Abstract

A mathematical formula is derived for calculating the fringe period of color moirés appearing at a high dynamic range dual-panel liquid crystal display TV module. It indicates that the fringe period is related to the pixel pattern, the rotational angle, the viewing distance, the medium and the distance between dual panels. The formula is derived in the case of air medium, but has verified to be valid in the case of glass medium for most of the actual situation. In the formula, k indicating the relation between dual panel patterns is introduced. The rule of k value has been derived and listed, making the formula work well for any two pixel pattern. The experiment and simulation have verified the validity of the mathematical formula.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Autostereoscopic display with LCD for viewing a 3-D animation based on the moiré effect

Shotaro Mori and Yue Bao
OSA Continuum 3(2) 224-235 (2020)

Fringe periods of color moirés in contact-type 3-D displays

Hyoung Lee, Sung-Kyu Kim, Kwanghoon Sohn, Jung-Young Son, and Oleksii O. Chernyshov
Opt. Express 24(13) 14183-14195 (2016)

Adaptive glasses-free 3D display with extended continuous viewing volume by dynamically configured directional backlight

Xiaoke Li, Juan Ding, Hantao Zhang, Mingjun Chen, Weitang Liang, Shuying Wang, Hang Fan, Kunyang Li, and Jianying Zhou
OSA Continuum 3(6) 1555-1567 (2020)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
    [Crossref]
  2. Y. Huang, G. J. Tan, F. W. Gou, M. C. Li, S. L. Lee, and S. T. Wu, “Prospects and challenges of mini-LED and micro-LED displays,” J. Soc. Inf. Disp. 27(7), 387–401 (2019).
    [Crossref]
  3. Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
    [Crossref]
  4. G. Tan, Y. Huang, M. C. Li, S. L. Lee, and S. T. Wu, “High dynamic range liquid crystal displays with a mini-LED backlight,” Opt. Express 26(13), 16572–16584 (2018).
    [Crossref]
  5. P. Y. Chen, Y. H. Shiau, H. Y. Yang, and W. Y. Jhuang, “A Weighted Edge-Preserving Smooth Filter for High Dynamic Range Image Display,” J. Inf. Sci. Eng. 31(3), 1011–1026 (2015).
  6. M. D. Tisdall, G. Damberg, P. Wighton, N. Nguyen, Y. Tan, M. S. Atkins, H. Li, and H. Seetzen, “Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays,” J. Disp. Technol. 4(4), 398–409 (2008).
    [Crossref]
  7. G. Z. Wang, F. C. Lin, and Y. P. Huang, “Delta-Color Adjustment (DCA) for Spatial Modulated Color Backlight Algorithm on High Dynamic Range LCD TVs,” J. Disp. Technol. 6(6), 215–220 (2010).
    [Crossref]
  8. F. C. Lin, Y. P. Huang, L. Y. Liao, C. Y. Liao, H. P. D. Shieh, T. M. Wang, and S. C. Yeh, “Dynamic Backlight Gamma on High Dynamic Range LCD TVs,” J. Disp. Technol. 4(2), 139–146 (2008).
    [Crossref]
  9. H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
    [Crossref]
  10. J. Kim, J. Y. Son, K. H. Lee, H. Lee, and M. C. Park, “Behaviors of moiré fringes induced by plate thickness Color moiré simulations in contact-type 3-D displays,” J. Opt. 17(3), 035801 (2015).
    [Crossref]
  11. E. C. Chen, J. Cai, X. Y. Zeng, S. Xu, Y. Ye, Q. F. Yan, and T. L. Guo, “Ultra-large moiré-less autostereoscopic three-dimensional light-emitting-diode displays,” Opt. Express 27(7), 10355–10369 (2019).
    [Crossref]
  12. H. Lee, S. K. Kim, K. Sohn, J. Y. Son, and O. O. Chernyshov, “Fringe periods of color moirés in contact-type 3-D displays,” Opt. Express 24(13), 14183–14195 (2016).
    [Crossref]
  13. B. R. Lee, J. Y. Son, O. O. Chernyshov, H. Lee, and I. K. Jeong, “Color moiré simulations in contact-type 3-D displays,” Opt. Express 23(11), 14114–14125 (2015).
    [Crossref]
  14. J. Xu, Q. Zhang, H. Li, T. Liu, S. Chen, and F. Shang, “Simulation of Color Moiré Pattern in LCD-based Metal Mesh Touch Screen,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 2087–2090 (2017).
    [Crossref]
  15. W. M. Liu, “Characterization of some wide viewing angle liquid crystal devices,” PhD. Thesis (Kent State University, 2001).
  16. R. D. Hersch and S. Chosson, “Band moiré images,” ACM Trans. Graph. 23(3), 239–248 (2004).
    [Crossref]
  17. V. Saveljev and S. K. Kim, “Amplitude, period and orientation of the moiré patterns in barrier 3D displays,” J. Inf. Disp. 19(2), 81–90 (2018).
    [Crossref]
  18. V. V. Saveljev, J. Y. Son, J. H. Chun, K. D. Kwack, and K. H. Cha, “About a moire-less condition for non-square grids,” J. Disp. Technol. 4(3), 332–339 (2008).
    [Crossref]

2019 (2)

Y. Huang, G. J. Tan, F. W. Gou, M. C. Li, S. L. Lee, and S. T. Wu, “Prospects and challenges of mini-LED and micro-LED displays,” J. Soc. Inf. Disp. 27(7), 387–401 (2019).
[Crossref]

E. C. Chen, J. Cai, X. Y. Zeng, S. Xu, Y. Ye, Q. F. Yan, and T. L. Guo, “Ultra-large moiré-less autostereoscopic three-dimensional light-emitting-diode displays,” Opt. Express 27(7), 10355–10369 (2019).
[Crossref]

2018 (4)

V. Saveljev and S. K. Kim, “Amplitude, period and orientation of the moiré patterns in barrier 3D displays,” J. Inf. Disp. 19(2), 81–90 (2018).
[Crossref]

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
[Crossref]

G. Tan, Y. Huang, M. C. Li, S. L. Lee, and S. T. Wu, “High dynamic range liquid crystal displays with a mini-LED backlight,” Opt. Express 26(13), 16572–16584 (2018).
[Crossref]

2017 (2)

H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
[Crossref]

J. Xu, Q. Zhang, H. Li, T. Liu, S. Chen, and F. Shang, “Simulation of Color Moiré Pattern in LCD-based Metal Mesh Touch Screen,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 2087–2090 (2017).
[Crossref]

2016 (1)

2015 (3)

B. R. Lee, J. Y. Son, O. O. Chernyshov, H. Lee, and I. K. Jeong, “Color moiré simulations in contact-type 3-D displays,” Opt. Express 23(11), 14114–14125 (2015).
[Crossref]

J. Kim, J. Y. Son, K. H. Lee, H. Lee, and M. C. Park, “Behaviors of moiré fringes induced by plate thickness Color moiré simulations in contact-type 3-D displays,” J. Opt. 17(3), 035801 (2015).
[Crossref]

P. Y. Chen, Y. H. Shiau, H. Y. Yang, and W. Y. Jhuang, “A Weighted Edge-Preserving Smooth Filter for High Dynamic Range Image Display,” J. Inf. Sci. Eng. 31(3), 1011–1026 (2015).

2010 (1)

G. Z. Wang, F. C. Lin, and Y. P. Huang, “Delta-Color Adjustment (DCA) for Spatial Modulated Color Backlight Algorithm on High Dynamic Range LCD TVs,” J. Disp. Technol. 6(6), 215–220 (2010).
[Crossref]

2008 (3)

F. C. Lin, Y. P. Huang, L. Y. Liao, C. Y. Liao, H. P. D. Shieh, T. M. Wang, and S. C. Yeh, “Dynamic Backlight Gamma on High Dynamic Range LCD TVs,” J. Disp. Technol. 4(2), 139–146 (2008).
[Crossref]

M. D. Tisdall, G. Damberg, P. Wighton, N. Nguyen, Y. Tan, M. S. Atkins, H. Li, and H. Seetzen, “Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays,” J. Disp. Technol. 4(4), 398–409 (2008).
[Crossref]

V. V. Saveljev, J. Y. Son, J. H. Chun, K. D. Kwack, and K. H. Cha, “About a moire-less condition for non-square grids,” J. Disp. Technol. 4(3), 332–339 (2008).
[Crossref]

2004 (1)

R. D. Hersch and S. Chosson, “Band moiré images,” ACM Trans. Graph. 23(3), 239–248 (2004).
[Crossref]

Atkins, M. S.

M. D. Tisdall, G. Damberg, P. Wighton, N. Nguyen, Y. Tan, M. S. Atkins, H. Li, and H. Seetzen, “Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays,” J. Disp. Technol. 4(4), 398–409 (2008).
[Crossref]

Cai, J.

Cha, K. H.

V. V. Saveljev, J. Y. Son, J. H. Chun, K. D. Kwack, and K. H. Cha, “About a moire-less condition for non-square grids,” J. Disp. Technol. 4(3), 332–339 (2008).
[Crossref]

Chen, E. C.

Chen, H.

Chen, H. W.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

Chen, P. Y.

P. Y. Chen, Y. H. Shiau, H. Y. Yang, and W. Y. Jhuang, “A Weighted Edge-Preserving Smooth Filter for High Dynamic Range Image Display,” J. Inf. Sci. Eng. 31(3), 1011–1026 (2015).

Chen, S.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

J. Xu, Q. Zhang, H. Li, T. Liu, S. Chen, and F. Shang, “Simulation of Color Moiré Pattern in LCD-based Metal Mesh Touch Screen,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 2087–2090 (2017).
[Crossref]

Chernyshov, O. O.

Chosson, S.

R. D. Hersch and S. Chosson, “Band moiré images,” ACM Trans. Graph. 23(3), 239–248 (2004).
[Crossref]

Chun, J. H.

V. V. Saveljev, J. Y. Son, J. H. Chun, K. D. Kwack, and K. H. Cha, “About a moire-less condition for non-square grids,” J. Disp. Technol. 4(3), 332–339 (2008).
[Crossref]

Damberg, G.

M. D. Tisdall, G. Damberg, P. Wighton, N. Nguyen, Y. Tan, M. S. Atkins, H. Li, and H. Seetzen, “Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays,” J. Disp. Technol. 4(4), 398–409 (2008).
[Crossref]

Deng, Z.

Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
[Crossref]

Gou, F. W.

Y. Huang, G. J. Tan, F. W. Gou, M. C. Li, S. L. Lee, and S. T. Wu, “Prospects and challenges of mini-LED and micro-LED displays,” J. Soc. Inf. Disp. 27(7), 387–401 (2019).
[Crossref]

Guo, T. L.

Hersch, R. D.

R. D. Hersch and S. Chosson, “Band moiré images,” ACM Trans. Graph. 23(3), 239–248 (2004).
[Crossref]

Huang, Y.

Y. Huang, G. J. Tan, F. W. Gou, M. C. Li, S. L. Lee, and S. T. Wu, “Prospects and challenges of mini-LED and micro-LED displays,” J. Soc. Inf. Disp. 27(7), 387–401 (2019).
[Crossref]

G. Tan, Y. Huang, M. C. Li, S. L. Lee, and S. T. Wu, “High dynamic range liquid crystal displays with a mini-LED backlight,” Opt. Express 26(13), 16572–16584 (2018).
[Crossref]

Huang, Y. P.

G. Z. Wang, F. C. Lin, and Y. P. Huang, “Delta-Color Adjustment (DCA) for Spatial Modulated Color Backlight Algorithm on High Dynamic Range LCD TVs,” J. Disp. Technol. 6(6), 215–220 (2010).
[Crossref]

F. C. Lin, Y. P. Huang, L. Y. Liao, C. Y. Liao, H. P. D. Shieh, T. M. Wang, and S. C. Yeh, “Dynamic Backlight Gamma on High Dynamic Range LCD TVs,” J. Disp. Technol. 4(2), 139–146 (2008).
[Crossref]

Jeong, I. K.

Jhuang, W. Y.

P. Y. Chen, Y. H. Shiau, H. Y. Yang, and W. Y. Jhuang, “A Weighted Edge-Preserving Smooth Filter for High Dynamic Range Image Display,” J. Inf. Sci. Eng. 31(3), 1011–1026 (2015).

Kelley, P.

Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
[Crossref]

Kim, J.

J. Kim, J. Y. Son, K. H. Lee, H. Lee, and M. C. Park, “Behaviors of moiré fringes induced by plate thickness Color moiré simulations in contact-type 3-D displays,” J. Opt. 17(3), 035801 (2015).
[Crossref]

Kim, S. K.

V. Saveljev and S. K. Kim, “Amplitude, period and orientation of the moiré patterns in barrier 3D displays,” J. Inf. Disp. 19(2), 81–90 (2018).
[Crossref]

H. Lee, S. K. Kim, K. Sohn, J. Y. Son, and O. O. Chernyshov, “Fringe periods of color moirés in contact-type 3-D displays,” Opt. Express 24(13), 14183–14195 (2016).
[Crossref]

Kwack, K. D.

V. V. Saveljev, J. Y. Son, J. H. Chun, K. D. Kwack, and K. H. Cha, “About a moire-less condition for non-square grids,” J. Disp. Technol. 4(3), 332–339 (2008).
[Crossref]

Lee, B. R.

Lee, H.

Lee, J. H.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

Lee, K. H.

J. Kim, J. Y. Son, K. H. Lee, H. Lee, and M. C. Park, “Behaviors of moiré fringes induced by plate thickness Color moiré simulations in contact-type 3-D displays,” J. Opt. 17(3), 035801 (2015).
[Crossref]

Lee, S. L.

Li, H.

J. Xu, Q. Zhang, H. Li, T. Liu, S. Chen, and F. Shang, “Simulation of Color Moiré Pattern in LCD-based Metal Mesh Touch Screen,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 2087–2090 (2017).
[Crossref]

M. D. Tisdall, G. Damberg, P. Wighton, N. Nguyen, Y. Tan, M. S. Atkins, H. Li, and H. Seetzen, “Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays,” J. Disp. Technol. 4(4), 398–409 (2008).
[Crossref]

Li, J.

Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
[Crossref]

Li, M. C.

Liao, C. Y.

F. C. Lin, Y. P. Huang, L. Y. Liao, C. Y. Liao, H. P. D. Shieh, T. M. Wang, and S. C. Yeh, “Dynamic Backlight Gamma on High Dynamic Range LCD TVs,” J. Disp. Technol. 4(2), 139–146 (2008).
[Crossref]

Liao, L. Y.

F. C. Lin, Y. P. Huang, L. Y. Liao, C. Y. Liao, H. P. D. Shieh, T. M. Wang, and S. C. Yeh, “Dynamic Backlight Gamma on High Dynamic Range LCD TVs,” J. Disp. Technol. 4(2), 139–146 (2008).
[Crossref]

Lin, B. Y.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

Lin, F. C.

G. Z. Wang, F. C. Lin, and Y. P. Huang, “Delta-Color Adjustment (DCA) for Spatial Modulated Color Backlight Algorithm on High Dynamic Range LCD TVs,” J. Disp. Technol. 6(6), 215–220 (2010).
[Crossref]

F. C. Lin, Y. P. Huang, L. Y. Liao, C. Y. Liao, H. P. D. Shieh, T. M. Wang, and S. C. Yeh, “Dynamic Backlight Gamma on High Dynamic Range LCD TVs,” J. Disp. Technol. 4(2), 139–146 (2008).
[Crossref]

Lin, Z.

Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
[Crossref]

Liu, T.

J. Xu, Q. Zhang, H. Li, T. Liu, S. Chen, and F. Shang, “Simulation of Color Moiré Pattern in LCD-based Metal Mesh Touch Screen,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 2087–2090 (2017).
[Crossref]

Liu, W. M.

W. M. Liu, “Characterization of some wide viewing angle liquid crystal devices,” PhD. Thesis (Kent State University, 2001).

Nguyen, N.

M. D. Tisdall, G. Damberg, P. Wighton, N. Nguyen, Y. Tan, M. S. Atkins, H. Li, and H. Seetzen, “Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays,” J. Disp. Technol. 4(4), 398–409 (2008).
[Crossref]

Park, M. C.

J. Kim, J. Y. Son, K. H. Lee, H. Lee, and M. C. Park, “Behaviors of moiré fringes induced by plate thickness Color moiré simulations in contact-type 3-D displays,” J. Opt. 17(3), 035801 (2015).
[Crossref]

Saveljev, V.

V. Saveljev and S. K. Kim, “Amplitude, period and orientation of the moiré patterns in barrier 3D displays,” J. Inf. Disp. 19(2), 81–90 (2018).
[Crossref]

Saveljev, V. V.

V. V. Saveljev, J. Y. Son, J. H. Chun, K. D. Kwack, and K. H. Cha, “About a moire-less condition for non-square grids,” J. Disp. Technol. 4(3), 332–339 (2008).
[Crossref]

Seetzen, H.

M. D. Tisdall, G. Damberg, P. Wighton, N. Nguyen, Y. Tan, M. S. Atkins, H. Li, and H. Seetzen, “Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays,” J. Disp. Technol. 4(4), 398–409 (2008).
[Crossref]

Shang, F.

J. Xu, Q. Zhang, H. Li, T. Liu, S. Chen, and F. Shang, “Simulation of Color Moiré Pattern in LCD-based Metal Mesh Touch Screen,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 2087–2090 (2017).
[Crossref]

Shen, P.

Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
[Crossref]

Shiau, Y. H.

P. Y. Chen, Y. H. Shiau, H. Y. Yang, and W. Y. Jhuang, “A Weighted Edge-Preserving Smooth Filter for High Dynamic Range Image Display,” J. Inf. Sci. Eng. 31(3), 1011–1026 (2015).

Shieh, H. P. D.

F. C. Lin, Y. P. Huang, L. Y. Liao, C. Y. Liao, H. P. D. Shieh, T. M. Wang, and S. C. Yeh, “Dynamic Backlight Gamma on High Dynamic Range LCD TVs,” J. Disp. Technol. 4(2), 139–146 (2008).
[Crossref]

Sohn, K.

Son, J. Y.

H. Lee, S. K. Kim, K. Sohn, J. Y. Son, and O. O. Chernyshov, “Fringe periods of color moirés in contact-type 3-D displays,” Opt. Express 24(13), 14183–14195 (2016).
[Crossref]

J. Kim, J. Y. Son, K. H. Lee, H. Lee, and M. C. Park, “Behaviors of moiré fringes induced by plate thickness Color moiré simulations in contact-type 3-D displays,” J. Opt. 17(3), 035801 (2015).
[Crossref]

B. R. Lee, J. Y. Son, O. O. Chernyshov, H. Lee, and I. K. Jeong, “Color moiré simulations in contact-type 3-D displays,” Opt. Express 23(11), 14114–14125 (2015).
[Crossref]

V. V. Saveljev, J. Y. Son, J. H. Chun, K. D. Kwack, and K. H. Cha, “About a moire-less condition for non-square grids,” J. Disp. Technol. 4(3), 332–339 (2008).
[Crossref]

Tan, G.

Tan, G. J.

Y. Huang, G. J. Tan, F. W. Gou, M. C. Li, S. L. Lee, and S. T. Wu, “Prospects and challenges of mini-LED and micro-LED displays,” J. Soc. Inf. Disp. 27(7), 387–401 (2019).
[Crossref]

Tan, Y.

M. D. Tisdall, G. Damberg, P. Wighton, N. Nguyen, Y. Tan, M. S. Atkins, H. Li, and H. Seetzen, “Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays,” J. Disp. Technol. 4(4), 398–409 (2008).
[Crossref]

Tisdall, M. D.

M. D. Tisdall, G. Damberg, P. Wighton, N. Nguyen, Y. Tan, M. S. Atkins, H. Li, and H. Seetzen, “Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays,” J. Disp. Technol. 4(4), 398–409 (2008).
[Crossref]

Wang, G. Z.

G. Z. Wang, F. C. Lin, and Y. P. Huang, “Delta-Color Adjustment (DCA) for Spatial Modulated Color Backlight Algorithm on High Dynamic Range LCD TVs,” J. Disp. Technol. 6(6), 215–220 (2010).
[Crossref]

Wang, T. M.

F. C. Lin, Y. P. Huang, L. Y. Liao, C. Y. Liao, H. P. D. Shieh, T. M. Wang, and S. C. Yeh, “Dynamic Backlight Gamma on High Dynamic Range LCD TVs,” J. Disp. Technol. 4(2), 139–146 (2008).
[Crossref]

Wighton, P.

M. D. Tisdall, G. Damberg, P. Wighton, N. Nguyen, Y. Tan, M. S. Atkins, H. Li, and H. Seetzen, “Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays,” J. Disp. Technol. 4(4), 398–409 (2008).
[Crossref]

Wu, L.

Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
[Crossref]

Wu, S. T.

Y. Huang, G. J. Tan, F. W. Gou, M. C. Li, S. L. Lee, and S. T. Wu, “Prospects and challenges of mini-LED and micro-LED displays,” J. Soc. Inf. Disp. 27(7), 387–401 (2019).
[Crossref]

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

G. Tan, Y. Huang, M. C. Li, S. L. Lee, and S. T. Wu, “High dynamic range liquid crystal displays with a mini-LED backlight,” Opt. Express 26(13), 16572–16584 (2018).
[Crossref]

H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
[Crossref]

Xu, J.

J. Xu, Q. Zhang, H. Li, T. Liu, S. Chen, and F. Shang, “Simulation of Color Moiré Pattern in LCD-based Metal Mesh Touch Screen,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 2087–2090 (2017).
[Crossref]

Xu, S.

Yan, Q. F.

Yang, H. Y.

P. Y. Chen, Y. H. Shiau, H. Y. Yang, and W. Y. Jhuang, “A Weighted Edge-Preserving Smooth Filter for High Dynamic Range Image Display,” J. Inf. Sci. Eng. 31(3), 1011–1026 (2015).

Yang, W.

Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
[Crossref]

Ye, Y.

Yeh, S. C.

F. C. Lin, Y. P. Huang, L. Y. Liao, C. Y. Liao, H. P. D. Shieh, T. M. Wang, and S. C. Yeh, “Dynamic Backlight Gamma on High Dynamic Range LCD TVs,” J. Disp. Technol. 4(2), 139–146 (2008).
[Crossref]

Zeng, X. Y.

Zhang, Q.

J. Xu, Q. Zhang, H. Li, T. Liu, S. Chen, and F. Shang, “Simulation of Color Moiré Pattern in LCD-based Metal Mesh Touch Screen,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 2087–2090 (2017).
[Crossref]

Zheng, B.

Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
[Crossref]

Zheng, J.

Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
[Crossref]

Zhu, R.

ACM Trans. Graph. (1)

R. D. Hersch and S. Chosson, “Band moiré images,” ACM Trans. Graph. 23(3), 239–248 (2004).
[Crossref]

Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. (2)

J. Xu, Q. Zhang, H. Li, T. Liu, S. Chen, and F. Shang, “Simulation of Color Moiré Pattern in LCD-based Metal Mesh Touch Screen,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 2087–2090 (2017).
[Crossref]

Z. Deng, B. Zheng, J. Zheng, L. Wu, W. Yang, Z. Lin, P. Shen, J. Li, and P. Kelley, “High Dynamic Range Incell LCD with Excellent Performance,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 996–998 (2018).
[Crossref]

J. Disp. Technol. (4)

M. D. Tisdall, G. Damberg, P. Wighton, N. Nguyen, Y. Tan, M. S. Atkins, H. Li, and H. Seetzen, “Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays,” J. Disp. Technol. 4(4), 398–409 (2008).
[Crossref]

G. Z. Wang, F. C. Lin, and Y. P. Huang, “Delta-Color Adjustment (DCA) for Spatial Modulated Color Backlight Algorithm on High Dynamic Range LCD TVs,” J. Disp. Technol. 6(6), 215–220 (2010).
[Crossref]

F. C. Lin, Y. P. Huang, L. Y. Liao, C. Y. Liao, H. P. D. Shieh, T. M. Wang, and S. C. Yeh, “Dynamic Backlight Gamma on High Dynamic Range LCD TVs,” J. Disp. Technol. 4(2), 139–146 (2008).
[Crossref]

V. V. Saveljev, J. Y. Son, J. H. Chun, K. D. Kwack, and K. H. Cha, “About a moire-less condition for non-square grids,” J. Disp. Technol. 4(3), 332–339 (2008).
[Crossref]

J. Inf. Disp. (1)

V. Saveljev and S. K. Kim, “Amplitude, period and orientation of the moiré patterns in barrier 3D displays,” J. Inf. Disp. 19(2), 81–90 (2018).
[Crossref]

J. Inf. Sci. Eng. (1)

P. Y. Chen, Y. H. Shiau, H. Y. Yang, and W. Y. Jhuang, “A Weighted Edge-Preserving Smooth Filter for High Dynamic Range Image Display,” J. Inf. Sci. Eng. 31(3), 1011–1026 (2015).

J. Opt. (1)

J. Kim, J. Y. Son, K. H. Lee, H. Lee, and M. C. Park, “Behaviors of moiré fringes induced by plate thickness Color moiré simulations in contact-type 3-D displays,” J. Opt. 17(3), 035801 (2015).
[Crossref]

J. Soc. Inf. Disp. (1)

Y. Huang, G. J. Tan, F. W. Gou, M. C. Li, S. L. Lee, and S. T. Wu, “Prospects and challenges of mini-LED and micro-LED displays,” J. Soc. Inf. Disp. 27(7), 387–401 (2019).
[Crossref]

Light: Sci. Appl. (1)

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

Opt. Express (5)

Other (1)

W. M. Liu, “Characterization of some wide viewing angle liquid crystal devices,” PhD. Thesis (Kent State University, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. A geometry of forming color moiré fringes.
Fig. 2.
Fig. 2. (a) $\Delta \Delta $ and (b) $\frac{{{\Delta \Delta }}}{{{{\Delta }_i}^{\prime} - ({{P_1} - k\ast {P_2}} )}}$ changes with different viewing distance when ${P_1}$ is 0.744, 0.748, 0.758 and 0.768 mm, respectively.
Fig. 3.
Fig. 3. The pitch of color moiré as a function of the under panel period ${P_1}$ when $\alpha = {0^ \circ }$ .
Fig. 4.
Fig. 4. The pitch of color moiré as a function of the under cell pitch ${P_1}$ when $\alpha = {0^ \circ }$ .
Fig. 5.
Fig. 5. Comparisons of experimentally and simulated obtained color moiré fringes at viewing distance of 200 mm, (a) and (b) under cell pitch is 768 µm at the horizontal direction and the rotated angel $\alpha $ is 0°. (c) and (d) under cell pitch is 744 µm at the horizontal direction and the rotated angel $\alpha $ is 1.8°. The length unit of scale bar in (b) and (d) is millimeter (mm).
Fig. 6.
Fig. 6. Comparisons of simulated color moiré fringes for two situations at viewer distance of 35 mm, 200 mm and 500 mm. (a), (b) and (c) the glass gap. (d), (e) and (f) the air gap. The length unit of scale bar in the figures is 20 millimeter (mm).
Fig. 7.
Fig. 7. Comparisons of simulated color moiré fringes for two situations with $\alpha $ is 0°, 0.1° and 1° at viewer distance of 250 mm. (a), (b) and (c) the glass gap. (d), (e) and (f) the air gap.
Fig. 8.
Fig. 8. The schematic diagram of color moiré pattern for dual-panel display when the rotational angle α is slightly larger than 0°.

Tables (1)

Tables Icon

Table 1. The rules for the value of k. a

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

Δ 1 = Δ d 2  -  Δ d 1
Δ = Δ 1 + Δ 2 + + Δ i +
d ( C 1 O ) = h tan ( G θ 1 )
d ( C 1 B 1 ) = t tan [ arcsin sin ( G θ 1 ) n ]
d ( B 1 D 1 ) = w tan ( G θ 1 )
d ( D 1 O ) = d ( C 1 O ) + d ( C 1 B 1 ) + d ( B 1 D 1 )
d ( C 1 D 1 ) = d ( D 1 O ) d ( C 1 O )
d ( C 2 O ) = h tan ( G θ 2 )
d ( C 2 B 2 ) = t tan [ arcsin sin ( G θ 2 ) n ]
d ( B 2 D 2 ) = w tan ( G θ 2 )
d ( D 2 O ) = d ( C 2 O ) + d ( C 2 B 2 ) + d ( B 2 D 2 )
d ( C 2 D 2 ) = d ( D 2 O ) d ( C 2 O )
d ( D 1 D 2 ) = d ( D 2 O ) d ( D 1 O )
d 1 = h tan ( G θ 1 ) + t tan [ arcsin sin ( G θ 1 ) n ] + w tan ( G θ 1 )
d 2 = h tan ( G θ 2 ) + t tan [ arcsin sin ( G θ 2 ) n ] + w tan ( G θ 2 )
Δ 1 = Δ d 2 Δ d 1 = [ d ( D 2 O ) d ( C 2 O ) ] [ d ( D 1 O ) d ( C 1 O ) ] = P 1 h [ tan ( G θ 2 ) tan ( G θ 1 ) ]
Δ i = Δ d i + 1 Δ d i = P 1 h [ tan ( G θ i + 1 ) tan ( G θ i ) ]
d ( C 1 O ) = h tan ( θ 1 )
d ( C 2 O ) = h tan ( θ 2 )
tan ( θ 1 ) = d 1 h + t + w
tan ( θ 2 ) = d 2 h + t + w
Δ 1 = [ d ( D 2 O ) d ( C 2 O ) ] [ d ( D 1 O ) d ( C 1 O ) ] = d ( D 1 D 2 ) h [ tan ( θ 2 ) tan ( θ 1 ) ]
Δ 1 = P 1 h d 2 d 1 h + t + w = Δ h h + Δ h P 1
Δ i = Δ 1 = Δ h h + Δ h P 1
P = P 2 Δ i P 1 h h + Δ h = h Δ h P 2
P = P 2 Δ i ( P 1 k P 2 ) P 1 h h + Δ h = P 1 P 2 h + Δ h h k P 2 P 1
P F G = h h + Δ h P F G
P = P 1 P 2 ( P 1 ) 2 + ( P 2 ) 2 2 ( P 1 ) ( P 2 ) cos ( α )
cos ( β ) = P 1 cos ( α ) P 2 ( P 1 ) 2 + ( P 2 ) 2 2 ( P 1 ) ( P 2 ) cos ( α )
sin ( β ) = P 1 sin ( α ) ( P 1 ) 2 + ( P 2 ) 2 2 ( P 1 ) ( P 2 ) cos ( α )
P = P 1 P 2 ( P 1 ) 2 + ( h + Δ h h k P 2 ) 2 2 ( P 1 ) ( h + Δ h h k P 2 ) cos ( α )
cos ( β ) = P 1 cos ( α ) h + Δ h h k P 2 ( P 1 ) 2 + ( h + Δ h h k P 2 ) 2 2 ( P 1 ) ( h + Δ h h k P 2 ) cos ( α )
sin ( β ) = P 1 sin ( α ) ( P 1 ) 2 + ( h + Δ h h k P 2 ) 2 2 ( P 1 ) ( h + Δ h h k P 2 ) cos ( α )
P 2 = h h + Δ h 2 2 k + 1 cos ( α ) P 1
Δ Δ = [ Δ i ( P 1 k P 2 ) ] [ Δ i ( P 1 k P 2 ) ]
Δ Δ Δ i ( P 1 k P 2 ) = [ Δ i ( P 1 k P 2 ) ] [ Δ i ( P 1 k P 2 ) ] Δ i ( P 1 k P 2 )
P 1 = h + Δ h h k P 2

Metrics