Abstract

A light-sheet-based plane-selective sub-micron patterning technique is proposed to fabricate 1D sub-micron patterns with specificity and selectivity. The proposed technique is termed as, interfering coherent light-sheet assisted structure synthesis (iCLASS). The technique uses specialized 2π optical illumination geometry to expose the photoresist film. Counter-propagating light sheets (satisfying phase-matching condition) produce 1D interference pattern with feature size below the diffraction limit. A conventional S1813 photoresist coated on a cleaned glass substrate is exposed to the light-sheets pattern and subsequently, the photoresist film is developed to imprint the sub-micron pattern. AFM study confirms imprinted 1D pattern with a periodicity and feature-size of approximately, λ/2. Analysis show that the light-dose interaction-time (τexp, τdev) plays crucial role in determining the periodicity of 1D sub-micron pattern.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic-chip based free space beam shaping and steering for advanced optical microscopy application

Marcel Lahrberg, Firehun Tsige Dullo, and Balpreet Singh Ahluwalia
OSA Continuum 3(2) 359-378 (2020)

Light pattern generation with hybrid refractive microoptics under Gaussian beam illumination

Maryam Yousefi, Toralf Scharf, and Markus Rossi
OSA Continuum 3(4) 781-797 (2020)

Widefield light sheet microscopy using an Airy beam combined with deep-learning super-resolution

Stella Corsetti, Philip Wijesinghe, Persephone B. Poulton, Shuzo Sakata, Khushi Vyas, C. Simon Herrington, Jonathan Nylk, Federico Gasparoli, and Kishan Dholakia
OSA Continuum 3(4) 1068-1083 (2020)

References

  • View by:
  • |
  • |
  • |

  1. P. Abgrall and N. T. Nguyen, “Nanofluidic devices and their applications,” Anal. Chem. 80(7), 2326–2341 (2008).
    [Crossref]
  2. D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.,” Small 8(18), 2787–2801 (2012).
    [Crossref]
  3. C. Duan, W. Wang, and Q. Xie, “Review article: Fabrication of nanofluidic devices,” Biomicrofluidics 7(2), 026501 (2013).
    [Crossref]
  4. J. Fischer and M. Wegener, “Three- dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
    [Crossref]
  5. T. A Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. T162, 014049 (2014).
    [Crossref]
  6. F. H. Dill, W. P. Hornberger, S. P. Hauge, and S. M. Jane, “Characterization of positive photoresist,” IEEE Trans. Electron Devices 22(7), 445–452 (1975).
    [Crossref]
  7. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
    [Crossref]
  8. C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2009).
    [Crossref]
  9. K. V. Sreekanth, J. K. Chua, and V. M. Murukeshanm, “Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference,” Appl. Opt. 49(35), 6710 (2010).
    [Crossref]
  10. L. Wu, Y. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
    [Crossref]
  11. W. Xiong, Y. Xu, Y. Xiao, X. Lv, and L. Wu, “Polarization manipulation in single refractive prism based holography lithography,” Photonics Nanostructures: Fundam. Appl. 13, 74–79 (2015).
    [Crossref]
  12. S. Behera, M. Kumar, and J. Joseph, “Submicrometer photonic structure fabrication by phase spatial-light-modulator-based interference lithography,” Opt. Lett. 41(8), 1893 (2016).
    [Crossref]
  13. V. Satzinger, V. Schmidt, G. Peharz, F. P. Wenzl, and B. Lamprecht, “Spatial light modulator based laser microfabrication of volume optics inside solar modules,” Opt. Express 26(6), A227 (2018).
    [Crossref]
  14. M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
    [Crossref]
  15. D. V. Pham, R. A. Patil, and Y. R. Ma, “Metal-Oxide Nanorod-based Supercapacitors,” iSci. Note. 3(3), 2 (2018).
    [Crossref]
  16. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 17(6), 3182 (1999).
    [Crossref]
  17. P. P. Mondal, “iLIFE - The Next Generation Imaging Cytometry: A Boon to Health-Care and Medicine,” iSci. Note. 3(3), 1 (2018).
    [Crossref]
  18. S. Mondal, “Advanced Multimodal Nanosystem: The Future Medicine,” iSci. Note. 1, 1 (2016).
    [Crossref]
  19. J-H. Seo, J. Park, D. Zhao, H. Yang, W. Zhou, B. K. Ju, and Z. Ma, “Large-Area Printed Broadband Membrane Reflectors by Laser Interference Lithography,” IEEE Photonics J. 5(1), 2200106 (2013).
    [Crossref]
  20. Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chonga, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1-2), 261–264 (2008).
    [Crossref]
  21. R. Guo and W. Li, “Perovskite Nanomaterials for Solar Cells,” iSci Note. 4(4), 2 (2019).
    [Crossref]
  22. H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators, B 134(2), 940–944 (2008).
    [Crossref]
  23. G. Das and E. D. Fabrizio, “Nanopatterned Plasmonic Based Enhanced Spectroscopy Devices : From Analytical Sensor to Biomedical Applications,” iSci. Note. 1(1), 3 (2016).
    [Crossref]
  24. K. Mohan and Partha P. Mondal, “Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system,” Rev. Sci. Instrum. 87(6), 066107 (2016).
    [Crossref]
  25. K. Mohan and Partha P. Mondal, “Spatial filter based light-sheet laser interference technique for three-dimensional nanolithography,” Appl. Phys. Lett. 106(8), 083112 (2015).
    [Crossref]
  26. K. Mohan and Partha P. Mondal, “Two-Photon Excitation-Based 2pi Light-Sheet System for Nano-Lithography,” Microsc. Res. Tech. 78(1), 1–7 (2015).
    [Crossref]
  27. S. B. Purnapatra and Partha P. Mondal, “Determination of electric field at and near the focus of a cylindrical lens for applications in fluorescence microscopy,” AIP Adv. 3(5), 052124 (2013).
    [Crossref]
  28. R. Yang and W. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sens. Actuators, B 110(2), 279–288 (2005).
    [Crossref]
  29. Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
    [Crossref]
  30. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18(11), 11754 (2010).
    [Crossref]
  31. S. Tian, X. Xia, W. Sun, W. Li, J. Li, and C. Gu, “Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography,” Nanotechnology 22(39), 395301 (2011).
    [Crossref]
  32. F. Tantussi, M. Dipalo, C. Biagini, N. Maccaferri, A. Bozzola, and F. De Angelis, “Scanning Probe Photonic Nanojet Lithography,” ACS Appl. Mater. Interfaces 9(37), 32386–32393 (2017).
    [Crossref]
  33. A. Campo and E. Arzt, “Fabrication Approaches for Generating Complex Micro- and Nanopatterns on Polymeric Surfaces,” Chem. Rev. 108(3), 911–945 (2008).
    [Crossref]
  34. Y. Kim, H. Jung, S. Kim, J. Jang, J. Y. Lee, and J. W. Hahn, “Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal,” Opt. Express 19(20), 19296 (2011).
    [Crossref]
  35. Y. K. Kuo, C. G. Chao, and C. Y. Lin, “Analysis of instability line width and white wall created by the photolithography process,” Microelectron. J. 35(11), 915–922 (2004).
    [Crossref]
  36. X. Li, T. Zhai, P. Gao, H. Cheng, R. Hou, X. Lou, and F. Xia, “Role of outer surface probes for regulating ion gating of nanochannels,” Nat. Commun. 9(1), 40 (2018).
    [Crossref]
  37. V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
    [Crossref]
  38. Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Sci. Appl. 4(6), e294 (2015).
    [Crossref]

2019 (1)

R. Guo and W. Li, “Perovskite Nanomaterials for Solar Cells,” iSci Note. 4(4), 2 (2019).
[Crossref]

2018 (4)

P. P. Mondal, “iLIFE - The Next Generation Imaging Cytometry: A Boon to Health-Care and Medicine,” iSci. Note. 3(3), 1 (2018).
[Crossref]

V. Satzinger, V. Schmidt, G. Peharz, F. P. Wenzl, and B. Lamprecht, “Spatial light modulator based laser microfabrication of volume optics inside solar modules,” Opt. Express 26(6), A227 (2018).
[Crossref]

D. V. Pham, R. A. Patil, and Y. R. Ma, “Metal-Oxide Nanorod-based Supercapacitors,” iSci. Note. 3(3), 2 (2018).
[Crossref]

X. Li, T. Zhai, P. Gao, H. Cheng, R. Hou, X. Lou, and F. Xia, “Role of outer surface probes for regulating ion gating of nanochannels,” Nat. Commun. 9(1), 40 (2018).
[Crossref]

2017 (2)

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

F. Tantussi, M. Dipalo, C. Biagini, N. Maccaferri, A. Bozzola, and F. De Angelis, “Scanning Probe Photonic Nanojet Lithography,” ACS Appl. Mater. Interfaces 9(37), 32386–32393 (2017).
[Crossref]

2016 (4)

S. Mondal, “Advanced Multimodal Nanosystem: The Future Medicine,” iSci. Note. 1, 1 (2016).
[Crossref]

G. Das and E. D. Fabrizio, “Nanopatterned Plasmonic Based Enhanced Spectroscopy Devices : From Analytical Sensor to Biomedical Applications,” iSci. Note. 1(1), 3 (2016).
[Crossref]

K. Mohan and Partha P. Mondal, “Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system,” Rev. Sci. Instrum. 87(6), 066107 (2016).
[Crossref]

S. Behera, M. Kumar, and J. Joseph, “Submicrometer photonic structure fabrication by phase spatial-light-modulator-based interference lithography,” Opt. Lett. 41(8), 1893 (2016).
[Crossref]

2015 (5)

W. Xiong, Y. Xu, Y. Xiao, X. Lv, and L. Wu, “Polarization manipulation in single refractive prism based holography lithography,” Photonics Nanostructures: Fundam. Appl. 13, 74–79 (2015).
[Crossref]

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

K. Mohan and Partha P. Mondal, “Spatial filter based light-sheet laser interference technique for three-dimensional nanolithography,” Appl. Phys. Lett. 106(8), 083112 (2015).
[Crossref]

K. Mohan and Partha P. Mondal, “Two-Photon Excitation-Based 2pi Light-Sheet System for Nano-Lithography,” Microsc. Res. Tech. 78(1), 1–7 (2015).
[Crossref]

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Sci. Appl. 4(6), e294 (2015).
[Crossref]

2014 (1)

T. A Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. T162, 014049 (2014).
[Crossref]

2013 (4)

C. Duan, W. Wang, and Q. Xie, “Review article: Fabrication of nanofluidic devices,” Biomicrofluidics 7(2), 026501 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three- dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

S. B. Purnapatra and Partha P. Mondal, “Determination of electric field at and near the focus of a cylindrical lens for applications in fluorescence microscopy,” AIP Adv. 3(5), 052124 (2013).
[Crossref]

J-H. Seo, J. Park, D. Zhao, H. Yang, W. Zhou, B. K. Ju, and Z. Ma, “Large-Area Printed Broadband Membrane Reflectors by Laser Interference Lithography,” IEEE Photonics J. 5(1), 2200106 (2013).
[Crossref]

2012 (1)

D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.,” Small 8(18), 2787–2801 (2012).
[Crossref]

2011 (2)

Y. Kim, H. Jung, S. Kim, J. Jang, J. Y. Lee, and J. W. Hahn, “Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal,” Opt. Express 19(20), 19296 (2011).
[Crossref]

S. Tian, X. Xia, W. Sun, W. Li, J. Li, and C. Gu, “Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography,” Nanotechnology 22(39), 395301 (2011).
[Crossref]

2010 (2)

2009 (1)

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2009).
[Crossref]

2008 (4)

P. Abgrall and N. T. Nguyen, “Nanofluidic devices and their applications,” Anal. Chem. 80(7), 2326–2341 (2008).
[Crossref]

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators, B 134(2), 940–944 (2008).
[Crossref]

A. Campo and E. Arzt, “Fabrication Approaches for Generating Complex Micro- and Nanopatterns on Polymeric Surfaces,” Chem. Rev. 108(3), 911–945 (2008).
[Crossref]

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chonga, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1-2), 261–264 (2008).
[Crossref]

2006 (1)

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

2005 (2)

L. Wu, Y. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[Crossref]

R. Yang and W. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sens. Actuators, B 110(2), 279–288 (2005).
[Crossref]

2004 (1)

Y. K. Kuo, C. G. Chao, and C. Y. Lin, “Analysis of instability line width and white wall created by the photolithography process,” Microelectron. J. 35(11), 915–922 (2004).
[Crossref]

2002 (1)

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[Crossref]

1999 (1)

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 17(6), 3182 (1999).
[Crossref]

1975 (1)

F. H. Dill, W. P. Hornberger, S. P. Hauge, and S. M. Jane, “Characterization of positive photoresist,” IEEE Trans. Electron Devices 22(7), 445–452 (1975).
[Crossref]

Abgrall, P.

P. Abgrall and N. T. Nguyen, “Nanofluidic devices and their applications,” Anal. Chem. 80(7), 2326–2341 (2008).
[Crossref]

Arzt, E.

A. Campo and E. Arzt, “Fabrication Approaches for Generating Complex Micro- and Nanopatterns on Polymeric Surfaces,” Chem. Rev. 108(3), 911–945 (2008).
[Crossref]

Behera, S.

Biagini, C.

F. Tantussi, M. Dipalo, C. Biagini, N. Maccaferri, A. Bozzola, and F. De Angelis, “Scanning Probe Photonic Nanojet Lithography,” ACS Appl. Mater. Interfaces 9(37), 32386–32393 (2017).
[Crossref]

Bozzola, A.

F. Tantussi, M. Dipalo, C. Biagini, N. Maccaferri, A. Bozzola, and F. De Angelis, “Scanning Probe Photonic Nanojet Lithography,” ACS Appl. Mater. Interfaces 9(37), 32386–32393 (2017).
[Crossref]

Bragheri, F.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Campo, A.

A. Campo and E. Arzt, “Fabrication Approaches for Generating Complex Micro- and Nanopatterns on Polymeric Surfaces,” Chem. Rev. 108(3), 911–945 (2008).
[Crossref]

Carter, J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 17(6), 3182 (1999).
[Crossref]

Chan, C. T.

L. Wu, Y. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[Crossref]

Chao, C. G.

Y. K. Kuo, C. G. Chao, and C. Y. Lin, “Analysis of instability line width and white wall created by the photolithography process,” Microelectron. J. 35(11), 915–922 (2004).
[Crossref]

Chen, G. X.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chonga, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1-2), 261–264 (2008).
[Crossref]

Chen, X.

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators, B 134(2), 940–944 (2008).
[Crossref]

Cheng, H.

X. Li, T. Zhai, P. Gao, H. Cheng, R. Hou, X. Lou, and F. Xia, “Role of outer surface probes for regulating ion gating of nanochannels,” Nat. Commun. 9(1), 40 (2018).
[Crossref]

Chilkoti, A.

Chonga, T. C.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chonga, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1-2), 261–264 (2008).
[Crossref]

Chua, J. K.

Chuang, Y. J.

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[Crossref]

Clark, R. L.

Das, G.

G. Das and E. D. Fabrizio, “Nanopatterned Plasmonic Based Enhanced Spectroscopy Devices : From Analytical Sensor to Biomedical Applications,” iSci. Note. 1(1), 3 (2016).
[Crossref]

De Angelis, F.

F. Tantussi, M. Dipalo, C. Biagini, N. Maccaferri, A. Bozzola, and F. De Angelis, “Scanning Probe Photonic Nanojet Lithography,” ACS Appl. Mater. Interfaces 9(37), 32386–32393 (2017).
[Crossref]

Dill, F. H.

F. H. Dill, W. P. Hornberger, S. P. Hauge, and S. M. Jane, “Characterization of positive photoresist,” IEEE Trans. Electron Devices 22(7), 445–452 (1975).
[Crossref]

Dipalo, M.

F. Tantussi, M. Dipalo, C. Biagini, N. Maccaferri, A. Bozzola, and F. De Angelis, “Scanning Probe Photonic Nanojet Lithography,” ACS Appl. Mater. Interfaces 9(37), 32386–32393 (2017).
[Crossref]

Du, C.

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators, B 134(2), 940–944 (2008).
[Crossref]

Duan, C.

C. Duan, W. Wang, and Q. Xie, “Review article: Fabrication of nanofluidic devices,” Biomicrofluidics 7(2), 026501 (2013).
[Crossref]

Fabrizio, E. D.

G. Das and E. D. Fabrizio, “Nanopatterned Plasmonic Based Enhanced Spectroscopy Devices : From Analytical Sensor to Biomedical Applications,” iSci. Note. 1(1), 3 (2016).
[Crossref]

Fang, Y.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Sci. Appl. 4(6), e294 (2015).
[Crossref]

Farhoud, M.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 17(6), 3182 (1999).
[Crossref]

Ferrera, J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 17(6), 3182 (1999).
[Crossref]

Fischer, J.

J. Fischer and M. Wegener, “Three- dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Fu, Y.

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators, B 134(2), 940–944 (2008).
[Crossref]

Gamaly, E. G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Gao, P.

X. Li, T. Zhai, P. Gao, H. Cheng, R. Hou, X. Lou, and F. Xia, “Role of outer surface probes for regulating ion gating of nanochannels,” Nat. Commun. 9(1), 40 (2018).
[Crossref]

Gu, C.

S. Tian, X. Xia, W. Sun, W. Li, J. Li, and C. Gu, “Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography,” Nanotechnology 22(39), 395301 (2011).
[Crossref]

Guo, R.

R. Guo and W. Li, “Perovskite Nanomaterials for Solar Cells,” iSci Note. 4(4), 2 (2019).
[Crossref]

Hahn, J. W.

Hauge, S. P.

F. H. Dill, W. P. Hornberger, S. P. Hauge, and S. M. Jane, “Characterization of positive photoresist,” IEEE Trans. Electron Devices 22(7), 445–452 (1975).
[Crossref]

Hill, R. T.

Hong, M. H.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chonga, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1-2), 261–264 (2008).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Hornberger, W. P.

F. H. Dill, W. P. Hornberger, S. P. Hauge, and S. M. Jane, “Characterization of positive photoresist,” IEEE Trans. Electron Devices 22(7), 445–452 (1975).
[Crossref]

Hou, R.

X. Li, T. Zhai, P. Gao, H. Cheng, R. Hou, X. Lou, and F. Xia, “Role of outer surface probes for regulating ion gating of nanochannels,” Nat. Commun. 9(1), 40 (2018).
[Crossref]

Hou, S.

D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.,” Small 8(18), 2787–2801 (2012).
[Crossref]

Hucknall, A.

Jacak, J.

T. A Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. T162, 014049 (2014).
[Crossref]

Jane, S. M.

F. H. Dill, W. P. Hornberger, S. P. Hauge, and S. M. Jane, “Characterization of positive photoresist,” IEEE Trans. Electron Devices 22(7), 445–452 (1975).
[Crossref]

Jang, J.

Jenness, N. J.

Joseph, J.

Ju, B. K.

J-H. Seo, J. Park, D. Zhao, H. Yang, W. Zhou, B. K. Ju, and Z. Ma, “Large-Area Printed Broadband Membrane Reflectors by Laser Interference Lithography,” IEEE Photonics J. 5(1), 2200106 (2013).
[Crossref]

Jung, H.

Juodkazis, S.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Kim, S.

Kim, Y.

Klar, T. A

T. A Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. T162, 014049 (2014).
[Crossref]

Kumar, M.

Kuo, Y. K.

Y. K. Kuo, C. G. Chao, and C. Y. Lin, “Analysis of instability line width and white wall created by the photolithography process,” Microelectron. J. 35(11), 915–922 (2004).
[Crossref]

Lamprecht, B.

Lee, J. Y.

Li, H.

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators, B 134(2), 940–944 (2008).
[Crossref]

Li, J.

S. Tian, X. Xia, W. Sun, W. Li, J. Li, and C. Gu, “Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography,” Nanotechnology 22(39), 395301 (2011).
[Crossref]

Li, W.

R. Guo and W. Li, “Perovskite Nanomaterials for Solar Cells,” iSci Note. 4(4), 2 (2019).
[Crossref]

S. Tian, X. Xia, W. Sun, W. Li, J. Li, and C. Gu, “Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography,” Nanotechnology 22(39), 395301 (2011).
[Crossref]

Li, X.

X. Li, T. Zhai, P. Gao, H. Cheng, R. Hou, X. Lou, and F. Xia, “Role of outer surface probes for regulating ion gating of nanochannels,” Nat. Commun. 9(1), 40 (2018).
[Crossref]

Lim, C. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Lin, C. Y.

Y. K. Kuo, C. G. Chao, and C. Y. Lin, “Analysis of instability line width and white wall created by the photolithography process,” Microelectron. J. 35(11), 915–922 (2004).
[Crossref]

Lin, W. K.

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[Crossref]

Lin, Y.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Lipson, R. H.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2009).
[Crossref]

Lochtefeld, A. J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 17(6), 3182 (1999).
[Crossref]

Lou, X.

X. Li, T. Zhai, P. Gao, H. Cheng, R. Hou, X. Lou, and F. Xia, “Role of outer surface probes for regulating ion gating of nanochannels,” Nat. Commun. 9(1), 40 (2018).
[Crossref]

Lu, C.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2009).
[Crossref]

Lukyanchuk, B. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Luo, X.

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators, B 134(2), 940–944 (2008).
[Crossref]

Lv, X.

W. Xiong, Y. Xu, Y. Xiao, X. Lv, and L. Wu, “Polarization manipulation in single refractive prism based holography lithography,” Photonics Nanostructures: Fundam. Appl. 13, 74–79 (2015).
[Crossref]

Ma, Y. R.

D. V. Pham, R. A. Patil, and Y. R. Ma, “Metal-Oxide Nanorod-based Supercapacitors,” iSci. Note. 3(3), 2 (2018).
[Crossref]

Ma, Z.

J-H. Seo, J. Park, D. Zhao, H. Yang, W. Zhou, B. K. Ju, and Z. Ma, “Large-Area Printed Broadband Membrane Reflectors by Laser Interference Lithography,” IEEE Photonics J. 5(1), 2200106 (2013).
[Crossref]

Maccaferri, N.

F. Tantussi, M. Dipalo, C. Biagini, N. Maccaferri, A. Bozzola, and F. De Angelis, “Scanning Probe Photonic Nanojet Lithography,” ACS Appl. Mater. Interfaces 9(37), 32386–32393 (2017).
[Crossref]

Mohan, K.

K. Mohan and Partha P. Mondal, “Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system,” Rev. Sci. Instrum. 87(6), 066107 (2016).
[Crossref]

K. Mohan and Partha P. Mondal, “Two-Photon Excitation-Based 2pi Light-Sheet System for Nano-Lithography,” Microsc. Res. Tech. 78(1), 1–7 (2015).
[Crossref]

K. Mohan and Partha P. Mondal, “Spatial filter based light-sheet laser interference technique for three-dimensional nanolithography,” Appl. Phys. Lett. 106(8), 083112 (2015).
[Crossref]

Mondal, P. P.

P. P. Mondal, “iLIFE - The Next Generation Imaging Cytometry: A Boon to Health-Care and Medicine,” iSci. Note. 3(3), 1 (2018).
[Crossref]

Mondal, Partha P.

K. Mohan and Partha P. Mondal, “Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system,” Rev. Sci. Instrum. 87(6), 066107 (2016).
[Crossref]

K. Mohan and Partha P. Mondal, “Spatial filter based light-sheet laser interference technique for three-dimensional nanolithography,” Appl. Phys. Lett. 106(8), 083112 (2015).
[Crossref]

K. Mohan and Partha P. Mondal, “Two-Photon Excitation-Based 2pi Light-Sheet System for Nano-Lithography,” Microsc. Res. Tech. 78(1), 1–7 (2015).
[Crossref]

S. B. Purnapatra and Partha P. Mondal, “Determination of electric field at and near the focus of a cylindrical lens for applications in fluorescence microscopy,” AIP Adv. 3(5), 052124 (2013).
[Crossref]

Mondal, S.

S. Mondal, “Advanced Multimodal Nanosystem: The Future Medicine,” iSci. Note. 1, 1 (2016).
[Crossref]

Murphy, T. E.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 17(6), 3182 (1999).
[Crossref]

Murukeshanm, V. M.

Nguyen, N. T.

P. Abgrall and N. T. Nguyen, “Nanofluidic devices and their applications,” Anal. Chem. 80(7), 2326–2341 (2008).
[Crossref]

Osellame, R.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Park, J.

J-H. Seo, J. Park, D. Zhao, H. Yang, W. Zhou, B. K. Ju, and Z. Ma, “Large-Area Printed Broadband Membrane Reflectors by Laser Interference Lithography,” IEEE Photonics J. 5(1), 2200106 (2013).
[Crossref]

Patil, R. A.

D. V. Pham, R. A. Patil, and Y. R. Ma, “Metal-Oxide Nanorod-based Supercapacitors,” iSci. Note. 3(3), 2 (2018).
[Crossref]

Peharz, G.

Pelton, M.

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

Pham, D. V.

D. V. Pham, R. A. Patil, and Y. R. Ma, “Metal-Oxide Nanorod-based Supercapacitors,” iSci. Note. 3(3), 2 (2018).
[Crossref]

Purnapatra, S. B.

S. B. Purnapatra and Partha P. Mondal, “Determination of electric field at and near the focus of a cylindrical lens for applications in fluorescence microscopy,” AIP Adv. 3(5), 052124 (2013).
[Crossref]

Raciukaitis, G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Rahman, M.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Ross, C. A.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 17(6), 3182 (1999).
[Crossref]

Satzinger, V.

Schattenburg, M. L.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 17(6), 3182 (1999).
[Crossref]

Schmidt, V.

Senthil Kumar, A.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Seo, J-H.

J-H. Seo, J. Park, D. Zhao, H. Yang, W. Zhou, B. K. Ju, and Z. Ma, “Large-Area Printed Broadband Membrane Reflectors by Laser Interference Lithography,” IEEE Photonics J. 5(1), 2200106 (2013).
[Crossref]

Shi, L. P.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chonga, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1-2), 261–264 (2008).
[Crossref]

Smith, H. I.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 17(6), 3182 (1999).
[Crossref]

Sreekanth, K. V.

Stankevic, V.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Sun, M.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Sci. Appl. 4(6), e294 (2015).
[Crossref]

Sun, W.

S. Tian, X. Xia, W. Sun, W. Li, J. Li, and C. Gu, “Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography,” Nanotechnology 22(39), 395301 (2011).
[Crossref]

Tan, H. L.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chonga, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1-2), 261–264 (2008).
[Crossref]

Tantussi, F.

F. Tantussi, M. Dipalo, C. Biagini, N. Maccaferri, A. Bozzola, and F. De Angelis, “Scanning Probe Photonic Nanojet Lithography,” ACS Appl. Mater. Interfaces 9(37), 32386–32393 (2017).
[Crossref]

Tian, S.

S. Tian, X. Xia, W. Sun, W. Li, J. Li, and C. Gu, “Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography,” Nanotechnology 22(39), 395301 (2011).
[Crossref]

Tseng, F. G.

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[Crossref]

Wang, W.

C. Duan, W. Wang, and Q. Xie, “Review article: Fabrication of nanofluidic devices,” Biomicrofluidics 7(2), 026501 (2013).
[Crossref]

R. Yang and W. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sens. Actuators, B 110(2), 279–288 (2005).
[Crossref]

Wang, X.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Wegener, M.

J. Fischer and M. Wegener, “Three- dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Wenzl, F. P.

Wollhofen, R.

T. A Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. T162, 014049 (2014).
[Crossref]

Wong, K. S.

L. Wu, Y. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[Crossref]

Wu, L.

W. Xiong, Y. Xu, Y. Xiao, X. Lv, and L. Wu, “Polarization manipulation in single refractive prism based holography lithography,” Photonics Nanostructures: Fundam. Appl. 13, 74–79 (2015).
[Crossref]

L. Wu, Y. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[Crossref]

Xia, D.

D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.,” Small 8(18), 2787–2801 (2012).
[Crossref]

Xia, F.

X. Li, T. Zhai, P. Gao, H. Cheng, R. Hou, X. Lou, and F. Xia, “Role of outer surface probes for regulating ion gating of nanochannels,” Nat. Commun. 9(1), 40 (2018).
[Crossref]

Xia, X.

S. Tian, X. Xia, W. Sun, W. Li, J. Li, and C. Gu, “Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography,” Nanotechnology 22(39), 395301 (2011).
[Crossref]

Xiao, Y.

W. Xiong, Y. Xu, Y. Xiao, X. Lv, and L. Wu, “Polarization manipulation in single refractive prism based holography lithography,” Photonics Nanostructures: Fundam. Appl. 13, 74–79 (2015).
[Crossref]

Xie, Q.

C. Duan, W. Wang, and Q. Xie, “Review article: Fabrication of nanofluidic devices,” Biomicrofluidics 7(2), 026501 (2013).
[Crossref]

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chonga, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1-2), 261–264 (2008).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Xiong, W.

W. Xiong, Y. Xu, Y. Xiao, X. Lv, and L. Wu, “Polarization manipulation in single refractive prism based holography lithography,” Photonics Nanostructures: Fundam. Appl. 13, 74–79 (2015).
[Crossref]

Xu, Y.

W. Xiong, Y. Xu, Y. Xiao, X. Lv, and L. Wu, “Polarization manipulation in single refractive prism based holography lithography,” Photonics Nanostructures: Fundam. Appl. 13, 74–79 (2015).
[Crossref]

Yan, J.

D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.,” Small 8(18), 2787–2801 (2012).
[Crossref]

Yang, H.

J-H. Seo, J. Park, D. Zhao, H. Yang, W. Zhou, B. K. Ju, and Z. Ma, “Large-Area Printed Broadband Membrane Reflectors by Laser Interference Lithography,” IEEE Photonics J. 5(1), 2200106 (2013).
[Crossref]

Yang, R.

R. Yang and W. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sens. Actuators, B 110(2), 279–288 (2005).
[Crossref]

Zhai, T.

X. Li, T. Zhai, P. Gao, H. Cheng, R. Hou, X. Lou, and F. Xia, “Role of outer surface probes for regulating ion gating of nanochannels,” Nat. Commun. 9(1), 40 (2018).
[Crossref]

Zhao, D.

J-H. Seo, J. Park, D. Zhao, H. Yang, W. Zhou, B. K. Ju, and Z. Ma, “Large-Area Printed Broadband Membrane Reflectors by Laser Interference Lithography,” IEEE Photonics J. 5(1), 2200106 (2013).
[Crossref]

Zhong, Y.

L. Wu, Y. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[Crossref]

Zhou, W.

J-H. Seo, J. Park, D. Zhao, H. Yang, W. Zhou, B. K. Ju, and Z. Ma, “Large-Area Printed Broadband Membrane Reflectors by Laser Interference Lithography,” IEEE Photonics J. 5(1), 2200106 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

F. Tantussi, M. Dipalo, C. Biagini, N. Maccaferri, A. Bozzola, and F. De Angelis, “Scanning Probe Photonic Nanojet Lithography,” ACS Appl. Mater. Interfaces 9(37), 32386–32393 (2017).
[Crossref]

AIP Adv. (1)

S. B. Purnapatra and Partha P. Mondal, “Determination of electric field at and near the focus of a cylindrical lens for applications in fluorescence microscopy,” AIP Adv. 3(5), 052124 (2013).
[Crossref]

Anal. Chem. (1)

P. Abgrall and N. T. Nguyen, “Nanofluidic devices and their applications,” Anal. Chem. 80(7), 2326–2341 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

L. Wu, Y. Zhong, C. T. Chan, and K. S. Wong, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

K. Mohan and Partha P. Mondal, “Spatial filter based light-sheet laser interference technique for three-dimensional nanolithography,” Appl. Phys. Lett. 106(8), 083112 (2015).
[Crossref]

Biomicrofluidics (1)

C. Duan, W. Wang, and Q. Xie, “Review article: Fabrication of nanofluidic devices,” Biomicrofluidics 7(2), 026501 (2013).
[Crossref]

Chem. Rev. (1)

A. Campo and E. Arzt, “Fabrication Approaches for Generating Complex Micro- and Nanopatterns on Polymeric Surfaces,” Chem. Rev. 108(3), 911–945 (2008).
[Crossref]

IEEE Photonics J. (1)

J-H. Seo, J. Park, D. Zhao, H. Yang, W. Zhou, B. K. Ju, and Z. Ma, “Large-Area Printed Broadband Membrane Reflectors by Laser Interference Lithography,” IEEE Photonics J. 5(1), 2200106 (2013).
[Crossref]

IEEE Trans. Electron Devices (1)

F. H. Dill, W. P. Hornberger, S. P. Hauge, and S. M. Jane, “Characterization of positive photoresist,” IEEE Trans. Electron Devices 22(7), 445–452 (1975).
[Crossref]

iSci Note. (1)

R. Guo and W. Li, “Perovskite Nanomaterials for Solar Cells,” iSci Note. 4(4), 2 (2019).
[Crossref]

iSci. Note. (4)

G. Das and E. D. Fabrizio, “Nanopatterned Plasmonic Based Enhanced Spectroscopy Devices : From Analytical Sensor to Biomedical Applications,” iSci. Note. 1(1), 3 (2016).
[Crossref]

D. V. Pham, R. A. Patil, and Y. R. Ma, “Metal-Oxide Nanorod-based Supercapacitors,” iSci. Note. 3(3), 2 (2018).
[Crossref]

P. P. Mondal, “iLIFE - The Next Generation Imaging Cytometry: A Boon to Health-Care and Medicine,” iSci. Note. 3(3), 1 (2018).
[Crossref]

S. Mondal, “Advanced Multimodal Nanosystem: The Future Medicine,” iSci. Note. 1, 1 (2016).
[Crossref]

J. Alloys Compd. (1)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chonga, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1-2), 261–264 (2008).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. (1)

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 17(6), 3182 (1999).
[Crossref]

Laser Photonics Rev. (2)

J. Fischer and M. Wegener, “Three- dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2009).
[Crossref]

Light: Sci. Appl. (1)

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Sci. Appl. 4(6), e294 (2015).
[Crossref]

Microelectron. J. (1)

Y. K. Kuo, C. G. Chao, and C. Y. Lin, “Analysis of instability line width and white wall created by the photolithography process,” Microelectron. J. 35(11), 915–922 (2004).
[Crossref]

Microsc. Res. Tech. (1)

K. Mohan and Partha P. Mondal, “Two-Photon Excitation-Based 2pi Light-Sheet System for Nano-Lithography,” Microsc. Res. Tech. 78(1), 1–7 (2015).
[Crossref]

Microsyst. Technol. (1)

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[Crossref]

Nanotechnology (1)

S. Tian, X. Xia, W. Sun, W. Li, J. Li, and C. Gu, “Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography,” Nanotechnology 22(39), 395301 (2011).
[Crossref]

Nat. Commun. (1)

X. Li, T. Zhai, P. Gao, H. Cheng, R. Hou, X. Lou, and F. Xia, “Role of outer surface probes for regulating ion gating of nanochannels,” Nat. Commun. 9(1), 40 (2018).
[Crossref]

Nat. Photonics (1)

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Photonics Nanostructures: Fundam. Appl. (1)

W. Xiong, Y. Xu, Y. Xiao, X. Lv, and L. Wu, “Polarization manipulation in single refractive prism based holography lithography,” Photonics Nanostructures: Fundam. Appl. 13, 74–79 (2015).
[Crossref]

Phys. Scr. (1)

T. A Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scr. T162, 014049 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

K. Mohan and Partha P. Mondal, “Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system,” Rev. Sci. Instrum. 87(6), 066107 (2016).
[Crossref]

Sci. Rep. (1)

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7(1), 39989 (2017).
[Crossref]

Sens. Actuators, B (2)

R. Yang and W. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sens. Actuators, B 110(2), 279–288 (2005).
[Crossref]

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators, B 134(2), 940–944 (2008).
[Crossref]

Small (1)

D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in dna analysis.,” Small 8(18), 2787–2801 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic diagram of the proposed light-sheet based iCLASS nanopatterning system. The technique involves splitting the light using $50:50$ beam-splitter BS followed by phase-change using translational retro-reflector RR-tS. The beams along optical arms A1 and A2 produce counter-propagating light-sheets after passing through a pair of cylindrical lenses, C1 and C2. These light-sheets interfere to produce the resultant pattern at the common geometrical focus.
Fig. 2.
Fig. 2. Step-by-step protocol for exposure and development of S1813 photoresist film. The UV-Vis absorption spectra of Michrochem S1813 (for a photoresist film thickness of about $300 ~\mu m$) is also shown.
Fig. 3.
Fig. 3. Effect of light-exposure time on photoresist film as captured by optical microscope (Lateral XY-view). An exposure of $\tau _{exp}=15~s$ combined with a development time of $\tau _{dev}=60~s$ is found to be optimal for nano-fabrication.
Fig. 4.
Fig. 4. Visualization of the developed 1D pattern using atomic force microscope (AFM) at an exposure time($\tau _{exp}$) of 15 s and varying development time ($\tau _{dev}$) of 30 s, 45 s and 60 s . The corresponding intensity line plots are taken across the pattern that shows variable channel-width thereby signifying the importance of interaction time ($\tau _{exp}, ~\tau _{dev}$) in nanofabrication. Bright dot-like pattern correspond to dust particles.

Tables (1)

Tables Icon

Table 1. Aspect ratio and periodicity calculations.

Metrics