Abstract

We investigate the impact of photodetector (PD) aperture size and wire bond length on the performance of analog radio over multi-mode fiber (A-RoMMF) systems using high-frequency bands up to 28GHz. It is realized that transmission characteristics of A-RoMMF is affected by the change of frequency response due to the PD aperture size and the bonding wire length. We also demonstrate A-RoMMF transmission using an optical receiver mounted PD and a low noise amplifier (LNA) on one printed circuit board (PCB) to improve size, link gain, and transmission characteristics.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 white paper,” (2019).
  2. ARIB 2020 and Beyond Ad Hoc Group, “Mobile Communications Systems for 2020 and beyond,” Oct. 2014
  3. T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and Wireless Links to Bridge Networks,” IEEE Microwave 19(3), 102–111 (2018).
    [Crossref]
  4. T. Aiba, A. Kanno, N. Yamamoto, T. Kawanishi, and T. Wakabayashi, “High SHF band RF signal relay employing radio over multi-mode fibers,” The 40th PIERS, Toyama, Japan, August 2018.
  5. S. Kaurl, M. Srivastava, and K.S. Bhatia, “Radio over Fiber Technology – A Review,” International Conference of Technology, Management and Social Sciences (ICTMS-15), 85–89 (2015).
  6. W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photonics J. 4(5), 1560–1571 (2012).
    [Crossref]
  7. H. Kim, “RoF -based Mobile Fronthaul Network Implemented by Using Directly Modulated Laser,” Asia Communications and Photonics Conferences (ACP), China, 10-13 Nov. 2017.
  8. P. Hartmann, X. Qian, A. Wonfor, R. V. Penty, and I.H. White, “1-20 GHz Directly Modulated Radio over MMF Link,” in International Topical Meeting on Microwave Photonics (MWP2005), 95–98 (2005).
  9. J. V. Kerrebrouck, H. Li, S. Spiga, M. C. Amann, X. Yin, J. Bauwelinck, P. Demeester, and G. Torfs, “10Gb/s Radio-Over-Fiber at 28 GHz Carrier Frequency Link Based on 1550 nm VCSEL Chirp Enhanced Intensity Modulation after 2 km Fiber,” OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.1 (2018).
  10. N. J. Gomes, A. Nkansah, and D. Wake, “Radio-Over-MMF Techniques-Part I: RF to Microwave Frequency System,” J. Lightwave Technol. 26(15), 2388–2395 (2008).
    [Crossref]
  11. C. Carlsson, A. Larsson, and A. Alping, “RF Transmission Over Multimode Fibers Using VCSELs-Comparing Standard and High-Bandwidth Multimode Fiber,” J. Lightwave Technol. 22(7), 1694–1700 (2004).
    [Crossref]
  12. H. Kuboki and M. Matsuura, “Modal Dispersion and Feed Light Crosstalk Mitigations by Using Center- and Offset-Launching for Optically-Powered Radio-over-Multimode Fiber Systems,” OFC 2018, San Diego, CA, USA, 11-15 March 2018
  13. H. K. Al-Musawi, W. P. Ng, Z. Ghassemlooy, C. Lu, and N. Lalam, “Experimental Analysis of EVM and BER for Indoor Radio-over-Fiber Networks using Polymer Optical Fiber,” 20th European Conference on Networks and Optical Communications (NOC 2015), London, UK, 2015.
  14. A. M. J. Koonen and M. García Larrodé, “Radio-Over-MMF Techniques—Part II: Microwave to Millimeter-Wave Systems,” J. Lightwave Technol. 26(15), 2396–2408 (2008).
    [Crossref]
  15. A. Kanno, N. Yamamoto, and T. Kawanishi, “Radio over fiber-based radio relay link for indoor and in-car applications towards 5G/IoT era,” OSA Technical Digest (online) (Optical Society of America, 2017), paper S3E.2 (2017)
  16. C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Technique and Performance of Intensity-Modulation Direct-Detection Analog Optical Links,” IEEE Trans. Microwave Theory Techn. 45(8), 1375–1383 (1997).
    [Crossref]
  17. N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

2018 (1)

T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and Wireless Links to Bridge Networks,” IEEE Microwave 19(3), 102–111 (2018).
[Crossref]

2012 (1)

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photonics J. 4(5), 1560–1571 (2012).
[Crossref]

2008 (2)

2004 (1)

1997 (1)

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Technique and Performance of Intensity-Modulation Direct-Detection Analog Optical Links,” IEEE Trans. Microwave Theory Techn. 45(8), 1375–1383 (1997).
[Crossref]

Ackerman, E.

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Technique and Performance of Intensity-Modulation Direct-Detection Analog Optical Links,” IEEE Trans. Microwave Theory Techn. 45(8), 1375–1383 (1997).
[Crossref]

Aiba, T.

T. Aiba, A. Kanno, N. Yamamoto, T. Kawanishi, and T. Wakabayashi, “High SHF band RF signal relay employing radio over multi-mode fibers,” The 40th PIERS, Toyama, Japan, August 2018.

Al-Musawi, H. K.

H. K. Al-Musawi, W. P. Ng, Z. Ghassemlooy, C. Lu, and N. Lalam, “Experimental Analysis of EVM and BER for Indoor Radio-over-Fiber Networks using Polymer Optical Fiber,” 20th European Conference on Networks and Optical Communications (NOC 2015), London, UK, 2015.

Alping, A.

Amann, M. C.

J. V. Kerrebrouck, H. Li, S. Spiga, M. C. Amann, X. Yin, J. Bauwelinck, P. Demeester, and G. Torfs, “10Gb/s Radio-Over-Fiber at 28 GHz Carrier Frequency Link Based on 1550 nm VCSEL Chirp Enhanced Intensity Modulation after 2 km Fiber,” OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.1 (2018).

Baks, C. W.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Bauwelinck, J.

J. V. Kerrebrouck, H. Li, S. Spiga, M. C. Amann, X. Yin, J. Bauwelinck, P. Demeester, and G. Torfs, “10Gb/s Radio-Over-Fiber at 28 GHz Carrier Frequency Link Based on 1550 nm VCSEL Chirp Enhanced Intensity Modulation after 2 km Fiber,” OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.1 (2018).

Betts, G. E.

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Technique and Performance of Intensity-Modulation Direct-Detection Analog Optical Links,” IEEE Trans. Microwave Theory Techn. 45(8), 1375–1383 (1997).
[Crossref]

Bhatia, K.S.

S. Kaurl, M. Srivastava, and K.S. Bhatia, “Radio over Fiber Technology – A Review,” International Conference of Technology, Management and Social Sciences (ICTMS-15), 85–89 (2015).

Carlsson, C.

Cox, C.

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Technique and Performance of Intensity-Modulation Direct-Detection Analog Optical Links,” IEEE Trans. Microwave Theory Techn. 45(8), 1375–1383 (1997).
[Crossref]

Demeester, P.

J. V. Kerrebrouck, H. Li, S. Spiga, M. C. Amann, X. Yin, J. Bauwelinck, P. Demeester, and G. Torfs, “10Gb/s Radio-Over-Fiber at 28 GHz Carrier Frequency Link Based on 1550 nm VCSEL Chirp Enhanced Intensity Modulation after 2 km Fiber,” OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.1 (2018).

Doany, F. E.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Dupuis, N.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Freire, H. S. C.

T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and Wireless Links to Bridge Networks,” IEEE Microwave 19(3), 102–111 (2018).
[Crossref]

García Larrodé, M.

Ghassemlooy, Z.

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photonics J. 4(5), 1560–1571 (2012).
[Crossref]

H. K. Al-Musawi, W. P. Ng, Z. Ghassemlooy, C. Lu, and N. Lalam, “Experimental Analysis of EVM and BER for Indoor Radio-over-Fiber Networks using Polymer Optical Fiber,” 20th European Conference on Networks and Optical Communications (NOC 2015), London, UK, 2015.

Gomes, N. J.

Hartmann, P.

P. Hartmann, X. Qian, A. Wonfor, R. V. Penty, and I.H. White, “1-20 GHz Directly Modulated Radio over MMF Link,” in International Topical Meeting on Microwave Photonics (MWP2005), 95–98 (2005).

Helkey, R.

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Technique and Performance of Intensity-Modulation Direct-Detection Analog Optical Links,” IEEE Trans. Microwave Theory Techn. 45(8), 1375–1383 (1997).
[Crossref]

Huang, S.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Jackson, K.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Kanesan, T.

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photonics J. 4(5), 1560–1571 (2012).
[Crossref]

Kanno, A.

T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and Wireless Links to Bridge Networks,” IEEE Microwave 19(3), 102–111 (2018).
[Crossref]

T. Aiba, A. Kanno, N. Yamamoto, T. Kawanishi, and T. Wakabayashi, “High SHF band RF signal relay employing radio over multi-mode fibers,” The 40th PIERS, Toyama, Japan, August 2018.

A. Kanno, N. Yamamoto, and T. Kawanishi, “Radio over fiber-based radio relay link for indoor and in-car applications towards 5G/IoT era,” OSA Technical Digest (online) (Optical Society of America, 2017), paper S3E.2 (2017)

Kaurl, S.

S. Kaurl, M. Srivastava, and K.S. Bhatia, “Radio over Fiber Technology – A Review,” International Conference of Technology, Management and Social Sciences (ICTMS-15), 85–89 (2015).

Kawanishi, T.

T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and Wireless Links to Bridge Networks,” IEEE Microwave 19(3), 102–111 (2018).
[Crossref]

T. Aiba, A. Kanno, N. Yamamoto, T. Kawanishi, and T. Wakabayashi, “High SHF band RF signal relay employing radio over multi-mode fibers,” The 40th PIERS, Toyama, Japan, August 2018.

A. Kanno, N. Yamamoto, and T. Kawanishi, “Radio over fiber-based radio relay link for indoor and in-car applications towards 5G/IoT era,” OSA Technical Digest (online) (Optical Society of America, 2017), paper S3E.2 (2017)

Kerrebrouck, J. V.

J. V. Kerrebrouck, H. Li, S. Spiga, M. C. Amann, X. Yin, J. Bauwelinck, P. Demeester, and G. Torfs, “10Gb/s Radio-Over-Fiber at 28 GHz Carrier Frequency Link Based on 1550 nm VCSEL Chirp Enhanced Intensity Modulation after 2 km Fiber,” OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.1 (2018).

Kim, H.

H. Kim, “RoF -based Mobile Fronthaul Network Implemented by Using Directly Modulated Laser,” Asia Communications and Photonics Conferences (ACP), China, 10-13 Nov. 2017.

Koonen, A. M. J.

Kuboki, H.

H. Kuboki and M. Matsuura, “Modal Dispersion and Feed Light Crosstalk Mitigations by Using Center- and Offset-Launching for Optically-Powered Radio-over-Multimode Fiber Systems,” OFC 2018, San Diego, CA, USA, 11-15 March 2018

Kuchta, D.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Lalam, N.

H. K. Al-Musawi, W. P. Ng, Z. Ghassemlooy, C. Lu, and N. Lalam, “Experimental Analysis of EVM and BER for Indoor Radio-over-Fiber Networks using Polymer Optical Fiber,” 20th European Conference on Networks and Optical Communications (NOC 2015), London, UK, 2015.

Larsson, A.

Li, H.

J. V. Kerrebrouck, H. Li, S. Spiga, M. C. Amann, X. Yin, J. Bauwelinck, P. Demeester, and G. Torfs, “10Gb/s Radio-Over-Fiber at 28 GHz Carrier Frequency Link Based on 1550 nm VCSEL Chirp Enhanced Intensity Modulation after 2 km Fiber,” OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.1 (2018).

Li, N. Y.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Lu, C.

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photonics J. 4(5), 1560–1571 (2012).
[Crossref]

H. K. Al-Musawi, W. P. Ng, Z. Ghassemlooy, C. Lu, and N. Lalam, “Experimental Analysis of EVM and BER for Indoor Radio-over-Fiber Networks using Polymer Optical Fiber,” 20th European Conference on Networks and Optical Communications (NOC 2015), London, UK, 2015.

Luong, S.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Matsuura, M.

H. Kuboki and M. Matsuura, “Modal Dispersion and Feed Light Crosstalk Mitigations by Using Center- and Offset-Launching for Optically-Powered Radio-over-Multimode Fiber Systems,” OFC 2018, San Diego, CA, USA, 11-15 March 2018

Ng, W. P.

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photonics J. 4(5), 1560–1571 (2012).
[Crossref]

H. K. Al-Musawi, W. P. Ng, Z. Ghassemlooy, C. Lu, and N. Lalam, “Experimental Analysis of EVM and BER for Indoor Radio-over-Fiber Networks using Polymer Optical Fiber,” 20th European Conference on Networks and Optical Communications (NOC 2015), London, UK, 2015.

Nkansah, A.

Penty, R. V.

P. Hartmann, X. Qian, A. Wonfor, R. V. Penty, and I.H. White, “1-20 GHz Directly Modulated Radio over MMF Link,” in International Topical Meeting on Microwave Photonics (MWP2005), 95–98 (2005).

Proesel, J.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Qian, X.

P. Hartmann, X. Qian, A. Wonfor, R. V. Penty, and I.H. White, “1-20 GHz Directly Modulated Radio over MMF Link,” in International Topical Meeting on Microwave Photonics (MWP2005), 95–98 (2005).

Rylyakov, A.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Schow, C. L.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Spiga, S.

J. V. Kerrebrouck, H. Li, S. Spiga, M. C. Amann, X. Yin, J. Bauwelinck, P. Demeester, and G. Torfs, “10Gb/s Radio-Over-Fiber at 28 GHz Carrier Frequency Link Based on 1550 nm VCSEL Chirp Enhanced Intensity Modulation after 2 km Fiber,” OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.1 (2018).

Srivastava, M.

S. Kaurl, M. Srivastava, and K.S. Bhatia, “Radio over Fiber Technology – A Review,” International Conference of Technology, Management and Social Sciences (ICTMS-15), 85–89 (2015).

Torfs, G.

J. V. Kerrebrouck, H. Li, S. Spiga, M. C. Amann, X. Yin, J. Bauwelinck, P. Demeester, and G. Torfs, “10Gb/s Radio-Over-Fiber at 28 GHz Carrier Frequency Link Based on 1550 nm VCSEL Chirp Enhanced Intensity Modulation after 2 km Fiber,” OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.1 (2018).

Wakabayashi, T.

T. Aiba, A. Kanno, N. Yamamoto, T. Kawanishi, and T. Wakabayashi, “High SHF band RF signal relay employing radio over multi-mode fibers,” The 40th PIERS, Toyama, Japan, August 2018.

Wake, D.

Wang, L.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

White, I.H.

P. Hartmann, X. Qian, A. Wonfor, R. V. Penty, and I.H. White, “1-20 GHz Directly Modulated Radio over MMF Link,” in International Topical Meeting on Microwave Photonics (MWP2005), 95–98 (2005).

Wonfor, A.

P. Hartmann, X. Qian, A. Wonfor, R. V. Penty, and I.H. White, “1-20 GHz Directly Modulated Radio over MMF Link,” in International Topical Meeting on Microwave Photonics (MWP2005), 95–98 (2005).

Xie, C.

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

Yamamoto, N.

A. Kanno, N. Yamamoto, and T. Kawanishi, “Radio over fiber-based radio relay link for indoor and in-car applications towards 5G/IoT era,” OSA Technical Digest (online) (Optical Society of America, 2017), paper S3E.2 (2017)

T. Aiba, A. Kanno, N. Yamamoto, T. Kawanishi, and T. Wakabayashi, “High SHF band RF signal relay employing radio over multi-mode fibers,” The 40th PIERS, Toyama, Japan, August 2018.

Yin, X.

J. V. Kerrebrouck, H. Li, S. Spiga, M. C. Amann, X. Yin, J. Bauwelinck, P. Demeester, and G. Torfs, “10Gb/s Radio-Over-Fiber at 28 GHz Carrier Frequency Link Based on 1550 nm VCSEL Chirp Enhanced Intensity Modulation after 2 km Fiber,” OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.1 (2018).

IEEE Microwave (1)

T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and Wireless Links to Bridge Networks,” IEEE Microwave 19(3), 102–111 (2018).
[Crossref]

IEEE Photonics J. (1)

W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, “Theoretical and experimental optimum system design for LTE-RoF over varying transmission span and identification of system nonlinear limit,” IEEE Photonics J. 4(5), 1560–1571 (2012).
[Crossref]

IEEE Trans. Microwave Theory Techn. (1)

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Technique and Performance of Intensity-Modulation Direct-Detection Analog Optical Links,” IEEE Trans. Microwave Theory Techn. 45(8), 1375–1383 (1997).
[Crossref]

J. Lightwave Technol. (3)

Other (11)

H. Kuboki and M. Matsuura, “Modal Dispersion and Feed Light Crosstalk Mitigations by Using Center- and Offset-Launching for Optically-Powered Radio-over-Multimode Fiber Systems,” OFC 2018, San Diego, CA, USA, 11-15 March 2018

H. K. Al-Musawi, W. P. Ng, Z. Ghassemlooy, C. Lu, and N. Lalam, “Experimental Analysis of EVM and BER for Indoor Radio-over-Fiber Networks using Polymer Optical Fiber,” 20th European Conference on Networks and Optical Communications (NOC 2015), London, UK, 2015.

A. Kanno, N. Yamamoto, and T. Kawanishi, “Radio over fiber-based radio relay link for indoor and in-car applications towards 5G/IoT era,” OSA Technical Digest (online) (Optical Society of America, 2017), paper S3E.2 (2017)

N. Dupuis, D. Kuchta, F. E. Doany, A. Rylyakov, J. Proesel, C. W. Baks, C. L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, and N. Y. Li, “Exploring the limits of high-speed receivers for multimode VCSEL-based optical links,”, Optical Fiber Communication Conference (OFC), San Diego, CA, USA, M3G. 5 2014.

H. Kim, “RoF -based Mobile Fronthaul Network Implemented by Using Directly Modulated Laser,” Asia Communications and Photonics Conferences (ACP), China, 10-13 Nov. 2017.

P. Hartmann, X. Qian, A. Wonfor, R. V. Penty, and I.H. White, “1-20 GHz Directly Modulated Radio over MMF Link,” in International Topical Meeting on Microwave Photonics (MWP2005), 95–98 (2005).

J. V. Kerrebrouck, H. Li, S. Spiga, M. C. Amann, X. Yin, J. Bauwelinck, P. Demeester, and G. Torfs, “10Gb/s Radio-Over-Fiber at 28 GHz Carrier Frequency Link Based on 1550 nm VCSEL Chirp Enhanced Intensity Modulation after 2 km Fiber,” OSA Technical Digest (online) (Optical Society of America, 2018), paper W1F.1 (2018).

T. Aiba, A. Kanno, N. Yamamoto, T. Kawanishi, and T. Wakabayashi, “High SHF band RF signal relay employing radio over multi-mode fibers,” The 40th PIERS, Toyama, Japan, August 2018.

S. Kaurl, M. Srivastava, and K.S. Bhatia, “Radio over Fiber Technology – A Review,” International Conference of Technology, Management and Social Sciences (ICTMS-15), 85–89 (2015).

Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 white paper,” (2019).

ARIB 2020 and Beyond Ad Hoc Group, “Mobile Communications Systems for 2020 and beyond,” Oct. 2014

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1.
Fig. 1. Schematic diagram of coupling optical fiber to PD.
Fig. 2.
Fig. 2. Calculated plots of (a) optical coupling loss versus the spot size for five PD aperture sizes and (b) the optical coupling loss and the gain change of RoF versus the aperture size for spot size of 9 µm.
Fig. 3.
Fig. 3. Simulated plots of (a) relative gain versus PD aperture size at 28 GHz and (b) resonance frequency versus PD aperture size.
Fig. 4.
Fig. 4. Schematic diagram of equivalent circuit of PD chip and wire bonding.
Fig. 5.
Fig. 5. Simulated plots of (a) relative gain including the optical coupling loss at 28 GHz versus spot size for five PD aperture sizes, and (b) relative gain versus PD aperture size at spot size of 9 µm.
Fig. 6.
Fig. 6. Setup used to measure the frequency response, EVM and SNR.
Fig. 7.
Fig. 7. Output optical power and voltage versus VCSEL bias current.
Fig. 8.
Fig. 8. Frequency response of A-RoMMF link for five PD aperture sizes.
Fig. 9.
Fig. 9. (a) Tolerance curve for each PD aperture size and (b) relative optical coupling loss for alignment error of 0 µm.
Fig. 10.
Fig. 10. Calculated and measured relative gain values at 28 GHz for 20 µm aperture size.
Fig. 11.
Fig. 11. Frequency response of A-RoMMF link for three wire lengths.
Fig. 12.
Fig. 12. Frequency spectrum of input RF signal to the optical link at -10 dBm amplitude.
Fig. 13.
Fig. 13. (a) PD aperture size dependence of EVM and (b) bonding wire length dependence of EVM.
Fig. 14.
Fig. 14. (a) ΔSNR and (b) ΔS and ΔN for five PD aperture size.
Fig. 15.
Fig. 15. Calculated result of ΔN for each aperture size.
Fig. 16.
Fig. 16. Calculated Δf as a function of distance between PD and LNA.
Fig. 17.
Fig. 17. Setup used to measure the frequency response, EVM and SNR.
Fig. 18.
Fig. 18. Picture of Sample C.
Fig. 19.
Fig. 19. (a) Frequency response of A-RoMMF with Sample A, Sample B and Sample C and (b) frequency response of receiver module without PD or LNA.
Fig. 20.
Fig. 20. (a) EVM of receiver module with mounted PD, bias-tee and LNA on one PCB and (b) constellations of Sample C at 0 dBm input RF amplitude.
Fig. 21.
Fig. 21. (a) ΔSNR and (b) ΔS and ΔN for each distance between PD and LNA.
Fig. 22.
Fig. 22. Measured frequency response of 100 m long MMF.
Fig. 23.
Fig. 23. (a) EVM of 100 m MMF A-RoMMF transmission with Sample C and (b) constellations input RF amplitude of 0 dBm after 100 m MMF A-RoMMF transmission with Sample C.

Tables (5)

Tables Icon

Table 1. Parameter of equivalent circuit.

Tables Icon

Table 2. Characteristics of PD.

Tables Icon

Table 3. Characteristics of LNA module.

Tables Icon

Table 4. Peak to peak frequency difference (Δf).

Tables Icon

Table 5. Gain at 28 GHz.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

g = P o u t P i n η f d 2 γ d 2 ,
g = P o u t P i n η f d 2 γ d 2 F P D ,
L c o u p l i n g ( d B ) = 10 log ( 0 φ P D 2 x e x 2 2 σ 2 d x 0 x e x 2 2 σ 2 d x ) ,
σ = φ s 2 2 ln 2 ,
N o u t = N s G + N a m p
f = n v 2 L ,
v = c ε r ,
Δ f = c 2 L ε r .

Metrics