017).
[Crossref]

Other (7)

F. Ghasemi, P. Parvin, N. Hosseini Motlagh, A. Bavali, and R. Karimi, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” Optical Molecular Probes, Imaging and Drug Delivery.Optical Society of America (pp. JT3A-40) (2015).

D.A. Krohn, T. MacDougall, and A. Mendez, “Fiber optic sensors: fundamentals and applications Bellingham,” WA: Spie Press (2014)

M. keraji, F.H. Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response, to discriminate malignant and normal tissues,” Proc. of OSA-SPIE Germany (p. 87980A) (2013)

B. Wardle, “Principles and applications of photochemistry,” John Wiley & Sons (2009)

J. R. Lakowicz, “Principles of fluorescence spectroscopy,” Springer Science & Business Media (2013)

B. Valeur and M.N. Berberan-Santos, “Molecular Fluorescence: Principles and Applications,” Wiley-VCH (2002)

U. Brackmann. “Laser dyes,” Göttingen (Germany) Lambda Physik AG. D 37079 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Experimental set-up for LIF measurement of Capecitabine, including coherent excitation source of ArF laser, detector with triggered modular spectrometer and the optical collimating lens (b) UV-VIS absorption spectra of Capecitabine in different concentration characterizing three absorbance peaks at 216, 237 and 302 nm. Inset: absorption peak intensity versus fluorophore concentrations (c) Normalized overlapping area between absorption and LIF spectra as well as absorbance peak at 216 nm, emission peak at 408 nm and stokes shift Δ=202 nm. Note: Cuvette length is 1 cm.
Fig. 2.
Fig. 2. (a) LIF peak intensity versus Capecitabine concentration ranging 0.25-10 (mg/ml). Inset: Corresponding LIF spectra of different concentrations b) Emission wavelength in terms of Capecitabine concentration indicating a lucid red shift of 6 nm. This is mainly due to the reabsorption events that arises from the spectral overlap of absorbance and fluorescence emission. Inset: FWHM of LIF signals versus concentration. Note that FWHM reduction arises from the shrinkage of overlapping area that strongly affects the fluorescence properties of Capecitabine to slow down the rate of red shift at dense concentrations. Number of 50 trial measurements are averaged to find each datapoint.
Fig. 3.
Fig. 3. (a) Capecitabine fluorescence signal intensity versus pulse energy of ArF laser, inset (i) LIF spectra at different pulse energies ranging 130-270 mJ, inset (ii) Emission wavelength versus pulse energy (b) LIF peak intensity in terms of PRR of ArF laser. Inset (i) Capecitabine LIF spectra versus PRR (1-10 Hz) inset (ii) output pulsed energy in different PRRs. Number of 50 trial measurements are averaged to find each datapoint.
Fig. 4.
Fig. 4. (a) LIF peak intensity in terms of RdB concentration ranging 3-50 (µg/ml) Inset: LIF spectra for different concentrations. (b) Emission wavelength versus RdB concentration emphasizing obvious spectral red shift, inset (i) The corresponding FWHM versus concentration, inset (ii) Normalized absorbance emission spectra. The overlapping spectral area is highlighted. Number of 50 trial measurements are averaged to find each datapoint.
Fig. 5.
Fig. 5. (a) Quantum yields and (b) spectral shifts of chemo-drugs of interest: Capecitabine, Paclitaxel and Bleomycin as biocompatible fluorophores against RdB as the reference fluorophore. Here, the fluorescence properties of Capecitabine is compared with other typical Chemodrugs (Paclitaxel and Bleomycin [16]) and RdB as reference fluorophore [30].
Fig. 6.
Fig. 6. (a) LIF peak intensity of Capecitabine in terms of GO densities ranging 2.5-50 (µg/ml) at certain 2.5 mg/ml Capecitabine concentration. Inset: Corresponding LIF spectra of Capecitabine at the attendance of different GO densities (b) Emission wavelength versus GO density at Cp=2.5 mg/ml indicating an obvious red shift. Inset: F0/F ratio in terms of variable GO densities. Number of 50 trial measurements are averaged to find each datapoint (c) Chemical structure of (GO + Cap) compound including π- π stacking and hydrogen bindings of GO with Capecitabine. Note that chemical structures are sketched using ChemDraw Ultra V.8.0 compound
Fig. 7.
Fig. 7. (a) LIF peak intensity of RdB in terms of GO densities ranging 20-1000 (µg/ml) at certain 0.01 mg/ml RdB concentration. Inset: RdB LIF spectra of Capecitabine at the attendance of different GO densities (b) F0/F ratio of (RdB + GO) suspension in terms of variable GO densities. Inset: Fluorescence emission wavelength in terms of GO density. Number of 50 trial measurements are averaged to find each datapoint.

Tables (2)

Tables Icon

Table 1. Spectral properties of LIF emission for Capecitabine and RdB as reference

Tables Icon

Table 2. Fluorescence properties of Capecitabine versus RdB (Reference)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I f = β ( 1 10 α C l ) e k C l
I f = I a η f λ f ¯ λ a b s = I a η f λ f ¯ Δ + λ f
F 0 / F = 1 + K [ Q ]

Metrics