Abstract

In this paper, we investigate a (2 + 1)×1 side pump combiner with high power handling capability and high beam quality numerically and experimentally. Through theoretical research, we have found how the combiner’s parameters influence its pump coupling efficiency and maximum load power. According to the numerical analysis, we fabricate a side pump combiner, which consists of two pump fibers (220/242 µm, NA = 0.22) and a signal fiber (20/400 µm, NA = 0.06/0.46). The coupling efficiency of the side pump combiner is 97%, which is tested under 2 kW input pump power. Using two side pump combiners and four high power 976 nm laser diodes, a bi-directionally pumped fiber laser oscillator is constructed and tested. The fiber laser oscillator’s maximum output power is 2150 W when injecting 3070 W pump power, corresponding to a slope efficiency of ∼72%. No stimulated Raman scattering or transverse mode instability was observed during the operation test. Thanks to the advantage of maintaining high beam quality of the home-made side pump combiner, this all-fiber laser oscillator achieves single mode laser output (M2=1.05) even when the output power increases to more than 2 kW. By further improving the fabrication technique and using larger core fibers, output laser power could be greatly increased, which is very important for high-power fiber lasers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Richardson D, J. Nilsson, and A. Clarkson W, “High Power Fiber Lasers: Current Status and Future Perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  3. M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  4. S. Zou, H. Chen, H. Yu, J. Sun, P. Zhao, and X. Lin, “High-efficiency (6 + 1) × 1 pump–signal combiner based on low-deformation and high-precision alignment fabrication,” Appl. Phys. B 123(12), 288 (2017).
    [Crossref]
  5. I. S. Choi, J. Park, H. Jeong, J. W. Kim, M. Y. Jeon, and H.-S. Seo, “Fabrication of 4 × 1 signal combiner for high-power lasers using hydrofluoric acid,” Opt. Express 26(23), 30667 (2018).
    [Crossref]
  6. B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828 (2016).
    [Crossref]
  7. B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
    [Crossref]
  8. C. Lei, Z. Chen, J. Leng, Y. Gu, and J. Hou, “The influence of fused depth on the side-pumping combiner for all fiber lasers and amplifiers,” J. Lightwave Technol. 35(10), 1922–1928 (2017).
    [Crossref]
  9. D. Wang, Y. Wang, and S. Liu, “New Reflecting Side-Pumped method of Double-Clad Fiber Laser by Micro-prism,” Acta Opt. Sin. 29(4), 974–979 (2009).
    [Crossref]
  10. P. Koplow J, L. Goldberg, and A. V. Kliner D, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping[J],” IEEE Photonics Technol. Lett. 10(6), 793–795 (1998).
    [Crossref]
  11. P. Koplow J, W. Moore S, and A. V. Kliner D, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron. 39(4), 529–540 (2003).
    [Crossref]
  12. S. L. Lin, Y. W. Lee, K. Y. Hsu, C. W. Huang, and S. L. Huang, “Design of resonantly side-pumped 1645-nm Er:YAG crystal fiber lasers with grating couplers,” in Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013 Conference on. IEEE, 2013.
  13. T. Theeg, H. Sayinc, J. Neumann, L. Overmeyer, and D. Kracht, “Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers,” Opt. Express 20(27), 28125 (2012).
    [Crossref]
  14. Q. Xiao, P. Yan, H. Ren, X. Chen, and M. Gong, “A Side-Pump Coupler With Refractive Index Valley Configuration for Fiber Lasers and Amplifiers,” J. Lightwave Technol. 31(16), 2715–2722 (2013).
    [Crossref]
  15. Q. Xiao, P. Yan, D. Li, J. Sun, X. Wang, Y. Huang, and M. Gong, “Bidirectional pumped high power Raman fiber laser,” Opt. Express 24(6), 6758 (2016).
    [Crossref]
  16. D. Fanlong, Z. Xinhai, and S. Feng, “Side coupler applied in a multi-pumped Yb-doped triple-clad fiber laser,” Laser Phys. 28(12), 125106 (2018).
    [Crossref]
  17. Y. Gu, C. Lei, J. Liu, R. Li, L. Liu, and H. Xiao, “Side-pumping combiner for high-power fiber laser based on tandem pumping,” Opt. Eng 56(11), 1 (2017).
    [Crossref]
  18. C. Lei, Z. Chen, Y. Gu, H. Xiao, and J. Hou, “Loss mechanism of all-fiber cascaded side pumping combiner,” High Power Laser Sci. Eng. 6, e56 (2018).
    [Crossref]
  19. Q. Tan, T. Ge, X. Zhang, and Z. Wang, “Cascaded combiners for a high power CW fiber laser,” Laser Phys. 26(2), 025102 (2016).
    [Crossref]
  20. M. D. Feit and A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17(24), 3990–3998 (1978).
    [Crossref]
  21. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref]

2018 (4)

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

I. S. Choi, J. Park, H. Jeong, J. W. Kim, M. Y. Jeon, and H.-S. Seo, “Fabrication of 4 × 1 signal combiner for high-power lasers using hydrofluoric acid,” Opt. Express 26(23), 30667 (2018).
[Crossref]

D. Fanlong, Z. Xinhai, and S. Feng, “Side coupler applied in a multi-pumped Yb-doped triple-clad fiber laser,” Laser Phys. 28(12), 125106 (2018).
[Crossref]

C. Lei, Z. Chen, Y. Gu, H. Xiao, and J. Hou, “Loss mechanism of all-fiber cascaded side pumping combiner,” High Power Laser Sci. Eng. 6, e56 (2018).
[Crossref]

2017 (3)

Y. Gu, C. Lei, J. Liu, R. Li, L. Liu, and H. Xiao, “Side-pumping combiner for high-power fiber laser based on tandem pumping,” Opt. Eng 56(11), 1 (2017).
[Crossref]

C. Lei, Z. Chen, J. Leng, Y. Gu, and J. Hou, “The influence of fused depth on the side-pumping combiner for all fiber lasers and amplifiers,” J. Lightwave Technol. 35(10), 1922–1928 (2017).
[Crossref]

S. Zou, H. Chen, H. Yu, J. Sun, P. Zhao, and X. Lin, “High-efficiency (6 + 1) × 1 pump–signal combiner based on low-deformation and high-precision alignment fabrication,” Appl. Phys. B 123(12), 288 (2017).
[Crossref]

2016 (3)

2014 (1)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

2013 (1)

2012 (3)

2010 (1)

2009 (1)

D. Wang, Y. Wang, and S. Liu, “New Reflecting Side-Pumped method of Double-Clad Fiber Laser by Micro-prism,” Acta Opt. Sin. 29(4), 974–979 (2009).
[Crossref]

2003 (1)

P. Koplow J, W. Moore S, and A. V. Kliner D, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron. 39(4), 529–540 (2003).
[Crossref]

1998 (1)

P. Koplow J, L. Goldberg, and A. V. Kliner D, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping[J],” IEEE Photonics Technol. Lett. 10(6), 793–795 (1998).
[Crossref]

1978 (1)

Chen, H.

S. Zou, H. Chen, H. Yu, J. Sun, P. Zhao, and X. Lin, “High-efficiency (6 + 1) × 1 pump–signal combiner based on low-deformation and high-precision alignment fabrication,” Appl. Phys. B 123(12), 288 (2017).
[Crossref]

Chen, X.

Chen, Z.

C. Lei, Z. Chen, Y. Gu, H. Xiao, and J. Hou, “Loss mechanism of all-fiber cascaded side pumping combiner,” High Power Laser Sci. Eng. 6, e56 (2018).
[Crossref]

C. Lei, Z. Chen, J. Leng, Y. Gu, and J. Hou, “The influence of fused depth on the side-pumping combiner for all fiber lasers and amplifiers,” J. Lightwave Technol. 35(10), 1922–1928 (2017).
[Crossref]

Choi, I. S.

Clarkson W, A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Dajani, I.

Fanlong, D.

D. Fanlong, Z. Xinhai, and S. Feng, “Side coupler applied in a multi-pumped Yb-doped triple-clad fiber laser,” Laser Phys. 28(12), 125106 (2018).
[Crossref]

Feit, M. D.

Feng, S.

D. Fanlong, Z. Xinhai, and S. Feng, “Side coupler applied in a multi-pumped Yb-doped triple-clad fiber laser,” Laser Phys. 28(12), 125106 (2018).
[Crossref]

Fleck, A.

Ge, T.

Q. Tan, T. Ge, X. Zhang, and Z. Wang, “Cascaded combiners for a high power CW fiber laser,” Laser Phys. 26(2), 025102 (2016).
[Crossref]

Goldberg, L.

P. Koplow J, L. Goldberg, and A. V. Kliner D, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping[J],” IEEE Photonics Technol. Lett. 10(6), 793–795 (1998).
[Crossref]

Gong, M.

Gu, Y.

C. Lei, Z. Chen, Y. Gu, H. Xiao, and J. Hou, “Loss mechanism of all-fiber cascaded side pumping combiner,” High Power Laser Sci. Eng. 6, e56 (2018).
[Crossref]

Y. Gu, C. Lei, J. Liu, R. Li, L. Liu, and H. Xiao, “Side-pumping combiner for high-power fiber laser based on tandem pumping,” Opt. Eng 56(11), 1 (2017).
[Crossref]

C. Lei, Z. Chen, J. Leng, Y. Gu, and J. Hou, “The influence of fused depth on the side-pumping combiner for all fiber lasers and amplifiers,” J. Lightwave Technol. 35(10), 1922–1928 (2017).
[Crossref]

Hou, J.

C. Lei, Z. Chen, Y. Gu, H. Xiao, and J. Hou, “Loss mechanism of all-fiber cascaded side pumping combiner,” High Power Laser Sci. Eng. 6, e56 (2018).
[Crossref]

C. Lei, Z. Chen, J. Leng, Y. Gu, and J. Hou, “The influence of fused depth on the side-pumping combiner for all fiber lasers and amplifiers,” J. Lightwave Technol. 35(10), 1922–1928 (2017).
[Crossref]

Hsu, K. Y.

S. L. Lin, Y. W. Lee, K. Y. Hsu, C. W. Huang, and S. L. Huang, “Design of resonantly side-pumped 1645-nm Er:YAG crystal fiber lasers with grating couplers,” in Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013 Conference on. IEEE, 2013.

Huang, C. W.

S. L. Lin, Y. W. Lee, K. Y. Hsu, C. W. Huang, and S. L. Huang, “Design of resonantly side-pumped 1645-nm Er:YAG crystal fiber lasers with grating couplers,” in Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013 Conference on. IEEE, 2013.

Huang, S. L.

S. L. Lin, Y. W. Lee, K. Y. Hsu, C. W. Huang, and S. L. Huang, “Design of resonantly side-pumped 1645-nm Er:YAG crystal fiber lasers with grating couplers,” in Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013 Conference on. IEEE, 2013.

Huang, Y.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jeon, M. Y.

Jeong, H.

Kim, J. W.

Kliner D, A. V.

P. Koplow J, W. Moore S, and A. V. Kliner D, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron. 39(4), 529–540 (2003).
[Crossref]

P. Koplow J, L. Goldberg, and A. V. Kliner D, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping[J],” IEEE Photonics Technol. Lett. 10(6), 793–795 (1998).
[Crossref]

Koplow J, P.

P. Koplow J, W. Moore S, and A. V. Kliner D, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron. 39(4), 529–540 (2003).
[Crossref]

P. Koplow J, L. Goldberg, and A. V. Kliner D, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping[J],” IEEE Photonics Technol. Lett. 10(6), 793–795 (1998).
[Crossref]

Kracht, D.

Lee, Y. W.

S. L. Lin, Y. W. Lee, K. Y. Hsu, C. W. Huang, and S. L. Huang, “Design of resonantly side-pumped 1645-nm Er:YAG crystal fiber lasers with grating couplers,” in Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013 Conference on. IEEE, 2013.

Lei, C.

C. Lei, Z. Chen, Y. Gu, H. Xiao, and J. Hou, “Loss mechanism of all-fiber cascaded side pumping combiner,” High Power Laser Sci. Eng. 6, e56 (2018).
[Crossref]

Y. Gu, C. Lei, J. Liu, R. Li, L. Liu, and H. Xiao, “Side-pumping combiner for high-power fiber laser based on tandem pumping,” Opt. Eng 56(11), 1 (2017).
[Crossref]

C. Lei, Z. Chen, J. Leng, Y. Gu, and J. Hou, “The influence of fused depth on the side-pumping combiner for all fiber lasers and amplifiers,” J. Lightwave Technol. 35(10), 1922–1928 (2017).
[Crossref]

Leng, J.

Li, D.

Li, R.

Y. Gu, C. Lei, J. Liu, R. Li, L. Liu, and H. Xiao, “Side-pumping combiner for high-power fiber laser based on tandem pumping,” Opt. Eng 56(11), 1 (2017).
[Crossref]

Lin, S. L.

S. L. Lin, Y. W. Lee, K. Y. Hsu, C. W. Huang, and S. L. Huang, “Design of resonantly side-pumped 1645-nm Er:YAG crystal fiber lasers with grating couplers,” in Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013 Conference on. IEEE, 2013.

Lin, X.

S. Zou, H. Chen, H. Yu, J. Sun, P. Zhao, and X. Lin, “High-efficiency (6 + 1) × 1 pump–signal combiner based on low-deformation and high-precision alignment fabrication,” Appl. Phys. B 123(12), 288 (2017).
[Crossref]

Liu, J.

Y. Gu, C. Lei, J. Liu, R. Li, L. Liu, and H. Xiao, “Side-pumping combiner for high-power fiber laser based on tandem pumping,” Opt. Eng 56(11), 1 (2017).
[Crossref]

Liu, L.

Y. Gu, C. Lei, J. Liu, R. Li, L. Liu, and H. Xiao, “Side-pumping combiner for high-power fiber laser based on tandem pumping,” Opt. Eng 56(11), 1 (2017).
[Crossref]

Liu, S.

D. Wang, Y. Wang, and S. Liu, “New Reflecting Side-Pumped method of Double-Clad Fiber Laser by Micro-prism,” Acta Opt. Sin. 29(4), 974–979 (2009).
[Crossref]

Lu, Q.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828 (2016).
[Crossref]

Ma, P.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Moore S, W.

P. Koplow J, W. Moore S, and A. V. Kliner D, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron. 39(4), 529–540 (2003).
[Crossref]

Neumann, J.

Nilsson, J.

Overmeyer, L.

Park, J.

Ren, H.

Richardson D, J.

Robin, C.

Sayinc, H.

Seo, H.-S.

Shi, C.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828 (2016).
[Crossref]

Su, R.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Sun, J.

S. Zou, H. Chen, H. Yu, J. Sun, P. Zhao, and X. Lin, “High-efficiency (6 + 1) × 1 pump–signal combiner based on low-deformation and high-precision alignment fabrication,” Appl. Phys. B 123(12), 288 (2017).
[Crossref]

Q. Xiao, P. Yan, D. Li, J. Sun, X. Wang, Y. Huang, and M. Gong, “Bidirectional pumped high power Raman fiber laser,” Opt. Express 24(6), 6758 (2016).
[Crossref]

Tan, Q.

Q. Tan, T. Ge, X. Zhang, and Z. Wang, “Cascaded combiners for a high power CW fiber laser,” Laser Phys. 26(2), 025102 (2016).
[Crossref]

Tao, R.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Theeg, T.

Wang, D.

D. Wang, Y. Wang, and S. Liu, “New Reflecting Side-Pumped method of Double-Clad Fiber Laser by Micro-prism,” Acta Opt. Sin. 29(4), 974–979 (2009).
[Crossref]

Wang, X.

Wang, Y.

D. Wang, Y. Wang, and S. Liu, “New Reflecting Side-Pumped method of Double-Clad Fiber Laser by Micro-prism,” Acta Opt. Sin. 29(4), 974–979 (2009).
[Crossref]

Wang, Z.

Q. Tan, T. Ge, X. Zhang, and Z. Wang, “Cascaded combiners for a high power CW fiber laser,” Laser Phys. 26(2), 025102 (2016).
[Crossref]

Ward, B.

Xiao, H.

C. Lei, Z. Chen, Y. Gu, H. Xiao, and J. Hou, “Loss mechanism of all-fiber cascaded side pumping combiner,” High Power Laser Sci. Eng. 6, e56 (2018).
[Crossref]

Y. Gu, C. Lei, J. Liu, R. Li, L. Liu, and H. Xiao, “Side-pumping combiner for high-power fiber laser based on tandem pumping,” Opt. Eng 56(11), 1 (2017).
[Crossref]

Xiao, Q.

Xinhai, Z.

D. Fanlong, Z. Xinhai, and S. Feng, “Side coupler applied in a multi-pumped Yb-doped triple-clad fiber laser,” Laser Phys. 28(12), 125106 (2018).
[Crossref]

Xu, X.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828 (2016).
[Crossref]

Yan, P.

Yang, B.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828 (2016).
[Crossref]

Yu, H.

S. Zou, H. Chen, H. Yu, J. Sun, P. Zhao, and X. Lin, “High-efficiency (6 + 1) × 1 pump–signal combiner based on low-deformation and high-precision alignment fabrication,” Appl. Phys. B 123(12), 288 (2017).
[Crossref]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Zhang, H.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828 (2016).
[Crossref]

Zhang, X.

Q. Tan, T. Ge, X. Zhang, and Z. Wang, “Cascaded combiners for a high power CW fiber laser,” Laser Phys. 26(2), 025102 (2016).
[Crossref]

Zhao, P.

S. Zou, H. Chen, H. Yu, J. Sun, P. Zhao, and X. Lin, “High-efficiency (6 + 1) × 1 pump–signal combiner based on low-deformation and high-precision alignment fabrication,” Appl. Phys. B 123(12), 288 (2017).
[Crossref]

Zhou, P.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828 (2016).
[Crossref]

Zou, S.

S. Zou, H. Chen, H. Yu, J. Sun, P. Zhao, and X. Lin, “High-efficiency (6 + 1) × 1 pump–signal combiner based on low-deformation and high-precision alignment fabrication,” Appl. Phys. B 123(12), 288 (2017).
[Crossref]

Acta Opt. Sin. (1)

D. Wang, Y. Wang, and S. Liu, “New Reflecting Side-Pumped method of Double-Clad Fiber Laser by Micro-prism,” Acta Opt. Sin. 29(4), 974–979 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

S. Zou, H. Chen, H. Yu, J. Sun, P. Zhao, and X. Lin, “High-efficiency (6 + 1) × 1 pump–signal combiner based on low-deformation and high-precision alignment fabrication,” Appl. Phys. B 123(12), 288 (2017).
[Crossref]

High Power Laser Sci. Eng. (1)

C. Lei, Z. Chen, Y. Gu, H. Xiao, and J. Hou, “Loss mechanism of all-fiber cascaded side pumping combiner,” High Power Laser Sci. Eng. 6, e56 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Koplow J, W. Moore S, and A. V. Kliner D, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron. 39(4), 529–540 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Koplow J, L. Goldberg, and A. V. Kliner D, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping[J],” IEEE Photonics Technol. Lett. 10(6), 793–795 (1998).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (2)

D. Fanlong, Z. Xinhai, and S. Feng, “Side coupler applied in a multi-pumped Yb-doped triple-clad fiber laser,” Laser Phys. 28(12), 125106 (2018).
[Crossref]

Q. Tan, T. Ge, X. Zhang, and Z. Wang, “Cascaded combiners for a high power CW fiber laser,” Laser Phys. 26(2), 025102 (2016).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Eng (1)

Y. Gu, C. Lei, J. Liu, R. Li, L. Liu, and H. Xiao, “Side-pumping combiner for high-power fiber laser based on tandem pumping,” Opt. Eng 56(11), 1 (2017).
[Crossref]

Opt. Express (5)

Other (1)

S. L. Lin, Y. W. Lee, K. Y. Hsu, C. W. Huang, and S. L. Huang, “Design of resonantly side-pumped 1645-nm Er:YAG crystal fiber lasers with grating couplers,” in Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013 Conference on. IEEE, 2013.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The scheme of (2+1)×1 side pump combiner.
Fig. 2.
Fig. 2. (a),(b) The relationships between coupling efficiency with waist width, fusion depth for different input modes; (c), the relationships between LPC with fusion length for different input modes; (d) the relationships between BPI with fusion depth for different input modes.
Fig. 3.
Fig. 3. The schematic of the combiner fabrication system, insert: the microscope picture of a fabricated side pump combiner.
Fig. 4.
Fig. 4. The relationship between the highest temperature of the combiner with input power, insert: the thermal image of the fabricated side pump combiner when injecting 1720 W pump power.
Fig. 5.
Fig. 5. Experimental setup of the bi-directional pumping fiber laser oscillator based on two (2+1)×1 side pump combiners, HR, high-reflectivity fiber grating; OC, output coupler fiber grating; CLS, cladding light stripper; PM, power meter; OSA, optical spectrum analyzer.
Fig. 6.
Fig. 6. (a) The spectrum of the oscillator with different output power; (b) the output power versus input pump power of the oscillator.
Fig. 7.
Fig. 7. (a) Experimental setup of beam quality analysis, (b) the results of measured M2 at different output power.

Metrics