Abstract

A lensless full-color holographic projection system is proposed, satisfying the requirement of compactness and flexibility. The system enables projection by illuminating a single-chip spatial light modulator (SLM) simultaneously with red (R), green (G), and blue (B) lasers, in which the SLM loads a color-multiplexed phase-only hologram. To strengthen compactness, filtering and achromatic systems are achieved by digital phase, where the digital lens phase focuses the light field onto the filter plane, and the digital blazed gratings shift the RGB images to achieve a fine alignment. Besides, the flexibility of diffraction calculation is enhanced by the cascaded D-FFT and S-FFT algorithm (CDS algorithm, where D-FFT is acronym of double fast fourier transform and S-FFT is acronym of single fast fourier transform). Both simulation and optical experiments are carried out. We conducted 2D image and animation projection and multi-image-plane projection. The results confirm the feasibility of our method.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental evaluation of a full-color compact lensless holographic display

Michal Makowski, Maciej Sypek, Izabela Ducin, Agnieszka Fajst, Andrzej Siemion, Jaroslaw Suszek, and Andrzej Kolodziejczyk
Opt. Express 17(23) 20840-20846 (2009)

Speckle reduced lensless holographic projection from phase-only computer-generated hologram

Chenliang Chang, Yijun Qi, Jun Wu, Jun Xia, and Shouping Nie
Opt. Express 25(6) 6568-6580 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt. 26(20), 4351–4360 (1987).
    [Crossref]
  2. X. K.-S. Ge Ai-Ming and S. Zhan, “Characteristics of phase-only modulation using a reflective liquid crystal on si licon device,” Acta Phys. Sin. 52(10), 2481 (2003).
  3. W. Tao, Y. Ying-jie, and Z. Huadong, “Removal of magnification chromatism in optoelectronic full color holography,” Opt. Precis. Eng. 19(6), 1414–1420 (2011).
    [Crossref]
  4. W. Yue, S. Chuan, Z. Cheng, L. Kaifeng, and W. Sui, “Research on color holographic display with space division multiplexing based on liquid crystal on silicon,” Chin. J. Lasers 39(12), 1209001 (2012).
    [Crossref]
  5. D. Xiao, D. Wang, S. Liu, and Q. Wang, “Color holographic system without undesirable light based on area sampling of digital lens,” J. Soc. Inf. Disp. 25(7), 458–463 (2017).
    [Crossref]
  6. M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color image projection based on fourier holograms,” Opt. Lett. 35(8), 1227–1229 (2010).
    [Crossref]
  7. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
    [Crossref]
  8. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12(18), 4320–4325 (2004).
    [Crossref]
  9. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express 17(23), 20840–20846 (2009).
    [Crossref]
  10. G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3d holographic display,” Opt. Express 22(15), 18473–18482 (2014).
    [Crossref]
  11. C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3d projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
    [Crossref]
  12. T. Kozacki and M. Chlipala, “Color holographic display with white light led source and single phase only slm,” Opt. Express 24(3), 2189–2199 (2016).
    [Crossref]
  13. S.-F. Lin and E.-S. Kim, “Single slm full-color holographic 3-d display based on sampling and selective frequency-filtering methods,” Opt. Express 25(10), 11389–11404 (2017).
    [Crossref]
  14. Z. Han, B. Yan, Y. Qi, Y. Wang, and Y. Wang, “Color holographic display using single chip lcos,” Appl. Opt. 58(1), 69–75 (2019).
    [Crossref]
  15. C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
    [Crossref]
  16. T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 075405 (2013).
    [Crossref]
  17. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29(14), 1668–1670 (2004).
    [Crossref]
  18. D. Yu and H. Tan, Engineering Optics (China Machine Press, 2011).
  19. T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23(7), 9549–9554 (2015).
    [Crossref]
  20. L. Junchang and W. Yanmei, Diffraction calculation and digital holography I (Science press, 2014).
  21. C. K. Hsueh and A. A. Sawchuk, “Computer-generated double-phase holograms,” Appl. Opt. 17(24), 3874–3883 (1978).
    [Crossref]
  22. O. Mendoza-Yero, G. Mínguez-Vega, and J. Lancis, “Encoding complex fields by using a phase-only optical element,” Opt. Lett. 39(7), 1740–1743 (2014).
    [Crossref]
  23. Z. H.-D. Yu Ying-Jie and W. Tao, “Optimization of optoelectronic reconstruction of phase hologram by use of digital blazed grating,” Acta Phys. Sin. 58, 3154–3160 (2009).
    [Crossref]
  24. S. Mitra, Digital Signal Processing: A Computer-Based Approach (McGraw Hill higher education, 2005).
  25. M. Makowski, T. Shimobaba, and T. Ito, “Increased depth of focus in random-phase-free holographic projection,” Chin. Opt. Lett. 14(12), 120901 (2016).
    [Crossref]

2019 (1)

2017 (4)

C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
[Crossref]

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3d projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

D. Xiao, D. Wang, S. Liu, and Q. Wang, “Color holographic system without undesirable light based on area sampling of digital lens,” J. Soc. Inf. Disp. 25(7), 458–463 (2017).
[Crossref]

S.-F. Lin and E.-S. Kim, “Single slm full-color holographic 3-d display based on sampling and selective frequency-filtering methods,” Opt. Express 25(10), 11389–11404 (2017).
[Crossref]

2016 (2)

2015 (1)

2014 (2)

2013 (1)

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 075405 (2013).
[Crossref]

2012 (2)

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref]

W. Yue, S. Chuan, Z. Cheng, L. Kaifeng, and W. Sui, “Research on color holographic display with space division multiplexing based on liquid crystal on silicon,” Chin. J. Lasers 39(12), 1209001 (2012).
[Crossref]

2011 (1)

W. Tao, Y. Ying-jie, and Z. Huadong, “Removal of magnification chromatism in optoelectronic full color holography,” Opt. Precis. Eng. 19(6), 1414–1420 (2011).
[Crossref]

2010 (1)

2009 (2)

M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express 17(23), 20840–20846 (2009).
[Crossref]

Z. H.-D. Yu Ying-Jie and W. Tao, “Optimization of optoelectronic reconstruction of phase hologram by use of digital blazed grating,” Acta Phys. Sin. 58, 3154–3160 (2009).
[Crossref]

2004 (2)

2003 (1)

X. K.-S. Ge Ai-Ming and S. Zhan, “Characteristics of phase-only modulation using a reflective liquid crystal on si licon device,” Acta Phys. Sin. 52(10), 2481 (2003).

1987 (1)

1978 (1)

Chang, C.

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3d projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
[Crossref]

Cheng, Z.

W. Yue, S. Chuan, Z. Cheng, L. Kaifeng, and W. Sui, “Research on color holographic display with space division multiplexing based on liquid crystal on silicon,” Chin. J. Lasers 39(12), 1209001 (2012).
[Crossref]

Chlipala, M.

Chuan, S.

W. Yue, S. Chuan, Z. Cheng, L. Kaifeng, and W. Sui, “Research on color holographic display with space division multiplexing based on liquid crystal on silicon,” Chin. J. Lasers 39(12), 1209001 (2012).
[Crossref]

Ducin, I.

Fajst, A.

Ge Ai-Ming, X. K.-S.

X. K.-S. Ge Ai-Ming and S. Zhan, “Characteristics of phase-only modulation using a reflective liquid crystal on si licon device,” Acta Phys. Sin. 52(10), 2481 (2003).

Han, Z.

Hsueh, C. K.

Hu, B.

Huadong, Z.

W. Tao, Y. Ying-jie, and Z. Huadong, “Removal of magnification chromatism in optoelectronic full color holography,” Opt. Precis. Eng. 19(6), 1414–1420 (2011).
[Crossref]

Ito, T.

Jia, J.

Junchang, L.

L. Junchang and W. Yanmei, Diffraction calculation and digital holography I (Science press, 2014).

Kaifeng, L.

W. Yue, S. Chuan, Z. Cheng, L. Kaifeng, and W. Sui, “Research on color holographic display with space division multiplexing based on liquid crystal on silicon,” Chin. J. Lasers 39(12), 1209001 (2012).
[Crossref]

Kakarenko, K.

Kakue, T.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 075405 (2013).
[Crossref]

Kim, E.-S.

Kolodziejczyk, A.

Kozacki, T.

Lancis, J.

Li, X.

Lin, S.-F.

Liu, J.

Liu, S.

D. Xiao, D. Wang, S. Liu, and Q. Wang, “Color holographic system without undesirable light based on area sampling of digital lens,” J. Soc. Inf. Disp. 25(7), 458–463 (2017).
[Crossref]

Makowski, M.

Mendoza-Yero, O.

Mínguez-Vega, G.

Mitra, S.

S. Mitra, Digital Signal Processing: A Computer-Based Approach (McGraw Hill higher education, 2005).

Nie, S.

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3d projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
[Crossref]

Oikawa, M.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 075405 (2013).
[Crossref]

Okada, N.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 075405 (2013).
[Crossref]

Okano, K.

Qi, Y.

Z. Han, B. Yan, Y. Qi, Y. Wang, and Y. Wang, “Color holographic display using single chip lcos,” Appl. Opt. 58(1), 69–75 (2019).
[Crossref]

C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
[Crossref]

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3d projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

Sawchuk, A. A.

Shimobaba, T.

Siemion, A.

Sui, W.

W. Yue, S. Chuan, Z. Cheng, L. Kaifeng, and W. Sui, “Research on color holographic display with space division multiplexing based on liquid crystal on silicon,” Chin. J. Lasers 39(12), 1209001 (2012).
[Crossref]

Suszek, J.

Sypek, M.

Tan, H.

D. Yu and H. Tan, Engineering Optics (China Machine Press, 2011).

Tao, W.

W. Tao, Y. Ying-jie, and Z. Huadong, “Removal of magnification chromatism in optoelectronic full color holography,” Opt. Precis. Eng. 19(6), 1414–1420 (2011).
[Crossref]

Z. H.-D. Yu Ying-Jie and W. Tao, “Optimization of optoelectronic reconstruction of phase hologram by use of digital blazed grating,” Acta Phys. Sin. 58, 3154–3160 (2009).
[Crossref]

Tricoles, G.

Wang, D.

D. Xiao, D. Wang, S. Liu, and Q. Wang, “Color holographic system without undesirable light based on area sampling of digital lens,” J. Soc. Inf. Disp. 25(7), 458–463 (2017).
[Crossref]

Wang, Q.

D. Xiao, D. Wang, S. Liu, and Q. Wang, “Color holographic system without undesirable light based on area sampling of digital lens,” J. Soc. Inf. Disp. 25(7), 458–463 (2017).
[Crossref]

Wang, Y.

Wu, J.

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3d projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
[Crossref]

Xia, J.

C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
[Crossref]

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3d projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

Xiao, D.

D. Xiao, D. Wang, S. Liu, and Q. Wang, “Color holographic system without undesirable light based on area sampling of digital lens,” J. Soc. Inf. Disp. 25(7), 458–463 (2017).
[Crossref]

Xue, G.

Yamaguchi, I.

Yamaguchi, Y.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 075405 (2013).
[Crossref]

Yan, B.

Yanmei, W.

L. Junchang and W. Yanmei, Diffraction calculation and digital holography I (Science press, 2014).

Yaroslavsky, L. P.

Ying-jie, Y.

W. Tao, Y. Ying-jie, and Z. Huadong, “Removal of magnification chromatism in optoelectronic full color holography,” Opt. Precis. Eng. 19(6), 1414–1420 (2011).
[Crossref]

Yu, D.

D. Yu and H. Tan, Engineering Optics (China Machine Press, 2011).

Yu Ying-Jie, Z. H.-D.

Z. H.-D. Yu Ying-Jie and W. Tao, “Optimization of optoelectronic reconstruction of phase hologram by use of digital blazed grating,” Acta Phys. Sin. 58, 3154–3160 (2009).
[Crossref]

Yuan, C.

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3d projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

Yue, W.

W. Yue, S. Chuan, Z. Cheng, L. Kaifeng, and W. Sui, “Research on color holographic display with space division multiplexing based on liquid crystal on silicon,” Chin. J. Lasers 39(12), 1209001 (2012).
[Crossref]

Zhan, S.

X. K.-S. Ge Ai-Ming and S. Zhan, “Characteristics of phase-only modulation using a reflective liquid crystal on si licon device,” Acta Phys. Sin. 52(10), 2481 (2003).

Zhang, F.

Zhang, Z.

Acta Phys. Sin. (2)

X. K.-S. Ge Ai-Ming and S. Zhan, “Characteristics of phase-only modulation using a reflective liquid crystal on si licon device,” Acta Phys. Sin. 52(10), 2481 (2003).

Z. H.-D. Yu Ying-Jie and W. Tao, “Optimization of optoelectronic reconstruction of phase hologram by use of digital blazed grating,” Acta Phys. Sin. 58, 3154–3160 (2009).
[Crossref]

Appl. Opt. (3)

Chin. J. Lasers (1)

W. Yue, S. Chuan, Z. Cheng, L. Kaifeng, and W. Sui, “Research on color holographic display with space division multiplexing based on liquid crystal on silicon,” Chin. J. Lasers 39(12), 1209001 (2012).
[Crossref]

Chin. Opt. Lett. (1)

J. Opt. (1)

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 075405 (2013).
[Crossref]

J. Soc. Inf. Disp. (1)

D. Xiao, D. Wang, S. Liu, and Q. Wang, “Color holographic system without undesirable light based on area sampling of digital lens,” J. Soc. Inf. Disp. 25(7), 458–463 (2017).
[Crossref]

Opt. Commun. (1)

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3d projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

Opt. Express (8)

Opt. Lett. (3)

Opt. Precis. Eng. (1)

W. Tao, Y. Ying-jie, and Z. Huadong, “Removal of magnification chromatism in optoelectronic full color holography,” Opt. Precis. Eng. 19(6), 1414–1420 (2011).
[Crossref]

Other (3)

D. Yu and H. Tan, Engineering Optics (China Machine Press, 2011).

L. Junchang and W. Yanmei, Diffraction calculation and digital holography I (Science press, 2014).

S. Mitra, Digital Signal Processing: A Computer-Based Approach (McGraw Hill higher education, 2005).

Supplementary Material (2)

NameDescription
» Visualization 1       "Car" by color holographic dynamic projection
» Visualization 2       "Whale" by color holographic dynamic projection

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagrams of light propagation and its simulation. (a) the digital lens phase; (b) undersampling caused by an too big sampling plane; (c) aliasing caused by a too small sampling plane.
Fig. 2.
Fig. 2. Schematic diagram of the CDS algorithm.
Fig. 3.
Fig. 3. Images on the focal plane (the filter plane) (a) BEFORE tuned by blazed gratings; (b) AFTER tuned by blazed gratings, an enlarged view of the central focused point is provided upperleft.
Fig. 4.
Fig. 4. Schematic diagram of optical reconstruction
Fig. 5.
Fig. 5. Results of computer simulation. (a) the original image; (b) the result of numerical reconstrcution; (c) the CGH from the proposed method.
Fig. 6.
Fig. 6. Optical setup for lensless color holographic projection
Fig. 7.
Fig. 7. Optical reconstruction results of image "Pattern of opera make-up". (a) R component; (b) G component; (c) B component; (d) the color reconstructed image; (e)-(g) images with different sampling pitch (12 µm, 16µm, and 24 µm)
Fig. 8.
Fig. 8. One frame from reconstructed animations. (a) Car; (b) Whale.
Fig. 9.
Fig. 9. Schematic of the multi-plane projection
Fig. 10.
Fig. 10. Results of multi-plane projection of "RGBCMY". (a) numerical simulation on Image plane 1; (b) optical reconstruction on Image plane 1; (c) numerical simulation on Image plane 2; (d) optical reconstruction on Image plane 2.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

L S M = L O M ,   L S N = L O N
L S M = M λ z L O M ,   L S N = N λ z L O N
z i 2 = L O L H M M λ i = L O L H N N λ i = L O p λ i
z i 1 = z z i 2
U i V ( x V , y V ) = F 1 { F { U i O ( x O , y O ) }   exp [ j k i z i 1 1 ( λ i f x ) 2 ( λ i f y ) 2 ] }
U i H ( x H , y H ) = exp ( j k i z i 2 ) j λ i z i 2 exp [ j k i 2 z i 2 ( x H 2 + y H 2 ) ] F { U i V ( x V , y V ) exp [ j k i 2 z i 2 ( x V 2 + y V 2 ) ] }
U ( x H , y H ) = U R H ( x H , y H ) exp [ j G R ( x H , y H ) ] + U G H ( x H , y H )   + U B H ( x H , y H ) exp [ j G B ( x H , y H ) ]
θ 1 ( x H , y H ) = ϕ ( x H , y H ) + P ( x H , y H )
θ 2 ( x H , y H ) = ϕ ( x H , y H ) P ( x H , y H )
H ( x H , y H ) = θ 1 ( x H , y H ) M 1 ( x H , y H ) + θ 2 ( x H , y H ) M 2 ( x H , y H )
Δ x G , R = Δ y G , R = 0.5 × z ( λ G λ R ) p
Δ x G , B = Δ y G , B = 0.5 × z ( λ G λ B ) p
G R ( x H , y H ) = 2 π λ R f H ( x H Δ x G , R + y H Δ y G , R )
G B ( x H , y H ) = 2 π λ B f H ( x H Δ x G , B + y H Δ y G , B )
f H > 2 p 2 λ B ( M 2 + N 2 ) 1 2

Metrics