Abstract

Waveguide Raman spectroscopy uses the evanescent field outside a waveguide to probe the analyte on the surface of the chip, permitting to selectively study thin films or nanostructures on top of the waveguide while benefiting from the long iteration path of the excitation with the analyte. Both the polarization of the excitation mode as well as the refractive index contrast of the waveguide platform play an important role in the Raman excitation process as well as the coupling efficiency of the generated Raman signal back into the waveguide. In this article, we characterize three waveguide platforms of different refractive index contrasts for waveguide Raman, namely Al2O3, Si3N4 and TiO2 on SiO2. Toluene was used as a test analyte. Both background and analyte were measured for quasi- transverse electric (quasi-TE) and quasi- transverse magnetic (quasi-TM) modes. TM modes generate less background than TE modes due to less confinement of the mode in the waveguide core materials. A combination of Si3N4 and quasi-TM polarization led to the highest SNR in this study.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Ahuja and D. Parande, “Optical sensors and their applications,” J. Sci. Res. Rev. 1, 060–068 (2012).
  2. N. Sabri, S. Aljunid, M. Salim, and S. Fouad, “Fiber optic sensors: short review and applications,” in Recent Trends in Physics of Material Science and Technology (Springer, 2015), pp. 299–311.
  3. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
    [Crossref]
  4. M. De Goede, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, F. Mitjans, and S. Garcia-Blanco, “Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine,” Opt. Express 27(13), 18508–18521 (2019).
    [Crossref]
  5. R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Optical waveguide sensor for on-line monitoring of bacteria,” Opt. Lett. 28(14), 1233–1235 (2003).
    [Crossref]
  6. B. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. McGilp, “Optical waveguide sensor using evanescent wave excitation of fluorescent dye in sol-gel glass,” Electron. Lett 27(14), 1247–1248 (1991).
    [Crossref]
  7. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005).
    [Crossref]
  8. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
    [Crossref]
  9. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
    [Crossref]
  10. K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” J. Lightwave Technol. 24(5), 2132–2138 (2006).
    [Crossref]
  11. R. De La Rica, E. Mendoza, L. M. Lechuga, and H. Matsui, “Label-free pathogen detection with sensor chips assembled from peptide nanotubes,” Angew. Chem. Int. Ed. 47(50), 9752–9755 (2008).
    [Crossref]
  12. E. Li-Chan, “The applications of Raman spectroscopy in food science,” Trends Food Sci. Technol. 7(11), 361–370 (1996).
    [Crossref]
  13. T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21(12), 869–877 (2002).
    [Crossref]
  14. D. Bersani and J. M. Madariaga, “Applications of Raman spectroscopy in art and archaeology,” J. Raman Spectrosc. 43(11), 1523–1528 (2012).
    [Crossref]
  15. L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
    [Crossref]
  16. J. Desroches, M. Jermyn, K. Mok, C. Lemieux-Leduc, J. Mercier, K. St-Arnaud, K. Urmey, M.-C. Guiot, E. Marple, and K. Petrecca, “Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification,” Biomed. Opt. Express 6(7), 2380–2397 (2015).
    [Crossref]
  17. W. Lee, A. Nanou, L. Rikkert, F. A. W. Coumans, C. Otto, L. W. M. M. Terstappen, and H. L. Offerhaus, “Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy,” Anal. Chem. 90(19), 11290–11296 (2018).
    [Crossref]
  18. Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
    [Crossref]
  19. R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
    [Crossref]
  20. K. Ajito and K. Torimitsu, “Single nanoparticle trapping using a Raman tweezers microscope,” Appl. Spectrosc. 56(4), 541–544 (2002).
    [Crossref]
  21. P. Fernandes, P. Salomé, and A. Da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films 517(7), 2519–2523 (2009).
    [Crossref]
  22. J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
    [Crossref]
  23. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [Crossref]
  24. A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
    [Crossref]
  25. P. O’Connor and J. Tauc, “Raman spectrum of optical fiber waveguide—Effect of cladding,” Opt. Commun. 24(1), 135–138 (1978).
    [Crossref]
  26. P. O’Connor and J. Tauc, “Light scattering in optical waveguides,” Appl. Opt. 17(20), 3226–3231 (1978).
    [Crossref]
  27. N. F. Tyndall, T. H. Stievater, D. A. Kozak, K. Koo, R. A. McGill, M. W. Pruessner, W. S. Rabinovich, and S. A. Holmstrom, “Waveguide-enhanced Raman spectroscopy of trace chemical warfare agent simulants,” Opt. Lett. 43(19), 4803–4806 (2018).
    [Crossref]
  28. N. Schlotter and J. Rabolt, “Raman spectroscopy in polymeric thin film optical waveguides. 1. Polarized measurements and orientational effects in two-dimensional films,” J. Phys. Chem. 88(10), 2062–2067 (1984).
    [Crossref]
  29. P. Løvhaugen, B. S. Ahluwalia, T. R. Huser, and O. G. Hellesø, “Serial Raman spectroscopy of particles trapped on a waveguide,” Opt. Express 21(3), 2964–2970 (2013).
    [Crossref]
  30. A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers,” ACS Photonics 3(11), 2141–2149 (2016).
    [Crossref]
  31. C. Duverger, J.-M. Nedelec, M. Benatsou, M. Bouazaoui, B. Capoen, M. Ferrari, and S. Turrell, “Waveguide Raman spectroscopy: a non-destructive tool for the characterization of amorphous thin films,” J. Mol. Struct. 480-481, 169–178 (1999).
    [Crossref]
  32. A. Dhakal, P. Wuytens, F. Peyskens, A. Skirtach, N. Le Thomas, and R. Baets, “Microscope-less lab-on-a-chip raman spectroscopy of cell-membranes,” in 2016 IEEE Photonics Conference (IPC), (IEEE, 2016), 144–145.
  33. S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. McGill, and J. B. Khurgin, “Trace gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
    [Crossref]
  34. A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy,” Materials 10(2), 140 (2017).
    [Crossref]
  35. A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
    [Crossref]
  36. H. Hao, L. Wu, W. Shen, and H. Dekkers, “Origin of visible luminescence in hydrogenated amorphous silicon nitride,” Appl. Phys. Lett. 91(20), 201922 (2007).
    [Crossref]
  37. C. M. Mo, L. Zhang, C. Xie, and T. Wang, “Luminescence of nanometer-sized amorphous silicon nitride solids,” J. Appl. Phys. 73(10), 5185–5188 (1993).
    [Crossref]
  38. C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
    [Crossref]
  39. A. Raza, S. Clemmen, P. Wuytens, M. de Goede, A. S. Tong, N. Le Thomas, C. Liu, J. Suntivich, A. G. Skirtach, and S. M. Garcia-Blanco, “High index contrast photonic platforms for on-chip Raman spectroscopy,” Opt. Express 27(16), 23067–23079 (2019).
    [Crossref]
  40. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides: a simple method,” Appl. Opt. 22(23), 3892–3894 (1983).
    [Crossref]

2019 (2)

2018 (2)

W. Lee, A. Nanou, L. Rikkert, F. A. W. Coumans, C. Otto, L. W. M. M. Terstappen, and H. L. Offerhaus, “Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy,” Anal. Chem. 90(19), 11290–11296 (2018).
[Crossref]

N. F. Tyndall, T. H. Stievater, D. A. Kozak, K. Koo, R. A. McGill, M. W. Pruessner, W. S. Rabinovich, and S. A. Holmstrom, “Waveguide-enhanced Raman spectroscopy of trace chemical warfare agent simulants,” Opt. Lett. 43(19), 4803–4806 (2018).
[Crossref]

2017 (3)

J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
[Crossref]

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy,” Materials 10(2), 140 (2017).
[Crossref]

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

2016 (4)

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers,” ACS Photonics 3(11), 2141–2149 (2016).
[Crossref]

S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. McGill, and J. B. Khurgin, “Trace gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]

2015 (2)

J. Desroches, M. Jermyn, K. Mok, C. Lemieux-Leduc, J. Mercier, K. St-Arnaud, K. Urmey, M.-C. Guiot, E. Marple, and K. Petrecca, “Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification,” Biomed. Opt. Express 6(7), 2380–2397 (2015).
[Crossref]

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

2014 (1)

2013 (2)

P. Løvhaugen, B. S. Ahluwalia, T. R. Huser, and O. G. Hellesø, “Serial Raman spectroscopy of particles trapped on a waveguide,” Opt. Express 21(3), 2964–2970 (2013).
[Crossref]

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

2012 (2)

D. Bersani and J. M. Madariaga, “Applications of Raman spectroscopy in art and archaeology,” J. Raman Spectrosc. 43(11), 1523–1528 (2012).
[Crossref]

D. Ahuja and D. Parande, “Optical sensors and their applications,” J. Sci. Res. Rev. 1, 060–068 (2012).

2009 (1)

P. Fernandes, P. Salomé, and A. Da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films 517(7), 2519–2523 (2009).
[Crossref]

2008 (1)

R. De La Rica, E. Mendoza, L. M. Lechuga, and H. Matsui, “Label-free pathogen detection with sensor chips assembled from peptide nanotubes,” Angew. Chem. Int. Ed. 47(50), 9752–9755 (2008).
[Crossref]

2007 (3)

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
[Crossref]

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

H. Hao, L. Wu, W. Shen, and H. Dekkers, “Origin of visible luminescence in hydrogenated amorphous silicon nitride,” Appl. Phys. Lett. 91(20), 201922 (2007).
[Crossref]

2006 (2)

2005 (2)

A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

2003 (1)

2002 (2)

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21(12), 869–877 (2002).
[Crossref]

K. Ajito and K. Torimitsu, “Single nanoparticle trapping using a Raman tweezers microscope,” Appl. Spectrosc. 56(4), 541–544 (2002).
[Crossref]

1999 (1)

C. Duverger, J.-M. Nedelec, M. Benatsou, M. Bouazaoui, B. Capoen, M. Ferrari, and S. Turrell, “Waveguide Raman spectroscopy: a non-destructive tool for the characterization of amorphous thin films,” J. Mol. Struct. 480-481, 169–178 (1999).
[Crossref]

1996 (1)

E. Li-Chan, “The applications of Raman spectroscopy in food science,” Trends Food Sci. Technol. 7(11), 361–370 (1996).
[Crossref]

1993 (1)

C. M. Mo, L. Zhang, C. Xie, and T. Wang, “Luminescence of nanometer-sized amorphous silicon nitride solids,” J. Appl. Phys. 73(10), 5185–5188 (1993).
[Crossref]

1991 (1)

B. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. McGilp, “Optical waveguide sensor using evanescent wave excitation of fluorescent dye in sol-gel glass,” Electron. Lett 27(14), 1247–1248 (1991).
[Crossref]

1984 (1)

N. Schlotter and J. Rabolt, “Raman spectroscopy in polymeric thin film optical waveguides. 1. Polarized measurements and orientational effects in two-dimensional films,” J. Phys. Chem. 88(10), 2062–2067 (1984).
[Crossref]

1983 (1)

1978 (2)

P. O’Connor and J. Tauc, “Raman spectrum of optical fiber waveguide—Effect of cladding,” Opt. Commun. 24(1), 135–138 (1978).
[Crossref]

P. O’Connor and J. Tauc, “Light scattering in optical waveguides,” Appl. Opt. 17(20), 3226–3231 (1978).
[Crossref]

Ahluwalia, B. S.

Ahuja, D.

D. Ahuja and D. Parande, “Optical sensors and their applications,” J. Sci. Res. Rev. 1, 060–068 (2012).

Ajito, K.

Aljunid, S.

N. Sabri, S. Aljunid, M. Salim, and S. Fouad, “Fiber optic sensors: short review and applications,” in Recent Trends in Physics of Material Science and Technology (Springer, 2015), pp. 299–311.

Austin, L. A.

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

Baets, R.

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy,” Materials 10(2), 140 (2017).
[Crossref]

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers,” ACS Photonics 3(11), 2141–2149 (2016).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Skirtach, N. Le Thomas, and R. Baets, “Microscope-less lab-on-a-chip raman spectroscopy of cell-membranes,” in 2016 IEEE Photonics Conference (IPC), (IEEE, 2016), 144–145.

Baeyens, W.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21(12), 869–877 (2002).
[Crossref]

Barrios, C. A.

Benatsou, M.

C. Duverger, J.-M. Nedelec, M. Benatsou, M. Bouazaoui, B. Capoen, M. Ferrari, and S. Turrell, “Waveguide Raman spectroscopy: a non-destructive tool for the characterization of amorphous thin films,” J. Mol. Struct. 480-481, 169–178 (1999).
[Crossref]

Bersani, D.

D. Bersani and J. M. Madariaga, “Applications of Raman spectroscopy in art and archaeology,” J. Raman Spectrosc. 43(11), 1523–1528 (2012).
[Crossref]

Bouazaoui, M.

C. Duverger, J.-M. Nedelec, M. Benatsou, M. Bouazaoui, B. Capoen, M. Ferrari, and S. Turrell, “Waveguide Raman spectroscopy: a non-destructive tool for the characterization of amorphous thin films,” J. Mol. Struct. 480-481, 169–178 (1999).
[Crossref]

Bryers, J. D.

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

Busto, V. J. C.

Capoen, B.

C. Duverger, J.-M. Nedelec, M. Benatsou, M. Bouazaoui, B. Capoen, M. Ferrari, and S. Turrell, “Waveguide Raman spectroscopy: a non-destructive tool for the characterization of amorphous thin films,” J. Mol. Struct. 480-481, 169–178 (1999).
[Crossref]

Carney, R. P.

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

Casquel, R.

Choi, B.

J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
[Crossref]

Choi, Y.

J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
[Crossref]

Claes, T.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Clemmen, S.

Colquhoun, M.

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

Coumans, F. A. W.

W. Lee, A. Nanou, L. Rikkert, F. A. W. Coumans, C. Otto, L. W. M. M. Terstappen, and H. L. Offerhaus, “Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy,” Anal. Chem. 90(19), 11290–11296 (2018).
[Crossref]

Da Cunha, A.

P. Fernandes, P. Salomé, and A. Da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films 517(7), 2519–2523 (2009).
[Crossref]

De Goede, M.

De La Rica, R.

R. De La Rica, E. Mendoza, L. M. Lechuga, and H. Matsui, “Label-free pathogen detection with sensor chips assembled from peptide nanotubes,” Angew. Chem. Int. Ed. 47(50), 9752–9755 (2008).
[Crossref]

Dekkers, H.

H. Hao, L. Wu, W. Shen, and H. Dekkers, “Origin of visible luminescence in hydrogenated amorphous silicon nitride,” Appl. Phys. Lett. 91(20), 201922 (2007).
[Crossref]

Desroches, J.

Dhakal, A.

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy,” Materials 10(2), 140 (2017).
[Crossref]

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers,” ACS Photonics 3(11), 2141–2149 (2016).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Skirtach, N. Le Thomas, and R. Baets, “Microscope-less lab-on-a-chip raman spectroscopy of cell-membranes,” in 2016 IEEE Photonics Conference (IPC), (IEEE, 2016), 144–145.

Dijkstra, M.

Dominguez, C.

Du Bois, B.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Duverger, C.

C. Duverger, J.-M. Nedelec, M. Benatsou, M. Bouazaoui, B. Capoen, M. Ferrari, and S. Turrell, “Waveguide Raman spectroscopy: a non-destructive tool for the characterization of amorphous thin films,” J. Mol. Struct. 480-481, 169–178 (1999).
[Crossref]

Evans, C. C.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]

Evans, C. L.

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

Fernandes, P.

P. Fernandes, P. Salomé, and A. Da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films 517(7), 2519–2523 (2009).
[Crossref]

Ferrari, M.

C. Duverger, J.-M. Nedelec, M. Benatsou, M. Bouazaoui, B. Capoen, M. Ferrari, and S. Turrell, “Waveguide Raman spectroscopy: a non-destructive tool for the characterization of amorphous thin films,” J. Mol. Struct. 480-481, 169–178 (1999).
[Crossref]

Fouad, S.

N. Sabri, S. Aljunid, M. Salim, and S. Fouad, “Fiber optic sensors: short review and applications,” in Recent Trends in Physics of Material Science and Technology (Springer, 2015), pp. 299–311.

Garcia-Blanco, S.

Garcia-Blanco, S. M.

Girda, E.

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Griol, A.

Guiot, M.-C.

Gylfason, K. B.

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Hao, H.

H. Hao, L. Wu, W. Shen, and H. Dekkers, “Origin of visible luminescence in hydrogenated amorphous silicon nitride,” Appl. Phys. Lett. 91(20), 201922 (2007).
[Crossref]

Hazari, S.

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

Helin, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Hellesø, O. G.

Holgado, M.

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Holmstrom, S. A.

Hong, S.

J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
[Crossref]

Horváth, R.

Huser, T. R.

P. Løvhaugen, B. S. Ahluwalia, T. R. Huser, and O. G. Hellesø, “Serial Raman spectroscopy of particles trapped on a waveguide,” Opt. Express 21(3), 2964–2970 (2013).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Hwang, B.

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

Hwang, M.

J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
[Crossref]

Ibañez, E. L.

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Jans, K.

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers,” ACS Photonics 3(11), 2141–2149 (2016).
[Crossref]

Jansen, R.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Jeong, H.

J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
[Crossref]

Jermyn, M.

Jung, J.-H.

J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
[Crossref]

Khurgin, J. B.

Kim, H. K.

J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
[Crossref]

Knudson, A.

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

Koo, K.

Kozak, D. A.

Ksendzov, A.

Lam, K.

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

Lam, K. S.

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

Lambeck, P. V.

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[Crossref]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Larsen, N. B.

Le Thomas, N.

A. Raza, S. Clemmen, P. Wuytens, M. de Goede, A. S. Tong, N. Le Thomas, C. Liu, J. Suntivich, A. G. Skirtach, and S. M. Garcia-Blanco, “High index contrast photonic platforms for on-chip Raman spectroscopy,” Opt. Express 27(16), 23067–23079 (2019).
[Crossref]

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy,” Materials 10(2), 140 (2017).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Skirtach, N. Le Thomas, and R. Baets, “Microscope-less lab-on-a-chip raman spectroscopy of cell-membranes,” in 2016 IEEE Photonics Conference (IPC), (IEEE, 2016), 144–145.

Lechuga, L. M.

R. De La Rica, E. Mendoza, L. M. Lechuga, and H. Matsui, “Label-free pathogen detection with sensor chips assembled from peptide nanotubes,” Angew. Chem. Int. Ed. 47(50), 9752–9755 (2008).
[Crossref]

K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” J. Lightwave Technol. 24(5), 2132–2138 (2006).
[Crossref]

Lee, C.

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

Lee, W.

W. Lee, A. Nanou, L. Rikkert, F. A. W. Coumans, C. Otto, L. W. M. M. Terstappen, and H. L. Offerhaus, “Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy,” Anal. Chem. 90(19), 11290–11296 (2018).
[Crossref]

Leiserowitz, G. S.

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

Lemieux-Leduc, C.

Li-Chan, E.

E. Li-Chan, “The applications of Raman spectroscopy in food science,” Trends Food Sci. Technol. 7(11), 361–370 (1996).
[Crossref]

Lin, Y.

Liu, C.

Løvhaugen, P.

MacCraith, B.

B. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. McGilp, “Optical waveguide sensor using evanescent wave excitation of fluorescent dye in sol-gel glass,” Electron. Lett 27(14), 1247–1248 (1991).
[Crossref]

Madariaga, J. M.

D. Bersani and J. M. Madariaga, “Applications of Raman spectroscopy in art and archaeology,” J. Raman Spectrosc. 43(11), 1523–1528 (2012).
[Crossref]

Marple, E.

Martínez, E.

Matsui, H.

R. De La Rica, E. Mendoza, L. M. Lechuga, and H. Matsui, “Label-free pathogen detection with sensor chips assembled from peptide nanotubes,” Angew. Chem. Int. Ed. 47(50), 9752–9755 (2008).
[Crossref]

McGill, R. A.

McGilp, J.

B. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. McGilp, “Optical waveguide sensor using evanescent wave excitation of fluorescent dye in sol-gel glass,” Electron. Lett 27(14), 1247–1248 (1991).
[Crossref]

Mendoza, E.

R. De La Rica, E. Mendoza, L. M. Lechuga, and H. Matsui, “Label-free pathogen detection with sensor chips assembled from peptide nanotubes,” Angew. Chem. Int. Ed. 47(50), 9752–9755 (2008).
[Crossref]

Mercier, J.

Mitjans, F.

Mo, C. M.

C. M. Mo, L. Zhang, C. Xie, and T. Wang, “Luminescence of nanometer-sized amorphous silicon nitride solids,” J. Appl. Phys. 73(10), 5185–5188 (1993).
[Crossref]

Mok, K.

Mulligan, M. S.

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

Nanou, A.

W. Lee, A. Nanou, L. Rikkert, F. A. W. Coumans, C. Otto, L. W. M. M. Terstappen, and H. L. Offerhaus, “Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy,” Anal. Chem. 90(19), 11290–11296 (2018).
[Crossref]

Nedelec, J.-M.

C. Duverger, J.-M. Nedelec, M. Benatsou, M. Bouazaoui, B. Capoen, M. Ferrari, and S. Turrell, “Waveguide Raman spectroscopy: a non-destructive tool for the characterization of amorphous thin films,” J. Mol. Struct. 480-481, 169–178 (1999).
[Crossref]

Neutens, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

O’Connor, P.

P. O’Connor and J. Tauc, “Raman spectrum of optical fiber waveguide—Effect of cladding,” Opt. Commun. 24(1), 135–138 (1978).
[Crossref]

P. O’Connor and J. Tauc, “Light scattering in optical waveguides,” Appl. Opt. 17(20), 3226–3231 (1978).
[Crossref]

O’Kelly, B.

B. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. McGilp, “Optical waveguide sensor using evanescent wave excitation of fluorescent dye in sol-gel glass,” Electron. Lett 27(14), 1247–1248 (1991).
[Crossref]

Obregón, R.

Offerhaus, H. L.

W. Lee, A. Nanou, L. Rikkert, F. A. W. Coumans, C. Otto, L. W. M. M. Terstappen, and H. L. Offerhaus, “Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy,” Anal. Chem. 90(19), 11290–11296 (2018).
[Crossref]

Okamura, Y.

Osseiran, S.

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

Otto, C.

W. Lee, A. Nanou, L. Rikkert, F. A. W. Coumans, C. Otto, L. W. M. M. Terstappen, and H. L. Offerhaus, “Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy,” Anal. Chem. 90(19), 11290–11296 (2018).
[Crossref]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Padilla, L.

Parande, D.

D. Ahuja and D. Parande, “Optical sensors and their applications,” J. Sci. Res. Rev. 1, 060–068 (2012).

Park, J.

J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
[Crossref]

Park, J.-H.

J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
[Crossref]

Pedersen, H. C.

Petrecca, K.

Peyskens, F.

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers,” ACS Photonics 3(11), 2141–2149 (2016).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Skirtach, N. Le Thomas, and R. Baets, “Microscope-less lab-on-a-chip raman spectroscopy of cell-membranes,” in 2016 IEEE Photonics Conference (IPC), (IEEE, 2016), 144–145.

Plaza, J. A.

Potter, C.

B. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. McGilp, “Optical waveguide sensor using evanescent wave excitation of fluorescent dye in sol-gel glass,” Electron. Lett 27(14), 1247–1248 (1991).
[Crossref]

Pruessner, M. W.

Rabinovich, W. S.

Rabolt, J.

N. Schlotter and J. Rabolt, “Raman spectroscopy in polymeric thin film optical waveguides. 1. Polarized measurements and orientational effects in two-dimensional films,” J. Phys. Chem. 88(10), 2062–2067 (1984).
[Crossref]

Rai, V. K.

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

Ramón-Azcón, J.

Raza, A.

Remon, J. P.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21(12), 869–877 (2002).
[Crossref]

Rikkert, L.

W. Lee, A. Nanou, L. Rikkert, F. A. W. Coumans, C. Otto, L. W. M. M. Terstappen, and H. L. Offerhaus, “Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy,” Anal. Chem. 90(19), 11290–11296 (2018).
[Crossref]

Rojalin, T.

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

Rottenberg, X.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Ruddy, V.

B. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. McGilp, “Optical waveguide sensor using evanescent wave excitation of fluorescent dye in sol-gel glass,” Electron. Lett 27(14), 1247–1248 (1991).
[Crossref]

Saari, H.

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

Sabri, N.

N. Sabri, S. Aljunid, M. Salim, and S. Fouad, “Fiber optic sensors: short review and applications,” in Recent Trends in Physics of Material Science and Technology (Springer, 2015), pp. 299–311.

Salim, M.

N. Sabri, S. Aljunid, M. Salim, and S. Fouad, “Fiber optic sensors: short review and applications,” in Recent Trends in Physics of Material Science and Technology (Springer, 2015), pp. 299–311.

Salomé, P.

P. Fernandes, P. Salomé, and A. Da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films 517(7), 2519–2523 (2009).
[Crossref]

Sánchez, B.

Schlotter, N.

N. Schlotter and J. Rabolt, “Raman spectroscopy in polymeric thin film optical waveguides. 1. Polarized measurements and orientational effects in two-dimensional films,” J. Phys. Chem. 88(10), 2062–2067 (1984).
[Crossref]

Selmeczi, D.

Selvaraja, S.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Shen, W.

H. Hao, L. Wu, W. Shen, and H. Dekkers, “Origin of visible luminescence in hydrogenated amorphous silicon nitride,” Appl. Phys. Lett. 91(20), 201922 (2007).
[Crossref]

Skirtach, A.

A. Dhakal, P. Wuytens, F. Peyskens, A. Skirtach, N. Le Thomas, and R. Baets, “Microscope-less lab-on-a-chip raman spectroscopy of cell-membranes,” in 2016 IEEE Photonics Conference (IPC), (IEEE, 2016), 144–145.

Skirtach, A. G.

Skivesen, N.

Smith, Z. J.

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

Sohlström, H.

St-Arnaud, K.

Stievater, T. H.

Subramanian, A.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Subramanian, A. Z.

Suntivich, J.

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Tauc, J.

P. O’Connor and J. Tauc, “Raman spectrum of optical fiber waveguide—Effect of cladding,” Opt. Commun. 24(1), 135–138 (1978).
[Crossref]

P. O’Connor and J. Tauc, “Light scattering in optical waveguides,” Appl. Opt. 17(20), 3226–3231 (1978).
[Crossref]

Terstappen, L. W. M. M.

W. Lee, A. Nanou, L. Rikkert, F. A. W. Coumans, C. Otto, L. W. M. M. Terstappen, and H. L. Offerhaus, “Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy,” Anal. Chem. 90(19), 11290–11296 (2018).
[Crossref]

Thomas, N. L.

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers,” ACS Photonics 3(11), 2141–2149 (2016).
[Crossref]

Tong, A. S.

Torimitsu, K.

Tran, D.

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

Turrell, S.

C. Duverger, J.-M. Nedelec, M. Benatsou, M. Bouazaoui, B. Capoen, M. Ferrari, and S. Turrell, “Waveguide Raman spectroscopy: a non-destructive tool for the characterization of amorphous thin films,” J. Mol. Struct. 480-481, 169–178 (1999).
[Crossref]

Tyndall, N.

Tyndall, N. F.

Urmey, K.

Van der Weken, G.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21(12), 869–877 (2002).
[Crossref]

Vankeirsbilck, T.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21(12), 869–877 (2002).
[Crossref]

Vercauteren, A.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21(12), 869–877 (2002).
[Crossref]

Vergote, G.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21(12), 869–877 (2002).
[Crossref]

Verpoort, F.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21(12), 869–877 (2002).
[Crossref]

Viitala, T.

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

Wang, T.

C. M. Mo, L. Zhang, C. Xie, and T. Wang, “Luminescence of nanometer-sized amorphous silicon nitride solids,” J. Appl. Phys. 73(10), 5185–5188 (1993).
[Crossref]

Wu, L.

H. Hao, L. Wu, W. Shen, and H. Dekkers, “Origin of visible luminescence in hydrogenated amorphous silicon nitride,” Appl. Phys. Lett. 91(20), 201922 (2007).
[Crossref]

Wuytens, P.

A. Raza, S. Clemmen, P. Wuytens, M. de Goede, A. S. Tong, N. Le Thomas, C. Liu, J. Suntivich, A. G. Skirtach, and S. M. Garcia-Blanco, “High index contrast photonic platforms for on-chip Raman spectroscopy,” Opt. Express 27(16), 23067–23079 (2019).
[Crossref]

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy,” Materials 10(2), 140 (2017).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Skirtach, N. Le Thomas, and R. Baets, “Microscope-less lab-on-a-chip raman spectroscopy of cell-membranes,” in 2016 IEEE Photonics Conference (IPC), (IEEE, 2016), 144–145.

Wuytens, P. C.

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers,” ACS Photonics 3(11), 2141–2149 (2016).
[Crossref]

Xie, C.

C. M. Mo, L. Zhang, C. Xie, and T. Wang, “Luminescence of nanometer-sized amorphous silicon nitride solids,” J. Appl. Phys. 73(10), 5185–5188 (1993).
[Crossref]

Yamamoto, S.

Yoshinaka, S.

Zhang, L.

C. M. Mo, L. Zhang, C. Xie, and T. Wang, “Luminescence of nanometer-sized amorphous silicon nitride solids,” J. Appl. Phys. 73(10), 5185–5188 (1993).
[Crossref]

Zinoviev, K.

ACS Photonics (2)

A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. L. Thomas, and R. Baets, “Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers,” ACS Photonics 3(11), 2141–2149 (2016).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]

Anal. Chem. (3)

R. P. Carney, S. Hazari, M. Colquhoun, D. Tran, B. Hwang, M. S. Mulligan, J. D. Bryers, E. Girda, G. S. Leiserowitz, Z. J. Smith, and K. S. Lam, “Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations,” Anal. Chem. 89(10), 5357–5363 (2017).
[Crossref]

J. Park, M. Hwang, B. Choi, H. Jeong, J.-H. Jung, H. K. Kim, S. Hong, J.-H. Park, and Y. Choi, “Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis,” Anal. Chem. 89(12), 6695–6701 (2017).
[Crossref]

W. Lee, A. Nanou, L. Rikkert, F. A. W. Coumans, C. Otto, L. W. M. M. Terstappen, and H. L. Offerhaus, “Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy,” Anal. Chem. 90(19), 11290–11296 (2018).
[Crossref]

Analyst (1)

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

Angew. Chem. Int. Ed. (1)

R. De La Rica, E. Mendoza, L. M. Lechuga, and H. Matsui, “Label-free pathogen detection with sensor chips assembled from peptide nanotubes,” Angew. Chem. Int. Ed. 47(50), 9752–9755 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

Appl. Phys. Lett. (1)

H. Hao, L. Wu, W. Shen, and H. Dekkers, “Origin of visible luminescence in hydrogenated amorphous silicon nitride,” Appl. Phys. Lett. 91(20), 201922 (2007).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

Electron. Lett (1)

B. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. McGilp, “Optical waveguide sensor using evanescent wave excitation of fluorescent dye in sol-gel glass,” Electron. Lett 27(14), 1247–1248 (1991).
[Crossref]

IEEE Photonics J. (1)

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, and B. Du Bois, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

J. Appl. Phys. (1)

C. M. Mo, L. Zhang, C. Xie, and T. Wang, “Luminescence of nanometer-sized amorphous silicon nitride solids,” J. Appl. Phys. 73(10), 5185–5188 (1993).
[Crossref]

J. Extracellular Vesicles (1)

Z. J. Smith, C. Lee, T. Rojalin, R. P. Carney, S. Hazari, A. Knudson, K. Lam, H. Saari, E. L. Ibañez, and T. Viitala, “Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content,” J. Extracellular Vesicles 4(1), 28533 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Mol. Struct. (1)

C. Duverger, J.-M. Nedelec, M. Benatsou, M. Bouazaoui, B. Capoen, M. Ferrari, and S. Turrell, “Waveguide Raman spectroscopy: a non-destructive tool for the characterization of amorphous thin films,” J. Mol. Struct. 480-481, 169–178 (1999).
[Crossref]

J. Phys. Chem. (1)

N. Schlotter and J. Rabolt, “Raman spectroscopy in polymeric thin film optical waveguides. 1. Polarized measurements and orientational effects in two-dimensional films,” J. Phys. Chem. 88(10), 2062–2067 (1984).
[Crossref]

J. Raman Spectrosc. (1)

D. Bersani and J. M. Madariaga, “Applications of Raman spectroscopy in art and archaeology,” J. Raman Spectrosc. 43(11), 1523–1528 (2012).
[Crossref]

J. Sci. Res. Rev. (1)

D. Ahuja and D. Parande, “Optical sensors and their applications,” J. Sci. Res. Rev. 1, 060–068 (2012).

Materials (1)

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy,” Materials 10(2), 140 (2017).
[Crossref]

Meas. Sci. Technol. (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[Crossref]

Nano Lett. (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref]

Opt. Commun. (1)

P. O’Connor and J. Tauc, “Raman spectrum of optical fiber waveguide—Effect of cladding,” Opt. Commun. 24(1), 135–138 (1978).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Optica (1)

Thin Solid Films (1)

P. Fernandes, P. Salomé, and A. Da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films 517(7), 2519–2523 (2009).
[Crossref]

Trends Anal. Chem. (1)

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van der Weken, F. Verpoort, G. Vergote, and J. P. Remon, “Applications of Raman spectroscopy in pharmaceutical analysis,” Trends Anal. Chem. 21(12), 869–877 (2002).
[Crossref]

Trends Food Sci. Technol. (1)

E. Li-Chan, “The applications of Raman spectroscopy in food science,” Trends Food Sci. Technol. 7(11), 361–370 (1996).
[Crossref]

Other (2)

N. Sabri, S. Aljunid, M. Salim, and S. Fouad, “Fiber optic sensors: short review and applications,” in Recent Trends in Physics of Material Science and Technology (Springer, 2015), pp. 299–311.

A. Dhakal, P. Wuytens, F. Peyskens, A. Skirtach, N. Le Thomas, and R. Baets, “Microscope-less lab-on-a-chip raman spectroscopy of cell-membranes,” in 2016 IEEE Photonics Conference (IPC), (IEEE, 2016), 144–145.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Mode profiles of the three waveguide platforms under study. The simulations were performed with toluene as upper cladding. The dimensions of the simulated waveguides are Al2O3: 1.2 µm ${\times}$ 346 nm, Si3N4: 1.2 µm ${\times}$ 127 nm and TiO2: 1.2 µm ${\times}$ 181 nm.
Fig. 2.
Fig. 2. Fabrication process flow to produce Si3N4, Al2O3 and TiO2 waveguides. The different materials used have been indicated with multiple colors.
Fig. 3.
Fig. 3. Schematic of the Raman measurement setup. Left top shows the light propagating in a Si3N4 waveguide (scale bar is 300 µm); left bottom shows a chip mounted on the Raman microscope. The pump light is coming in the horizontal direction and coupling is monitored in the vertical direction.
Fig. 4.
Fig. 4. (A) shows an image of a Si3N4 waveguide guiding 785 nm light. (B) represents the intensity data collected from the image of the waveguide. The intensity data were collected along the waveguide; yellow dots show location where the intensity data is collected. The polarization of the input beam is not controlled in this measurement.
Fig. 5.
Fig. 5. Inherent background signals for the three waveguide platforms in two different fundamental mode; (A) TE and (B) TM. Dotted vertical lines represent the position of Raman peaks of toluene.
Fig. 6.
Fig. 6. Raman spectra of toluene obtained on the three waveguide platforms. Panel (A) shows Raman spectra for TE and panel (B) shows spectra for TM. Transparent purple curve represents Raman spectrum of bulk toluene collected by same experimental setup.

Tables (5)

Tables Icon

Table 1. Table of Cauchy coefficients for the waveguide core materials.

Tables Icon

Table 2. Dimension of the three waveguides used for the experiments.

Tables Icon

Table 3. Propagation losses of the different waveguides measured with a toluene cladding (n=1.48).

Tables Icon

Table 4. SNR of Raman spectra of three waveguide materials. The SNR was calculated by the photon count at 1003 cm-1 and the averaged photon count at the bottom of the Raman peak.

Tables Icon

Table 5. A table of the fabrication processes and the recipe for the Al2O3, Si3N4 and TiO2 waveguides. All fabrication was performed at the NanoLab in University of Twente, the Netherlands.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = B + C λ 2 + D λ 4
P w g , S t o k e s P p u m p = ρ σ ( ω p , ω s ) η 2 γ i n γ o u t 0 L e 2 α z d z = ρ σ ( ω p , ω s ) η 2 γ i n γ o u t ( 1 e 2 α L 2 α )
S N R = C s i g C b g C s i g

Metrics