Abstract

Ultraviolet (UV) radiation has been identified as one of the most critical factors for the degradation of photovoltaics (PVs). Besides that, the UV spectral regime (∼0.28-0.4 µm) is less efficient for silicon-based PVs owing to the excess of the energy of the incident UV photons relative to the semiconductor’s bandgap; thus, a large part of the UV photon energy is transformed into heat, increasing the PV temperature and decreasing its efficiency. Therefore, it is crucial to investigate in detail and evaluate the UV radiation impact on the temperature and efficiency of realistic photovoltaic modules. Here we perform this investigation for crystalline silicon-based photovoltaics that operate outdoors. The investigation is performed by employing a thermal-electrical modeling approach, which takes into account all the major intrinsic processes affected by the temperature variation in the photovoltaic devices. We show that effectively reflecting UV radiation, i.e., up to a cut-off wavelength, which depends on the environmental conditions, results in a reduction of the overall operating temperature and enhancement of the PV cell’s efficiency. Additionally, blocking the high energy UV photons prolongs the lifetime of the PV and its performance in the long term.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Global Overview,” https://www.ren21.net/gsr-2019/chapters/chapter_01/chapter_01/ .
  2. R. G. Ross, “Technology developments toward 30-year-life of photovoltaic modules,” in the 17th Photovoltaic Specialists Conference, 464–472 (1984).
  3. B. Ottersböck, G. Oreski, and G. Pinter, “Comparison of different microclimate effects on the aging behavior of encapsulation materials used in photovoltaic modules,” Polym. Degrad. Stab. 138, 182–191 (2017).
    [Crossref]
  4. M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, and V. de F. C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
    [Crossref]
  5. A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
    [Crossref]
  6. D. C. Jordan and S. R. Kurtz, “Photovoltaic Degradation Rates-an Analytical Review,” Prog. Photovoltaics 21(1), 12–29 (2013).
    [Crossref]
  7. O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
    [Crossref]
  8. M. D. Kempe, T. Moricone, M. Kilkenny, M. D. Kempe, T. Moricone, and M. Kilkenny, Effects of Cerium Removal from Glass on Photovoltaic Module Performance and Stability Preprint Effects of Cerium Removal From Glass on Photovoltaic Module Performance and Stability, Available from: http://www.nrel.gov/docs/fy09osti/44936.pdf (2009).
  9. W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
    [Crossref]
  10. T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
    [Crossref]
  11. G. Perrakis, A. Tasolamprou, G. Kenanakis, E. Economou, S. Tzortzakis, and M. Kafesaki, “Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures,” Opt. Express, https://doi.org/10.1364/OE.388208 (2020).
  12. D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.
  13. L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
    [Crossref]
  14. P. Wurfel, “The chemical potential of radiation,” J. Phys. C: Solid State Phys. 15(18), 3967–3985 (1982).
    [Crossref]
  15. S. Roy Chowdhury and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1441–1447 (2010).
    [Crossref]
  16. “Solar Spectral Irradiance: Air Mass 1.5,” https://rredc.nrel.gov/solar/spectra/am1.5/ .
  17. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  18. M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Devices 31(5), 671–678 (1984).
    [Crossref]
  19. W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
    [Crossref]
  20. M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
    [Crossref]
  21. T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
    [Crossref]
  22. R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
    [Crossref]
  23. B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
    [Crossref]
  24. J. Jaramillo-Fernandez, G. L. Whitworth, J. A. Pariente, A. Blanco, P. D. Garcia, C. Lopez, and C. M. Sotomayor-Torres, “A Self-Assembled 2D Thermofunctional Material for Radiative Cooling,” Small 15(52), 1905290 (2019).
    [Crossref]

2019 (1)

J. Jaramillo-Fernandez, G. L. Whitworth, J. A. Pariente, A. Blanco, P. D. Garcia, C. Lopez, and C. M. Sotomayor-Torres, “A Self-Assembled 2D Thermofunctional Material for Radiative Cooling,” Small 15(52), 1905290 (2019).
[Crossref]

2018 (4)

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, and V. de F. C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

2017 (3)

B. Ottersböck, G. Oreski, and G. Pinter, “Comparison of different microclimate effects on the aging behavior of encapsulation materials used in photovoltaic modules,” Polym. Degrad. Stab. 138, 182–191 (2017).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

2015 (2)

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

2013 (2)

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

D. C. Jordan and S. R. Kurtz, “Photovoltaic Degradation Rates-an Analytical Review,” Prog. Photovoltaics 21(1), 12–29 (2013).
[Crossref]

2010 (2)

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
[Crossref]

S. Roy Chowdhury and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1441–1447 (2010).
[Crossref]

2008 (1)

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

1984 (1)

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Devices 31(5), 671–678 (1984).
[Crossref]

1982 (1)

P. Wurfel, “The chemical potential of radiation,” J. Phys. C: Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Ao, X.

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

Bergstrom, N.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Blanco, A.

J. Jaramillo-Fernandez, G. L. Whitworth, J. A. Pariente, A. Blanco, P. D. Garcia, C. Lopez, and C. M. Sotomayor-Torres, “A Self-Assembled 2D Thermofunctional Material for Radiative Cooling,” Small 15(52), 1905290 (2019).
[Crossref]

Blankemeyer, S.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Bothe, K.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Bourne, B.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Brendel, R.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Cal, R. B.

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

Calaf, M.

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

Charki, A.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Chen, K.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Cousins, P. J.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Daquin, R.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

de Oliveira, M. C. C.

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, and V. de F. C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

Deceglie, M. G.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Defensor, M.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Dennis, T.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Diniz Cardoso, A. S. A.

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, and V. de F. C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

Dupré, O.

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

Economou, E.

G. Perrakis, A. Tasolamprou, G. Kenanakis, E. Economou, S. Tzortzakis, and M. Kafesaki, “Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures,” Opt. Express, https://doi.org/10.1364/OE.388208 (2020).

Fan, S.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

Feng, C. B.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Ferry, V. E.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Garcia, P. D.

J. Jaramillo-Fernandez, G. L. Whitworth, J. A. Pariente, A. Blanco, P. D. Garcia, C. Lopez, and C. M. Sotomayor-Torres, “A Self-Assembled 2D Thermofunctional Material for Radiative Cooling,” Small 15(52), 1905290 (2019).
[Crossref]

Green, M. A.

O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Devices 31(5), 671–678 (1984).
[Crossref]

Hu, M.

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

Ilaw, R.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Jaramillo-Fernandez, J.

J. Jaramillo-Fernandez, G. L. Whitworth, J. A. Pariente, A. Blanco, P. D. Garcia, C. Lopez, and C. M. Sotomayor-Torres, “A Self-Assembled 2D Thermofunctional Material for Radiative Cooling,” Small 15(52), 1905290 (2019).
[Crossref]

Jordan, D. C.

D. C. Jordan and S. R. Kurtz, “Photovoltaic Degradation Rates-an Analytical Review,” Prog. Photovoltaics 21(1), 12–29 (2013).
[Crossref]

Kafesaki, M.

G. Perrakis, A. Tasolamprou, G. Kenanakis, E. Economou, S. Tzortzakis, and M. Kafesaki, “Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures,” Opt. Express, https://doi.org/10.1364/OE.388208 (2020).

Kébé, C. M. F.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Kempe, M. D.

M. D. Kempe, T. Moricone, M. Kilkenny, M. D. Kempe, T. Moricone, and M. Kilkenny, Effects of Cerium Removal from Glass on Photovoltaic Module Performance and Stability Preprint Effects of Cerium Removal From Glass on Photovoltaic Module Performance and Stability, Available from: http://www.nrel.gov/docs/fy09osti/44936.pdf (2009).

M. D. Kempe, T. Moricone, M. Kilkenny, M. D. Kempe, T. Moricone, and M. Kilkenny, Effects of Cerium Removal from Glass on Photovoltaic Module Performance and Stability Preprint Effects of Cerium Removal From Glass on Photovoltaic Module Performance and Stability, Available from: http://www.nrel.gov/docs/fy09osti/44936.pdf (2009).

Kenanakis, G.

G. Perrakis, A. Tasolamprou, G. Kenanakis, E. Economou, S. Tzortzakis, and M. Kafesaki, “Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures,” Opt. Express, https://doi.org/10.1364/OE.388208 (2020).

Kilkenny, M.

M. D. Kempe, T. Moricone, M. Kilkenny, M. D. Kempe, T. Moricone, and M. Kilkenny, Effects of Cerium Removal from Glass on Photovoltaic Module Performance and Stability Preprint Effects of Cerium Removal From Glass on Photovoltaic Module Performance and Stability, Available from: http://www.nrel.gov/docs/fy09osti/44936.pdf (2009).

M. D. Kempe, T. Moricone, M. Kilkenny, M. D. Kempe, T. Moricone, and M. Kilkenny, Effects of Cerium Removal from Glass on Photovoltaic Module Performance and Stability Preprint Effects of Cerium Removal From Glass on Photovoltaic Module Performance and Stability, Available from: http://www.nrel.gov/docs/fy09osti/44936.pdf (2009).

Kobi, A.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Köntges, M.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Kurtz, S. R.

D. C. Jordan and S. R. Kurtz, “Photovoltaic Degradation Rates-an Analytical Review,” Prog. Photovoltaics 21(1), 12–29 (2013).
[Crossref]

Leygo, A.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Li, W.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Lins, V. de F. C.

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, and V. de F. C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

Lopez, C.

J. Jaramillo-Fernandez, G. L. Whitworth, J. A. Pariente, A. Blanco, P. D. Garcia, C. Lopez, and C. M. Sotomayor-Torres, “A Self-Assembled 2D Thermofunctional Material for Radiative Cooling,” Small 15(52), 1905290 (2019).
[Crossref]

Ma, Z. Q.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Masad, A.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Meyers, B.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Moricone, T.

M. D. Kempe, T. Moricone, M. Kilkenny, M. D. Kempe, T. Moricone, and M. Kilkenny, Effects of Cerium Removal from Glass on Photovoltaic Module Performance and Stability Preprint Effects of Cerium Removal From Glass on Photovoltaic Module Performance and Stability, Available from: http://www.nrel.gov/docs/fy09osti/44936.pdf (2009).

M. D. Kempe, T. Moricone, M. Kilkenny, M. D. Kempe, T. Moricone, and M. Kilkenny, Effects of Cerium Removal from Glass on Photovoltaic Module Performance and Stability Preprint Effects of Cerium Removal From Glass on Photovoltaic Module Performance and Stability, Available from: http://www.nrel.gov/docs/fy09osti/44936.pdf (2009).

Ndiaye, A.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Ndiaye, P. A.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Offer, M.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Oreski, G.

B. Ottersböck, G. Oreski, and G. Pinter, “Comparison of different microclimate effects on the aging behavior of encapsulation materials used in photovoltaic modules,” Polym. Degrad. Stab. 138, 182–191 (2017).
[Crossref]

Ottersböck, B.

B. Ottersböck, G. Oreski, and G. Pinter, “Comparison of different microclimate effects on the aging behavior of encapsulation materials used in photovoltaic modules,” Polym. Degrad. Stab. 138, 182–191 (2017).
[Crossref]

Pariente, J. A.

J. Jaramillo-Fernandez, G. L. Whitworth, J. A. Pariente, A. Blanco, P. D. Garcia, C. Lopez, and C. M. Sotomayor-Torres, “A Self-Assembled 2D Thermofunctional Material for Radiative Cooling,” Small 15(52), 1905290 (2019).
[Crossref]

Pei, G.

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

Perrakis, G.

G. Perrakis, A. Tasolamprou, G. Kenanakis, E. Economou, S. Tzortzakis, and M. Kafesaki, “Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures,” Opt. Express, https://doi.org/10.1364/OE.388208 (2020).

Pinter, G.

B. Ottersböck, G. Oreski, and G. Pinter, “Comparison of different microclimate effects on the aging behavior of encapsulation materials used in photovoltaic modules,” Polym. Degrad. Stab. 138, 182–191 (2017).
[Crossref]

Podraza, N. J.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Raman, A. P.

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

Repins, I.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Rose, D.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Ross, R. G.

R. G. Ross, “Technology developments toward 30-year-life of photovoltaic modules,” in the 17th Photovoltaic Specialists Conference, 464–472 (1984).

Roy Chowdhury, S.

S. Roy Chowdhury and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1441–1447 (2010).
[Crossref]

Saga, T.

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
[Crossref]

Saha, H.

S. Roy Chowdhury and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1441–1447 (2010).
[Crossref]

Sambou, V.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Schulte-Huxel, H.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Shi, P. P.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Shi, Y.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Shields, M.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Silverman, T. J.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Slauch, I. M.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Smith, D. D.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Sotomayor-Torres, C. M.

J. Jaramillo-Fernandez, G. L. Whitworth, J. A. Pariente, A. Blanco, P. D. Garcia, C. Lopez, and C. M. Sotomayor-Torres, “A Self-Assembled 2D Thermofunctional Material for Radiative Cooling,” Small 15(52), 1905290 (2019).
[Crossref]

Subedi, I.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Tang, X.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Tasolamprou, A.

G. Perrakis, A. Tasolamprou, G. Kenanakis, E. Economou, S. Tzortzakis, and M. Kafesaki, “Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures,” Opt. Express, https://doi.org/10.1364/OE.388208 (2020).

Tzortzakis, S.

G. Perrakis, A. Tasolamprou, G. Kenanakis, E. Economou, S. Tzortzakis, and M. Kafesaki, “Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures,” Opt. Express, https://doi.org/10.1364/OE.388208 (2020).

Vaillon, R.

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

Viana, M. M.

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, and V. de F. C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

Vogt, M. R.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Westerberg, S.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Whitworth, G. L.

J. Jaramillo-Fernandez, G. L. Whitworth, J. A. Pariente, A. Blanco, P. D. Garcia, C. Lopez, and C. M. Sotomayor-Torres, “A Self-Assembled 2D Thermofunctional Material for Radiative Cooling,” Small 15(52), 1905290 (2019).
[Crossref]

Witteck, R.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Wurfel, P.

P. Wurfel, “The chemical potential of radiation,” J. Phys. C: Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

Xuan, Q.

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

Yang, W. J.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Zhao, B.

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

Zhao, W. G.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Zhu, L.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

Zhu, X.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

ACS Photonics (1)

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

IEEE J. Photovoltaics (2)

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

IEEE Trans. Electron Devices (1)

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Devices 31(5), 671–678 (1984).
[Crossref]

J. Appl. Phys. (1)

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

J. Phys. C: Solid State Phys. (1)

P. Wurfel, “The chemical potential of radiation,” J. Phys. C: Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

NPG Asia Mater. (1)

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
[Crossref]

Polym. Degrad. Stab. (1)

B. Ottersböck, G. Oreski, and G. Pinter, “Comparison of different microclimate effects on the aging behavior of encapsulation materials used in photovoltaic modules,” Polym. Degrad. Stab. 138, 182–191 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

Prog. Photovoltaics (1)

D. C. Jordan and S. R. Kurtz, “Photovoltaic Degradation Rates-an Analytical Review,” Prog. Photovoltaics 21(1), 12–29 (2013).
[Crossref]

Renewable Sustainable Energy Rev. (1)

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, and V. de F. C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

Sci. Rep. (1)

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

Small (1)

J. Jaramillo-Fernandez, G. L. Whitworth, J. A. Pariente, A. Blanco, P. D. Garcia, C. Lopez, and C. M. Sotomayor-Torres, “A Self-Assembled 2D Thermofunctional Material for Radiative Cooling,” Small 15(52), 1905290 (2019).
[Crossref]

Sol. Energy (2)

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

S. Roy Chowdhury and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1441–1447 (2010).
[Crossref]

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

Other (6)

“Solar Spectral Irradiance: Air Mass 1.5,” https://rredc.nrel.gov/solar/spectra/am1.5/ .

M. D. Kempe, T. Moricone, M. Kilkenny, M. D. Kempe, T. Moricone, and M. Kilkenny, Effects of Cerium Removal from Glass on Photovoltaic Module Performance and Stability Preprint Effects of Cerium Removal From Glass on Photovoltaic Module Performance and Stability, Available from: http://www.nrel.gov/docs/fy09osti/44936.pdf (2009).

“Global Overview,” https://www.ren21.net/gsr-2019/chapters/chapter_01/chapter_01/ .

R. G. Ross, “Technology developments toward 30-year-life of photovoltaic modules,” in the 17th Photovoltaic Specialists Conference, 464–472 (1984).

G. Perrakis, A. Tasolamprou, G. Kenanakis, E. Economou, S. Tzortzakis, and M. Kafesaki, “Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures,” Opt. Express, https://doi.org/10.1364/OE.388208 (2020).

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the silicon-based PV module investigated in this work showing the different layers along with their thickness. The material parameters and the absorptivity/emissivity data of the PV module in the optical spectral range are the same as in Ref. [11]. (b) PV temperature and (c) efficiency change associated with the reflection of the incident UV radiation for the system of (a), for a reflection wavelength range from 0.28 µm to λr. For all cases, the ambient temperature is equal to 298 K. To mimic typical outdoor conditions, we assume an irradiance level (Irrl) of 40% (of the “AM 1.5G” standard sunlight spectrum [16]) and a combined nonradiative heat transfer coefficient, hc, equal to 20 W/m2/K (black lines), Irrl=100%, hc=20 W/m2/K (blue lines), and Irrl=100%, hc=10.6 W/m2/K (red lines). The green dashed line in (c) indicates the EVA absorption. The two black/red dashed vertical lines correspond to two different λr of 0.363/0.37 µm and 0.375/0.393 µm, where we observe the maximum efficiency improvement and the limiting point, where the efficiency remains unharmed for the conditions of the black/red curve case. The orange and blue filled areas in (b) and (c) correspond to the normalized “AM1.5G” standard sunlight spectral irradiance and photon flux, respectively.
Fig. 2.
Fig. 2. (a) PV temperature reduction and (b) efficiency increase associated to the reflection of the incident UV radiation for a wavelength range from 0.28 µm up to λr=0.363 µm (solid lines) and λr=0.375 µm (dashed-dotted lines) for ambient temperature Tamb=298 K, in respect to the nonradiative heat transfer coefficient, hc, for the system of Fig. 1(a). The figures show the impact of the UV reflection for an irradiance level (Irrl) 100% (UV – red lines), and a much lower one (Irrl=40% – orange lines), and for different PV characteristics, like higher silicon thickness (W=500 µm – black lines), Tamb=313 K (purple lines).
Fig. 3.
Fig. 3. (a) Illustration of a 1D photonic crystal (consisting of alternate Si3N4 – MgF2 thin layers of 15–100 nm thickness respectively – total thickness ∼2.6 µm) placed on top of the PV. (b) Reflectivity spectra of the 1D photonic crystal (blue line) in comparison with the reflectivity of flat glass [i.e., the top layer in Fig. 1(a) – green line]. The two black dashed vertical lines correspond to two different λr of 0.363/0.375 µm discussed in connection with Fig. 2.
Fig. 4.
Fig. 4. (a) PV temperature reduction and (b) efficiency increase with the utilization of the 1D photonic crystal of Fig. 3, for ambient temperature Tamb=298 K, with respect to the nonradiative heat transfer coefficient, hc. The figures show the impact of the UV reflection for an irradiance level (Irrl) 100% (UV – red lines), and a much lower one (Irrl=40% – orange lines), and for different PV characteristics (for Irrl=100%), like higher silicon thickness (W=500 µm – black lines), Tamb=313 K (purple lines).
Fig. 5.
Fig. 5. PV temperature reduction (black line) and maximum power point voltage, Vmp, increase (green line) with the utilization of the 1D photonic crystal of Fig. 3 (or Fig. 5 inset), for ambient temperature Tamb=298 K, irradiance level Irrl=100%, with respect to the nonradiative heat transfer coefficient, hc.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P r a d , P V ( T ) P a t m ( T a m b ) + P c ( T a m b , T ) P s u n + P e l e , max ( V m p , T ) + P r a d , c e l l ( V m p , T ) = 0 ,
φ ( E , T , V ) = 2 E 2 h 3 c 2 ( e E q V k B T 1 ) ,
η = P e l e , max / P i n c = max ( J V ) / P i n c = J m p V m p / P i n c ,

Metrics