Abstract

We propose “the external reflectance versus height conversion (ERHC) method” for measuring the full-field three-dimensional surface topography of a sample height from one micron to 100 micrometers. It is similar to the camera method, capturing images reflected and/or not from a prism by using a lens and a CCD. The reflectance of a point in the image can be converted to the height of the point. The method can obtain large-area full-field real-time three-dimensional measurement results and has the advantages of simple operation, low cost, and easy assembly. The measurement area is in the range of a few square millimeters for each time. The lateral and vertical resolutions are 2 and 0.1 micrometers, respectively, and the error is about 1% compared with the confocal microscope.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Model-based motion compensation for corneal topography by optical coherence tomography

Joerg Wagner, Lucio Robledo, Simon Pezold, Laura Eggenschwiler, Pascal Hasler, David Goldblum, and Philippe C. Cattin
OSA Continuum 3(7) 1967-1987 (2020)

Hilbert transform-based envelope substitution method for non-uniform sampling signal correction in white-light interferometry

Lei Xin, Zhongming Yang, Jiantai Dou, Zhaojun Liu, Zhishan Gao, and Xingyu Zhang
OSA Continuum 3(4) 824-834 (2020)

Full-field transmission-type angle-deviation optical microscope with reflectivity-height transformation

Ming-Hung Chiu, Chen-Tai Tan, Ming-Hung Tsai, and Ya-Hsin Yang
Biomed. Opt. Express 6(10) 3952-3962 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Song and T. V. Vorburger, “Stylus profiling at high resolution and low force,” Appl. Opt. 30(1), 42–50 (1991).
    [Crossref]
  2. E. Wu, Y. Ke, and B. Du, “Noncontact laser inspection based on a PSD for the inner surface of mini-diameter pipes,” IEEE Trans. Instrum. Meas. 58(7), 2169–2173 (2009).
    [Crossref]
  3. P. Buschinelli, T. Pinto, F. Silva, J. Santos, and A. Albertazzi, “Laser Triangulation Profilometer for Inner Surface Inspection of 100 millimeters (4”) Nominal Diameter,” J. Phys.: Conf. Ser. 648, 012010 (2015).
    [Crossref]
  4. G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiya, “Characterization of surface topography by confocal microscopy: 1. principles and the measurement system,” Meas. Sci. Technol. 11(3), 305–314 (2000).
    [Crossref]
  5. L. C. Chen, “Confocal microscopy for surface profilometry,” in Metrology, W. Gao (ed.), Precision Manufacturing (Springer, 2019), pp. 59–92.
    [Crossref]
  6. H. Zhang, Y. Ren, C. Liu, and J. Zhu, “Flying spot laser triangulation scanner using lateral synchronization for surface profile precision measurement,” Appl. Opt. 53(20), 4405–4412 (2014).
    [Crossref]
  7. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,”,” Appl. Opt. 48(35), 6708–6715 (2009).
    [Crossref]
  8. S. Li, T. Thorsen, Z. Xu, Z. P. Fang, J. Zhao, and S. F. Yoon, “Microvalve thickness and topography measurements in microfluidic devices by white-light confocal microscopy,”,” Appl. Opt. 48(27), 5088–5094 (2009).
    [Crossref]
  9. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [Crossref]
  10. G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: An objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
    [Crossref]
  11. C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
    [Crossref]
  12. L. Salas, E. Luna, J. Salinas, V. M. Garcia, and M. Servin, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307 (2003).
    [Crossref]
  13. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
    [Crossref]
  14. L. Chen and C. Huang, “Miniaturized 3D surface profilometer using digital fringe projection,” Meas. Sci. Technol. 16(5), 1061–1068 (2005).
    [Crossref]
  15. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
    [Crossref]
  16. S. Zhang, “High-speed 3D shape measurement with structured light methods: A review,” Opt. Lasers Eng. 106, 119–131 (2018).
    [Crossref]
  17. J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
    [Crossref]
  18. C. C. Aleksoff, “Multi-wavelength digital holographic metrology,” Proc. SPIE 6311, 63111D (2006).
    [Crossref]
  19. J. van Rooij and J. Kalkman, “Sub-millimeter depth-resolved digital holography,” Appl. Opt. 56(25), 7286–7293 (2017).
    [Crossref]
  20. V. Lédl, P. Psota, F. Kaván, O. Matoušek, and P. Mokrý, “Surface topography measurement by frequency sweeping digital holography,” Appl. Opt. 56(28), 7808–7814 (2017).
    [Crossref]
  21. M. H. Chiu, C. T. Tan, S. F. Huang, and J. A. Chen, “High Vertical Resolution Full-Field Reflection-Type Three-Dimensional Angle-Deviation Microscope with Nonlinear Error Compensation,” Microsc. Microanal. 21(3), 778–787 (2015).
    [Crossref]
  22. M. H. Chiu, C. T. Tan, and J. Y. Li, “System analysis of full-field reflection-type three-dimensional angle-deviation microscope,”,” Appl. Opt. 54(13), D1–D7 (2015).
    [Crossref]

2018 (1)

S. Zhang, “High-speed 3D shape measurement with structured light methods: A review,” Opt. Lasers Eng. 106, 119–131 (2018).
[Crossref]

2017 (2)

2015 (3)

M. H. Chiu, C. T. Tan, S. F. Huang, and J. A. Chen, “High Vertical Resolution Full-Field Reflection-Type Three-Dimensional Angle-Deviation Microscope with Nonlinear Error Compensation,” Microsc. Microanal. 21(3), 778–787 (2015).
[Crossref]

M. H. Chiu, C. T. Tan, and J. Y. Li, “System analysis of full-field reflection-type three-dimensional angle-deviation microscope,”,” Appl. Opt. 54(13), D1–D7 (2015).
[Crossref]

P. Buschinelli, T. Pinto, F. Silva, J. Santos, and A. Albertazzi, “Laser Triangulation Profilometer for Inner Surface Inspection of 100 millimeters (4”) Nominal Diameter,” J. Phys.: Conf. Ser. 648, 012010 (2015).
[Crossref]

2014 (1)

2010 (4)

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

2009 (3)

2006 (1)

C. C. Aleksoff, “Multi-wavelength digital holographic metrology,” Proc. SPIE 6311, 63111D (2006).
[Crossref]

2005 (1)

L. Chen and C. Huang, “Miniaturized 3D surface profilometer using digital fringe projection,” Meas. Sci. Technol. 16(5), 1061–1068 (2005).
[Crossref]

2003 (1)

L. Salas, E. Luna, J. Salinas, V. M. Garcia, and M. Servin, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307 (2003).
[Crossref]

2002 (1)

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

2000 (1)

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiya, “Characterization of surface topography by confocal microscopy: 1. principles and the measurement system,” Meas. Sci. Technol. 11(3), 305–314 (2000).
[Crossref]

1991 (1)

1989 (1)

G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: An objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
[Crossref]

Albertazzi, A.

P. Buschinelli, T. Pinto, F. Silva, J. Santos, and A. Albertazzi, “Laser Triangulation Profilometer for Inner Surface Inspection of 100 millimeters (4”) Nominal Diameter,” J. Phys.: Conf. Ser. 648, 012010 (2015).
[Crossref]

Aleksoff, C. C.

C. C. Aleksoff, “Multi-wavelength digital holographic metrology,” Proc. SPIE 6311, 63111D (2006).
[Crossref]

Buschinelli, P.

P. Buschinelli, T. Pinto, F. Silva, J. Santos, and A. Albertazzi, “Laser Triangulation Profilometer for Inner Surface Inspection of 100 millimeters (4”) Nominal Diameter,” J. Phys.: Conf. Ser. 648, 012010 (2015).
[Crossref]

Chen, J. A.

M. H. Chiu, C. T. Tan, S. F. Huang, and J. A. Chen, “High Vertical Resolution Full-Field Reflection-Type Three-Dimensional Angle-Deviation Microscope with Nonlinear Error Compensation,” Microsc. Microanal. 21(3), 778–787 (2015).
[Crossref]

Chen, L.

L. Chen and C. Huang, “Miniaturized 3D surface profilometer using digital fringe projection,” Meas. Sci. Technol. 16(5), 1061–1068 (2005).
[Crossref]

Chen, L. C.

L. C. Chen, “Confocal microscopy for surface profilometry,” in Metrology, W. Gao (ed.), Precision Manufacturing (Springer, 2019), pp. 59–92.
[Crossref]

Chiu, M. H.

M. H. Chiu, C. T. Tan, and J. Y. Li, “System analysis of full-field reflection-type three-dimensional angle-deviation microscope,”,” Appl. Opt. 54(13), D1–D7 (2015).
[Crossref]

M. H. Chiu, C. T. Tan, S. F. Huang, and J. A. Chen, “High Vertical Resolution Full-Field Reflection-Type Three-Dimensional Angle-Deviation Microscope with Nonlinear Error Compensation,” Microsc. Microanal. 21(3), 778–787 (2015).
[Crossref]

Du, B.

E. Wu, Y. Ke, and B. Du, “Noncontact laser inspection based on a PSD for the inner surface of mini-diameter pipes,” IEEE Trans. Instrum. Meas. 58(7), 2169–2173 (2009).
[Crossref]

Fang, Z. P.

Fernandez, S.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Garcia, V. M.

L. Salas, E. Luna, J. Salinas, V. M. Garcia, and M. Servin, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307 (2003).
[Crossref]

Gorthi, S. S.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Grove, G. L.

G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: An objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
[Crossref]

Grove, M. J.

G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: An objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
[Crossref]

He, X. Y.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

Huang, C.

L. Chen and C. Huang, “Miniaturized 3D surface profilometer using digital fringe projection,” Meas. Sci. Technol. 16(5), 1061–1068 (2005).
[Crossref]

Huang, S. F.

M. H. Chiu, C. T. Tan, S. F. Huang, and J. A. Chen, “High Vertical Resolution Full-Field Reflection-Type Three-Dimensional Angle-Deviation Microscope with Nonlinear Error Compensation,” Microsc. Microanal. 21(3), 778–787 (2015).
[Crossref]

Kalkman, J.

Kang, X.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

Kaván, F.

Ke, Y.

E. Wu, Y. Ke, and B. Du, “Noncontact laser inspection based on a PSD for the inner surface of mini-diameter pipes,” IEEE Trans. Instrum. Meas. 58(7), 2169–2173 (2009).
[Crossref]

Kothiya, M. P.

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiya, “Characterization of surface topography by confocal microscopy: 1. principles and the measurement system,” Meas. Sci. Technol. 11(3), 305–314 (2000).
[Crossref]

Lédl, V.

Leyden, J. J.

G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: An objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
[Crossref]

Li, J. Y.

Li, S.

Liu, C.

Llado, X.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Luna, E.

L. Salas, E. Luna, J. Salinas, V. M. Garcia, and M. Servin, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307 (2003).
[Crossref]

Marcos, S.

Matoušek, O.

Mokrý, P.

Ortiz, S.

Pinto, T.

P. Buschinelli, T. Pinto, F. Silva, J. Santos, and A. Albertazzi, “Laser Triangulation Profilometer for Inner Surface Inspection of 100 millimeters (4”) Nominal Diameter,” J. Phys.: Conf. Ser. 648, 012010 (2015).
[Crossref]

Pribanic, T.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Psota, P.

Quan, C.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

Rastogi, P.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Remon, L.

Ren, Y.

Salas, L.

L. Salas, E. Luna, J. Salinas, V. M. Garcia, and M. Servin, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307 (2003).
[Crossref]

Salinas, J.

L. Salas, E. Luna, J. Salinas, V. M. Garcia, and M. Servin, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307 (2003).
[Crossref]

Salvi, J.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Santos, J.

P. Buschinelli, T. Pinto, F. Silva, J. Santos, and A. Albertazzi, “Laser Triangulation Profilometer for Inner Surface Inspection of 100 millimeters (4”) Nominal Diameter,” J. Phys.: Conf. Ser. 648, 012010 (2015).
[Crossref]

Servin, M.

L. Salas, E. Luna, J. Salinas, V. M. Garcia, and M. Servin, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307 (2003).
[Crossref]

Shang, H. M.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

Siedlecki, D.

Silva, F.

P. Buschinelli, T. Pinto, F. Silva, J. Santos, and A. Albertazzi, “Laser Triangulation Profilometer for Inner Surface Inspection of 100 millimeters (4”) Nominal Diameter,” J. Phys.: Conf. Ser. 648, 012010 (2015).
[Crossref]

Singaperumal, M.

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiya, “Characterization of surface topography by confocal microscopy: 1. principles and the measurement system,” Meas. Sci. Technol. 11(3), 305–314 (2000).
[Crossref]

Sirohi, R. S.

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiya, “Characterization of surface topography by confocal microscopy: 1. principles and the measurement system,” Meas. Sci. Technol. 11(3), 305–314 (2000).
[Crossref]

Song, J. F.

Tan, C. T.

M. H. Chiu, C. T. Tan, S. F. Huang, and J. A. Chen, “High Vertical Resolution Full-Field Reflection-Type Three-Dimensional Angle-Deviation Microscope with Nonlinear Error Compensation,” Microsc. Microanal. 21(3), 778–787 (2015).
[Crossref]

M. H. Chiu, C. T. Tan, and J. Y. Li, “System analysis of full-field reflection-type three-dimensional angle-deviation microscope,”,” Appl. Opt. 54(13), D1–D7 (2015).
[Crossref]

Tay, C. J.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

Thorsen, T.

Udupa, G.

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiya, “Characterization of surface topography by confocal microscopy: 1. principles and the measurement system,” Meas. Sci. Technol. 11(3), 305–314 (2000).
[Crossref]

van Rooij, J.

Vorburger, T. V.

Wojtkowski, M.

Wu, E.

E. Wu, Y. Ke, and B. Du, “Noncontact laser inspection based on a PSD for the inner surface of mini-diameter pipes,” IEEE Trans. Instrum. Meas. 58(7), 2169–2173 (2009).
[Crossref]

Xu, Z.

Yoon, S. F.

Zhang, H.

Zhang, S.

S. Zhang, “High-speed 3D shape measurement with structured light methods: A review,” Opt. Lasers Eng. 106, 119–131 (2018).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

Zhao, J.

Zhu, J.

Appl. Opt. (8)

IEEE Trans. Instrum. Meas. (1)

E. Wu, Y. Ke, and B. Du, “Noncontact laser inspection based on a PSD for the inner surface of mini-diameter pipes,” IEEE Trans. Instrum. Meas. 58(7), 2169–2173 (2009).
[Crossref]

J. Am. Acad. Dermatol. (1)

G. L. Grove, M. J. Grove, and J. J. Leyden, “Optical profilometry: An objective method for quantification of facial wrinkles,” J. Am. Acad. Dermatol. 21(3), 631–637 (1989).
[Crossref]

J. Phys.: Conf. Ser. (1)

P. Buschinelli, T. Pinto, F. Silva, J. Santos, and A. Albertazzi, “Laser Triangulation Profilometer for Inner Surface Inspection of 100 millimeters (4”) Nominal Diameter,” J. Phys.: Conf. Ser. 648, 012010 (2015).
[Crossref]

Meas. Sci. Technol. (2)

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiya, “Characterization of surface topography by confocal microscopy: 1. principles and the measurement system,” Meas. Sci. Technol. 11(3), 305–314 (2000).
[Crossref]

L. Chen and C. Huang, “Miniaturized 3D surface profilometer using digital fringe projection,” Meas. Sci. Technol. 16(5), 1061–1068 (2005).
[Crossref]

Microsc. Microanal. (1)

M. H. Chiu, C. T. Tan, S. F. Huang, and J. A. Chen, “High Vertical Resolution Full-Field Reflection-Type Three-Dimensional Angle-Deviation Microscope with Nonlinear Error Compensation,” Microsc. Microanal. 21(3), 778–787 (2015).
[Crossref]

Opt. Eng. (1)

L. Salas, E. Luna, J. Salinas, V. M. Garcia, and M. Servin, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307 (2003).
[Crossref]

Opt. Laser Technol. (1)

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34(7), 547–552 (2002).
[Crossref]

Opt. Lasers Eng. (3)

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

S. Zhang, “High-speed 3D shape measurement with structured light methods: A review,” Opt. Lasers Eng. 106, 119–131 (2018).
[Crossref]

Pattern Recogn. (1)

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43(8), 2666–2680 (2010).
[Crossref]

Proc. SPIE (1)

C. C. Aleksoff, “Multi-wavelength digital holographic metrology,” Proc. SPIE 6311, 63111D (2006).
[Crossref]

Other (1)

L. C. Chen, “Confocal microscopy for surface profilometry,” in Metrology, W. Gao (ed.), Precision Manufacturing (Springer, 2019), pp. 59–92.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The schematic diagram of light reflection on the surface of an object.
Fig. 2.
Fig. 2. the reflectance curves of the s- and p-polarizations versus the incident angle in the internal and external reflections.
Fig. 3.
Fig. 3. The base setup of the external reflection image system
Fig. 4.
Fig. 4. The 3D profilometer setup of ERHC method
Fig. 5.
Fig. 5. The measurement results of a lenticular lens by using the ERHC method: (a) the image measured by CCD1; (b) the image measured by CCD2; (c) the 3D profile results; (d) the 2D profile results.
Fig. 6.
Fig. 6. the measurement results of (a)LSCM; (b)Alpha-Step(Dektak XT)
Fig. 7.
Fig. 7. A hair width measurement: (a) the 2D and (b) 3D measurement results by ERHC method; (c) the 2D measurement results by LSCM; (d) the 2D measurement results by Alpha-Step (Dektak XT))
Fig. 8.
Fig. 8. The curve of vertical resolution ( $\delta h$ ) versus the reflectance ( ${R_s}$ )

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ h = Δ x t a n Δ α = Δ X M t a n ( Δ θ 2 ) ,
h n = 1 n Δ h n = Δ X M 1 n t a n ( Δ θ n 2 )

Metrics