Abstract

Oculomotor disorders are known to have profound impacts on a patients’ quality of life. However, current clinical practice lacks the capability to provide simultaneous assessment of three tightly coupled oculomotor control components, i.e. eye movement, lens accommodation, and pupil response. In this study, a holographic waveguide (HW) based benchtop optometer was constructed and evaluated with a model eye. Experimental result and quantitative analysis indicate that a HW can convey high quality retinal images to a camera at an illumination level safe for human subjects and support high accuracy measurements of ocular refractive error over a wide range. Further development of a HW-based system promises a wearable, see-through device for comprehensive assessment of oculomotor control components while the subject is engaged in normal daily activities and thus enable advanced research and clinical management of oculomotor disorders.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-Speed Infrared Optometer

F. W. Campbell and J. G. Robson
J. Opt. Soc. Am. 49(3) 268-272 (1959)

Binocular infrared optometer for measuring accommodation in both eyes simultaneously in natural-viewing conditions

Fumio Okuyama, Takashi Tokoro, and Masanao Fujieda
Appl. Opt. 32(22) 4147-4154 (1993)

Fast and robust fovea detection framework for OCT images based on foveal avascular zone segmentation

Mingchao Li, Yuexuan Wang, Zexuan Ji, Wen Fan, Songtao Yuan, and Qiang Chen
OSA Continuum 3(3) 528-541 (2020)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Barral and A. Croibier, “Chapter 12 - Oculomotor nerve,” in Manual Therapy for the Cranial Nerves, A. C. Jean-Pierre Barral, ed. (Churchill Livingstone, 2009).
  2. A. H. Ropper, M. A. Samuels, and J. P. Klein, “Chapter 14. Disorders of Ocular Movement and Pupillary Function,” in Adams and Victor's Principles of Neurology, 10e (The McGraw-Hill Companies, 2014).
  3. S. Mathot, “Pupillometry: Psychology, Physiology, and Function,” J. Cogn. 1(1), 16 (2018).
    [Crossref]
  4. A. R. Buzzelli, “Stereopsis, accommodative and vergence facility: do they relate to dyslexia?” Optom. Vis. Sci. 68(11), 842–846 (1991).
    [Crossref]
  5. M. Scheiman, M. Gallaway, R. Coulter, F. Reinstein, E. Ciner, C. Herzberg, and M. Parisi, “Prevalence of vision and ocular disease conditions in a clinical pediatric population,” J. Am. Optom. Assoc. 67(4), 193–202 (1996).
  6. M. Scheiman and B. T. E. B. Wick, Clinical Management of Binocular Vision: Heterophoric, Accommodative, and Eye Movement Disorders (Wolters Kluwer, 2013).
  7. J. F. Stein, P. M. Riddell, and S. Fowler, “Disordered vergence control in dyslexic children,” Br. J. Ophthalmol. 72(3), 162–166 (1988).
    [Crossref]
  8. D. B. Elliott and J. Flanagan, “3 - Assessment of visual function,” in Clinical Procedures in Primary Eye Care (Third Edition), D. B. Elliott, ed. (Butterworth-Heinemann, 2007), pp. 29–81.
  9. Y. Wang, J. Bao, L. Ou, F. Thorn, and F. Lu, “Reading behavior of emmetropic schoolchildren in China,” Vision Res. 86, 43–51 (2013).
    [Crossref]
  10. J. Veszeli and A. J. Shepherd, “A comparison of the effects of the colour and size of coloured overlays on young children’s reading,” Vision Res. 156, 73–83 (2019).
    [Crossref]
  11. G. K. Von Noorden, D. J. Brown, and M. Parks, “Associated convergence and accommodative insufficiency,” Doc. Ophthalmol. 34(1), 393–403 (1973).
    [Crossref]
  12. M. Scheiman, H. Talasan, and T. L. Alvarez, “Objective assessment of disparity vergence after treatment of symptomatic convergence insufficiency in children,” Optom. Vis. Sci. 96(1), 3–16 (2019).
    [Crossref]
  13. R. Williams, S. Bakshi, E. J. Ostrin, and L. A. Ostrin, “Continuous Objective Assessment of Near Work,” Sci. Rep. 9(1), 6901 (2019).
    [Crossref]
  14. J. Gonzalez-Sanchez, M. Baydogan, M. E. Chavez-Echeagaray, R. K. Atkinson, and W. Burleson, “Chapter 11 - Affect Measurement: A Roadmap Through Approaches, Technologies, and Data Analysis,” in Emotions and Affect in Human Factors and Human-Computer Interaction, M. Jeon, ed. (Academic Press, 2017), pp. 255–288.
  15. T. Takeda, Y. Fukui, and T. Lida, “Three-dimensional optometer,” Appl. Opt. 27(12), 2595–2602 (1988).
    [Crossref]
  16. N. J. Durr, S. R. Dave, D. Lim, S. Joseph, T. D. Ravilla, and E. Lage, “Quality of eyeglass prescriptions from a low-cost wavefront autorefractor evaluated in rural India: results of a 708-participant field study,” BMJ Open Ophth. 4(1), e000225 (2019).
    [Crossref]
  17. M. Kaschke, K. H. Donnerhacke, and M. S. Rill, “Optical Visualization, Imaging, and Structural Analysis,” in Optical Devices in Ophthalmology and Optometry, pp. 147–276.
  18. D. Christaras, A. Pennos, H. Ginis, and P. Artal, “Effect of intraocular scattering in macular pigment optical density measurements,” J. Biomed. Opt. 23(05), 1–7 (2018).
    [Crossref]
  19. D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Intraocular scattering compensation in retinal imaging,” Biomed. Opt. Express 7(10), 3996–4006 (2016).
    [Crossref]
  20. N. Zhang, J. Liu, J. Han, X. Li, F. Yang, X. Wang, B. Hu, and Y. Wang, “Improved holographic waveguide display system,” Appl. Opt. 54(12), 3645–3649 (2015).
    [Crossref]
  21. D. Cheng, Y. Wang, C. Xu, W. Song, and G. Jin, “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics,” Opt. Express 22(17), 20705–20719 (2014).
    [Crossref]
  22. T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
    [Crossref]
  23. H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
    [Crossref]
  24. C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracker,” Proc. SPIE Int. Soc. Opt. Eng. 10474, 104741T (2018).
    [Crossref]
  25. C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracking device,” J. Mod. Opt. 66(12), 1311–1317 (2019).
    [Crossref]
  26. J. V. Lovasik, “A simple continuously recording infrared optometer,” Optom. Vis. Sci. 60(1), 80–87 (1983).
    [Crossref]
  27. L. Ventura, S. J. D. F. E. Sousa, and J. C. de Castro, “Detection system for ocular refractive error measurement,” Phys. Med. Biol. 43(5), 1303–1316 (1998).
    [Crossref]
  28. S. A. Burns, “The spatially resolved refractometer,” J. Refract. Surg. 16(5), S566–S569 (2000).
    [Crossref]
  29. L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, W. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” presented at the International Symposium on Photoelectronic Detection and Imaging 2013: Optical Storage and Display Technology 2013.
  30. M. Yanoff, J. S. Duker, and J. J. Augsburger, Ophthalmology (Mosby Elsevier, 2009).
  31. A. Keirl and C. Christie, Clinical Optics and Refraction: A Guide for Optometrists, Contact Lens Opticians and Dispensing Opticians (Elsevier Health Sciences, 2007).
  32. H. C. V. Assen, M. Egmont-Petersen, and J. H. C. Reiber, “Accurate object localization in gray level images using the center of gravity measure: accuracy versus precision,” IEEE Trans. on Image Process. 11(12), 1379–1384 (2002).
    [Crossref]
  33. Y. Mishchenko, “A fast algorithm for computation of discrete Euclidean distance transform in three or more dimensions on vector processing architectures,” Signal Image Video Process. 9(1), 19–27 (2015).
    [Crossref]
  34. D. M. Robertson, J. W. McLaren, D. R. Salomao, and T. P. Link, “Retinopathy from a green laser pointer: a clinicopathologic study,” Arch. Ophthalmol. 123(5), 629–633 (2005).
    [Crossref]
  35. “American National Standard for Safe Use of Lasers,” in ANSI A136.1-2000 (Laser Institute of America, 2000).
  36. D. M. Win-Hall, L. A. Ostrin, S. Kasthurirangan, and A. Glasser, “Objective accommodation measurement with the Grand Seiko and Hartinger coincidence refractometer,” Optom. Vis. Sci. 84(9), 879–887 (2007).
    [Crossref]
  37. S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
    [Crossref]
  38. A. Agarwal, D. E. Bloom, V. P. deLuise, A. Lubet, K. Murali, and S. M. Sastry, “Comparing low-cost handheld autorefractors: A practical approach to measuring refraction in low-resource settings,” PLoS One 14(10), e0219501 (2019).
    [Crossref]

2019 (6)

J. Veszeli and A. J. Shepherd, “A comparison of the effects of the colour and size of coloured overlays on young children’s reading,” Vision Res. 156, 73–83 (2019).
[Crossref]

M. Scheiman, H. Talasan, and T. L. Alvarez, “Objective assessment of disparity vergence after treatment of symptomatic convergence insufficiency in children,” Optom. Vis. Sci. 96(1), 3–16 (2019).
[Crossref]

R. Williams, S. Bakshi, E. J. Ostrin, and L. A. Ostrin, “Continuous Objective Assessment of Near Work,” Sci. Rep. 9(1), 6901 (2019).
[Crossref]

N. J. Durr, S. R. Dave, D. Lim, S. Joseph, T. D. Ravilla, and E. Lage, “Quality of eyeglass prescriptions from a low-cost wavefront autorefractor evaluated in rural India: results of a 708-participant field study,” BMJ Open Ophth. 4(1), e000225 (2019).
[Crossref]

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracking device,” J. Mod. Opt. 66(12), 1311–1317 (2019).
[Crossref]

A. Agarwal, D. E. Bloom, V. P. deLuise, A. Lubet, K. Murali, and S. M. Sastry, “Comparing low-cost handheld autorefractors: A practical approach to measuring refraction in low-resource settings,” PLoS One 14(10), e0219501 (2019).
[Crossref]

2018 (5)

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
[Crossref]

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracker,” Proc. SPIE Int. Soc. Opt. Eng. 10474, 104741T (2018).
[Crossref]

D. Christaras, A. Pennos, H. Ginis, and P. Artal, “Effect of intraocular scattering in macular pigment optical density measurements,” J. Biomed. Opt. 23(05), 1–7 (2018).
[Crossref]

S. Mathot, “Pupillometry: Psychology, Physiology, and Function,” J. Cogn. 1(1), 16 (2018).
[Crossref]

2017 (1)

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

2016 (1)

2015 (2)

N. Zhang, J. Liu, J. Han, X. Li, F. Yang, X. Wang, B. Hu, and Y. Wang, “Improved holographic waveguide display system,” Appl. Opt. 54(12), 3645–3649 (2015).
[Crossref]

Y. Mishchenko, “A fast algorithm for computation of discrete Euclidean distance transform in three or more dimensions on vector processing architectures,” Signal Image Video Process. 9(1), 19–27 (2015).
[Crossref]

2014 (1)

2013 (1)

Y. Wang, J. Bao, L. Ou, F. Thorn, and F. Lu, “Reading behavior of emmetropic schoolchildren in China,” Vision Res. 86, 43–51 (2013).
[Crossref]

2007 (1)

D. M. Win-Hall, L. A. Ostrin, S. Kasthurirangan, and A. Glasser, “Objective accommodation measurement with the Grand Seiko and Hartinger coincidence refractometer,” Optom. Vis. Sci. 84(9), 879–887 (2007).
[Crossref]

2005 (1)

D. M. Robertson, J. W. McLaren, D. R. Salomao, and T. P. Link, “Retinopathy from a green laser pointer: a clinicopathologic study,” Arch. Ophthalmol. 123(5), 629–633 (2005).
[Crossref]

2002 (1)

H. C. V. Assen, M. Egmont-Petersen, and J. H. C. Reiber, “Accurate object localization in gray level images using the center of gravity measure: accuracy versus precision,” IEEE Trans. on Image Process. 11(12), 1379–1384 (2002).
[Crossref]

2000 (1)

S. A. Burns, “The spatially resolved refractometer,” J. Refract. Surg. 16(5), S566–S569 (2000).
[Crossref]

1998 (1)

L. Ventura, S. J. D. F. E. Sousa, and J. C. de Castro, “Detection system for ocular refractive error measurement,” Phys. Med. Biol. 43(5), 1303–1316 (1998).
[Crossref]

1996 (1)

M. Scheiman, M. Gallaway, R. Coulter, F. Reinstein, E. Ciner, C. Herzberg, and M. Parisi, “Prevalence of vision and ocular disease conditions in a clinical pediatric population,” J. Am. Optom. Assoc. 67(4), 193–202 (1996).

1991 (1)

A. R. Buzzelli, “Stereopsis, accommodative and vergence facility: do they relate to dyslexia?” Optom. Vis. Sci. 68(11), 842–846 (1991).
[Crossref]

1988 (2)

J. F. Stein, P. M. Riddell, and S. Fowler, “Disordered vergence control in dyslexic children,” Br. J. Ophthalmol. 72(3), 162–166 (1988).
[Crossref]

T. Takeda, Y. Fukui, and T. Lida, “Three-dimensional optometer,” Appl. Opt. 27(12), 2595–2602 (1988).
[Crossref]

1983 (1)

J. V. Lovasik, “A simple continuously recording infrared optometer,” Optom. Vis. Sci. 60(1), 80–87 (1983).
[Crossref]

1973 (1)

G. K. Von Noorden, D. J. Brown, and M. Parks, “Associated convergence and accommodative insufficiency,” Doc. Ophthalmol. 34(1), 393–403 (1973).
[Crossref]

Agarwal, A.

A. Agarwal, D. E. Bloom, V. P. deLuise, A. Lubet, K. Murali, and S. M. Sastry, “Comparing low-cost handheld autorefractors: A practical approach to measuring refraction in low-resource settings,” PLoS One 14(10), e0219501 (2019).
[Crossref]

Akutsu, K.

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

Alvarez, T. L.

M. Scheiman, H. Talasan, and T. L. Alvarez, “Objective assessment of disparity vergence after treatment of symptomatic convergence insufficiency in children,” Optom. Vis. Sci. 96(1), 3–16 (2019).
[Crossref]

Anzai, T.

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

Artal, P.

D. Christaras, A. Pennos, H. Ginis, and P. Artal, “Effect of intraocular scattering in macular pigment optical density measurements,” J. Biomed. Opt. 23(05), 1–7 (2018).
[Crossref]

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Intraocular scattering compensation in retinal imaging,” Biomed. Opt. Express 7(10), 3996–4006 (2016).
[Crossref]

Assen, H. C. V.

H. C. V. Assen, M. Egmont-Petersen, and J. H. C. Reiber, “Accurate object localization in gray level images using the center of gravity measure: accuracy versus precision,” IEEE Trans. on Image Process. 11(12), 1379–1384 (2002).
[Crossref]

Atkinson, R. K.

J. Gonzalez-Sanchez, M. Baydogan, M. E. Chavez-Echeagaray, R. K. Atkinson, and W. Burleson, “Chapter 11 - Affect Measurement: A Roadmap Through Approaches, Technologies, and Data Analysis,” in Emotions and Affect in Human Factors and Human-Computer Interaction, M. Jeon, ed. (Academic Press, 2017), pp. 255–288.

Augsburger, J. J.

M. Yanoff, J. S. Duker, and J. J. Augsburger, Ophthalmology (Mosby Elsevier, 2009).

Bakshi, S.

R. Williams, S. Bakshi, E. J. Ostrin, and L. A. Ostrin, “Continuous Objective Assessment of Near Work,” Sci. Rep. 9(1), 6901 (2019).
[Crossref]

Bao, J.

Y. Wang, J. Bao, L. Ou, F. Thorn, and F. Lu, “Reading behavior of emmetropic schoolchildren in China,” Vision Res. 86, 43–51 (2013).
[Crossref]

Barral, J. P.

J. P. Barral and A. Croibier, “Chapter 12 - Oculomotor nerve,” in Manual Therapy for the Cranial Nerves, A. C. Jean-Pierre Barral, ed. (Churchill Livingstone, 2009).

Baydogan, M.

J. Gonzalez-Sanchez, M. Baydogan, M. E. Chavez-Echeagaray, R. K. Atkinson, and W. Burleson, “Chapter 11 - Affect Measurement: A Roadmap Through Approaches, Technologies, and Data Analysis,” in Emotions and Affect in Human Factors and Human-Computer Interaction, M. Jeon, ed. (Academic Press, 2017), pp. 255–288.

Bloom, D. E.

A. Agarwal, D. E. Bloom, V. P. deLuise, A. Lubet, K. Murali, and S. M. Sastry, “Comparing low-cost handheld autorefractors: A practical approach to measuring refraction in low-resource settings,” PLoS One 14(10), e0219501 (2019).
[Crossref]

Brown, D. J.

G. K. Von Noorden, D. J. Brown, and M. Parks, “Associated convergence and accommodative insufficiency,” Doc. Ophthalmol. 34(1), 393–403 (1973).
[Crossref]

Burleson, W.

J. Gonzalez-Sanchez, M. Baydogan, M. E. Chavez-Echeagaray, R. K. Atkinson, and W. Burleson, “Chapter 11 - Affect Measurement: A Roadmap Through Approaches, Technologies, and Data Analysis,” in Emotions and Affect in Human Factors and Human-Computer Interaction, M. Jeon, ed. (Academic Press, 2017), pp. 255–288.

Burns, S. A.

S. A. Burns, “The spatially resolved refractometer,” J. Refract. Surg. 16(5), S566–S569 (2000).
[Crossref]

Buzzelli, A. R.

A. R. Buzzelli, “Stereopsis, accommodative and vergence facility: do they relate to dyslexia?” Optom. Vis. Sci. 68(11), 842–846 (1991).
[Crossref]

Chavez-Echeagaray, M. E.

J. Gonzalez-Sanchez, M. Baydogan, M. E. Chavez-Echeagaray, R. K. Atkinson, and W. Burleson, “Chapter 11 - Affect Measurement: A Roadmap Through Approaches, Technologies, and Data Analysis,” in Emotions and Affect in Human Factors and Human-Computer Interaction, M. Jeon, ed. (Academic Press, 2017), pp. 255–288.

Cheng, D.

Christaras, D.

D. Christaras, A. Pennos, H. Ginis, and P. Artal, “Effect of intraocular scattering in macular pigment optical density measurements,” J. Biomed. Opt. 23(05), 1–7 (2018).
[Crossref]

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Intraocular scattering compensation in retinal imaging,” Biomed. Opt. Express 7(10), 3996–4006 (2016).
[Crossref]

Christie, C.

A. Keirl and C. Christie, Clinical Optics and Refraction: A Guide for Optometrists, Contact Lens Opticians and Dispensing Opticians (Elsevier Health Sciences, 2007).

Ciner, E.

M. Scheiman, M. Gallaway, R. Coulter, F. Reinstein, E. Ciner, C. Herzberg, and M. Parisi, “Prevalence of vision and ocular disease conditions in a clinical pediatric population,” J. Am. Optom. Assoc. 67(4), 193–202 (1996).

Coulter, R.

M. Scheiman, M. Gallaway, R. Coulter, F. Reinstein, E. Ciner, C. Herzberg, and M. Parisi, “Prevalence of vision and ocular disease conditions in a clinical pediatric population,” J. Am. Optom. Assoc. 67(4), 193–202 (1996).

Croibier, A.

J. P. Barral and A. Croibier, “Chapter 12 - Oculomotor nerve,” in Manual Therapy for the Cranial Nerves, A. C. Jean-Pierre Barral, ed. (Churchill Livingstone, 2009).

Dave, S. R.

N. J. Durr, S. R. Dave, D. Lim, S. Joseph, T. D. Ravilla, and E. Lage, “Quality of eyeglass prescriptions from a low-cost wavefront autorefractor evaluated in rural India: results of a 708-participant field study,” BMJ Open Ophth. 4(1), e000225 (2019).
[Crossref]

de Castro, J. C.

L. Ventura, S. J. D. F. E. Sousa, and J. C. de Castro, “Detection system for ocular refractive error measurement,” Phys. Med. Biol. 43(5), 1303–1316 (1998).
[Crossref]

deLuise, V. P.

A. Agarwal, D. E. Bloom, V. P. deLuise, A. Lubet, K. Murali, and S. M. Sastry, “Comparing low-cost handheld autorefractors: A practical approach to measuring refraction in low-resource settings,” PLoS One 14(10), e0219501 (2019).
[Crossref]

Deng, J.

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

Donnerhacke, K. H.

M. Kaschke, K. H. Donnerhacke, and M. S. Rill, “Optical Visualization, Imaging, and Structural Analysis,” in Optical Devices in Ophthalmology and Optometry, pp. 147–276.

Duker, J. S.

M. Yanoff, J. S. Duker, and J. J. Augsburger, Ophthalmology (Mosby Elsevier, 2009).

Durr, N. J.

N. J. Durr, S. R. Dave, D. Lim, S. Joseph, T. D. Ravilla, and E. Lage, “Quality of eyeglass prescriptions from a low-cost wavefront autorefractor evaluated in rural India: results of a 708-participant field study,” BMJ Open Ophth. 4(1), e000225 (2019).
[Crossref]

Egmont-Petersen, M.

H. C. V. Assen, M. Egmont-Petersen, and J. H. C. Reiber, “Accurate object localization in gray level images using the center of gravity measure: accuracy versus precision,” IEEE Trans. on Image Process. 11(12), 1379–1384 (2002).
[Crossref]

Elliott, D. B.

D. B. Elliott and J. Flanagan, “3 - Assessment of visual function,” in Clinical Procedures in Primary Eye Care (Third Edition), D. B. Elliott, ed. (Butterworth-Heinemann, 2007), pp. 29–81.

Flanagan, J.

D. B. Elliott and J. Flanagan, “3 - Assessment of visual function,” in Clinical Procedures in Primary Eye Care (Third Edition), D. B. Elliott, ed. (Butterworth-Heinemann, 2007), pp. 29–81.

Fowler, S.

J. F. Stein, P. M. Riddell, and S. Fowler, “Disordered vergence control in dyslexic children,” Br. J. Ophthalmol. 72(3), 162–166 (1988).
[Crossref]

Fukui, Y.

Gallaway, M.

M. Scheiman, M. Gallaway, R. Coulter, F. Reinstein, E. Ciner, C. Herzberg, and M. Parisi, “Prevalence of vision and ocular disease conditions in a clinical pediatric population,” J. Am. Optom. Assoc. 67(4), 193–202 (1996).

Ginis, H.

D. Christaras, A. Pennos, H. Ginis, and P. Artal, “Effect of intraocular scattering in macular pigment optical density measurements,” J. Biomed. Opt. 23(05), 1–7 (2018).
[Crossref]

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Intraocular scattering compensation in retinal imaging,” Biomed. Opt. Express 7(10), 3996–4006 (2016).
[Crossref]

Glasser, A.

D. M. Win-Hall, L. A. Ostrin, S. Kasthurirangan, and A. Glasser, “Objective accommodation measurement with the Grand Seiko and Hartinger coincidence refractometer,” Optom. Vis. Sci. 84(9), 879–887 (2007).
[Crossref]

Gonzalez-Sanchez, J.

J. Gonzalez-Sanchez, M. Baydogan, M. E. Chavez-Echeagaray, R. K. Atkinson, and W. Burleson, “Chapter 11 - Affect Measurement: A Roadmap Through Approaches, Technologies, and Data Analysis,” in Emotions and Affect in Human Factors and Human-Computer Interaction, M. Jeon, ed. (Academic Press, 2017), pp. 255–288.

Han, J.

He, X.

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

Herzberg, C.

M. Scheiman, M. Gallaway, R. Coulter, F. Reinstein, E. Ciner, C. Herzberg, and M. Parisi, “Prevalence of vision and ocular disease conditions in a clinical pediatric population,” J. Am. Optom. Assoc. 67(4), 193–202 (1996).

Hu, B.

Hu, Y.

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, W. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” presented at the International Symposium on Photoelectronic Detection and Imaging 2013: Optical Storage and Display Technology 2013.

Hua, H.

Huang, H.

Jin, G.

Joseph, S.

N. J. Durr, S. R. Dave, D. Lim, S. Joseph, T. D. Ravilla, and E. Lage, “Quality of eyeglass prescriptions from a low-cost wavefront autorefractor evaluated in rural India: results of a 708-participant field study,” BMJ Open Ophth. 4(1), e000225 (2019).
[Crossref]

Kaneko, T.

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

Kaschke, M.

M. Kaschke, K. H. Donnerhacke, and M. S. Rill, “Optical Visualization, Imaging, and Structural Analysis,” in Optical Devices in Ophthalmology and Optometry, pp. 147–276.

Kasthurirangan, S.

D. M. Win-Hall, L. A. Ostrin, S. Kasthurirangan, and A. Glasser, “Objective accommodation measurement with the Grand Seiko and Hartinger coincidence refractometer,” Optom. Vis. Sci. 84(9), 879–887 (2007).
[Crossref]

Keirl, A.

A. Keirl and C. Christie, Clinical Optics and Refraction: A Guide for Optometrists, Contact Lens Opticians and Dispensing Opticians (Elsevier Health Sciences, 2007).

Klein, J. P.

A. H. Ropper, M. A. Samuels, and J. P. Klein, “Chapter 14. Disorders of Ocular Movement and Pupillary Function,” in Adams and Victor's Principles of Neurology, 10e (The McGraw-Hill Companies, 2014).

Lage, E.

N. J. Durr, S. R. Dave, D. Lim, S. Joseph, T. D. Ravilla, and E. Lage, “Quality of eyeglass prescriptions from a low-cost wavefront autorefractor evaluated in rural India: results of a 708-participant field study,” BMJ Open Ophth. 4(1), e000225 (2019).
[Crossref]

Li, X.

Li, Z.

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, W. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” presented at the International Symposium on Photoelectronic Detection and Imaging 2013: Optical Storage and Display Technology 2013.

Lida, T.

Lim, D.

N. J. Durr, S. R. Dave, D. Lim, S. Joseph, T. D. Ravilla, and E. Lage, “Quality of eyeglass prescriptions from a low-cost wavefront autorefractor evaluated in rural India: results of a 708-participant field study,” BMJ Open Ophth. 4(1), e000225 (2019).
[Crossref]

Link, T. P.

D. M. Robertson, J. W. McLaren, D. R. Salomao, and T. P. Link, “Retinopathy from a green laser pointer: a clinicopathologic study,” Arch. Ophthalmol. 123(5), 629–633 (2005).
[Crossref]

Liu, C.

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracking device,” J. Mod. Opt. 66(12), 1311–1317 (2019).
[Crossref]

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracker,” Proc. SPIE Int. Soc. Opt. Eng. 10474, 104741T (2018).
[Crossref]

Liu, J.

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracking device,” J. Mod. Opt. 66(12), 1311–1317 (2019).
[Crossref]

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracker,” Proc. SPIE Int. Soc. Opt. Eng. 10474, 104741T (2018).
[Crossref]

N. Zhang, J. Liu, J. Han, X. Li, F. Yang, X. Wang, B. Hu, and Y. Wang, “Improved holographic waveguide display system,” Appl. Opt. 54(12), 3645–3649 (2015).
[Crossref]

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, W. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” presented at the International Symposium on Photoelectronic Detection and Imaging 2013: Optical Storage and Display Technology 2013.

Liu, L.

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracking device,” J. Mod. Opt. 66(12), 1311–1317 (2019).
[Crossref]

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracker,” Proc. SPIE Int. Soc. Opt. Eng. 10474, 104741T (2018).
[Crossref]

Lovasik, J. V.

J. V. Lovasik, “A simple continuously recording infrared optometer,” Optom. Vis. Sci. 60(1), 80–87 (1983).
[Crossref]

Lu, F.

Y. Wang, J. Bao, L. Ou, F. Thorn, and F. Lu, “Reading behavior of emmetropic schoolchildren in China,” Vision Res. 86, 43–51 (2013).
[Crossref]

Lu, L.

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

Lubet, A.

A. Agarwal, D. E. Bloom, V. P. deLuise, A. Lubet, K. Murali, and S. M. Sastry, “Comparing low-cost handheld autorefractors: A practical approach to measuring refraction in low-resource settings,” PLoS One 14(10), e0219501 (2019).
[Crossref]

Lv, M.

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

Machida, A.

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

Mathot, S.

S. Mathot, “Pupillometry: Psychology, Physiology, and Function,” J. Cogn. 1(1), 16 (2018).
[Crossref]

McLaren, J. W.

D. M. Robertson, J. W. McLaren, D. R. Salomao, and T. P. Link, “Retinopathy from a green laser pointer: a clinicopathologic study,” Arch. Ophthalmol. 123(5), 629–633 (2005).
[Crossref]

Mishchenko, Y.

Y. Mishchenko, “A fast algorithm for computation of discrete Euclidean distance transform in three or more dimensions on vector processing architectures,” Signal Image Video Process. 9(1), 19–27 (2015).
[Crossref]

Murali, K.

A. Agarwal, D. E. Bloom, V. P. deLuise, A. Lubet, K. Murali, and S. M. Sastry, “Comparing low-cost handheld autorefractors: A practical approach to measuring refraction in low-resource settings,” PLoS One 14(10), e0219501 (2019).
[Crossref]

Ostrin, E. J.

R. Williams, S. Bakshi, E. J. Ostrin, and L. A. Ostrin, “Continuous Objective Assessment of Near Work,” Sci. Rep. 9(1), 6901 (2019).
[Crossref]

Ostrin, L. A.

R. Williams, S. Bakshi, E. J. Ostrin, and L. A. Ostrin, “Continuous Objective Assessment of Near Work,” Sci. Rep. 9(1), 6901 (2019).
[Crossref]

D. M. Win-Hall, L. A. Ostrin, S. Kasthurirangan, and A. Glasser, “Objective accommodation measurement with the Grand Seiko and Hartinger coincidence refractometer,” Optom. Vis. Sci. 84(9), 879–887 (2007).
[Crossref]

Ou, L.

Y. Wang, J. Bao, L. Ou, F. Thorn, and F. Lu, “Reading behavior of emmetropic schoolchildren in China,” Vision Res. 86, 43–51 (2013).
[Crossref]

Parisi, M.

M. Scheiman, M. Gallaway, R. Coulter, F. Reinstein, E. Ciner, C. Herzberg, and M. Parisi, “Prevalence of vision and ocular disease conditions in a clinical pediatric population,” J. Am. Optom. Assoc. 67(4), 193–202 (1996).

Parks, M.

G. K. Von Noorden, D. J. Brown, and M. Parks, “Associated convergence and accommodative insufficiency,” Doc. Ophthalmol. 34(1), 393–403 (1973).
[Crossref]

Pazzucconi, B.

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracking device,” J. Mod. Opt. 66(12), 1311–1317 (2019).
[Crossref]

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracker,” Proc. SPIE Int. Soc. Opt. Eng. 10474, 104741T (2018).
[Crossref]

Pennos, A.

D. Christaras, A. Pennos, H. Ginis, and P. Artal, “Effect of intraocular scattering in macular pigment optical density measurements,” J. Biomed. Opt. 23(05), 1–7 (2018).
[Crossref]

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Intraocular scattering compensation in retinal imaging,” Biomed. Opt. Express 7(10), 3996–4006 (2016).
[Crossref]

Ravilla, T. D.

N. J. Durr, S. R. Dave, D. Lim, S. Joseph, T. D. Ravilla, and E. Lage, “Quality of eyeglass prescriptions from a low-cost wavefront autorefractor evaluated in rural India: results of a 708-participant field study,” BMJ Open Ophth. 4(1), e000225 (2019).
[Crossref]

Reiber, J. H. C.

H. C. V. Assen, M. Egmont-Petersen, and J. H. C. Reiber, “Accurate object localization in gray level images using the center of gravity measure: accuracy versus precision,” IEEE Trans. on Image Process. 11(12), 1379–1384 (2002).
[Crossref]

Reinstein, F.

M. Scheiman, M. Gallaway, R. Coulter, F. Reinstein, E. Ciner, C. Herzberg, and M. Parisi, “Prevalence of vision and ocular disease conditions in a clinical pediatric population,” J. Am. Optom. Assoc. 67(4), 193–202 (1996).

Riddell, P. M.

J. F. Stein, P. M. Riddell, and S. Fowler, “Disordered vergence control in dyslexic children,” Br. J. Ophthalmol. 72(3), 162–166 (1988).
[Crossref]

Rill, M. S.

M. Kaschke, K. H. Donnerhacke, and M. S. Rill, “Optical Visualization, Imaging, and Structural Analysis,” in Optical Devices in Ophthalmology and Optometry, pp. 147–276.

Robertson, D. M.

D. M. Robertson, J. W. McLaren, D. R. Salomao, and T. P. Link, “Retinopathy from a green laser pointer: a clinicopathologic study,” Arch. Ophthalmol. 123(5), 629–633 (2005).
[Crossref]

Ropper, A. H.

A. H. Ropper, M. A. Samuels, and J. P. Klein, “Chapter 14. Disorders of Ocular Movement and Pupillary Function,” in Adams and Victor's Principles of Neurology, 10e (The McGraw-Hill Companies, 2014).

Salomao, D. R.

D. M. Robertson, J. W. McLaren, D. R. Salomao, and T. P. Link, “Retinopathy from a green laser pointer: a clinicopathologic study,” Arch. Ophthalmol. 123(5), 629–633 (2005).
[Crossref]

Samuels, M. A.

A. H. Ropper, M. A. Samuels, and J. P. Klein, “Chapter 14. Disorders of Ocular Movement and Pupillary Function,” in Adams and Victor's Principles of Neurology, 10e (The McGraw-Hill Companies, 2014).

Sastry, S. M.

A. Agarwal, D. E. Bloom, V. P. deLuise, A. Lubet, K. Murali, and S. M. Sastry, “Comparing low-cost handheld autorefractors: A practical approach to measuring refraction in low-resource settings,” PLoS One 14(10), e0219501 (2019).
[Crossref]

Scheiman, M.

M. Scheiman, H. Talasan, and T. L. Alvarez, “Objective assessment of disparity vergence after treatment of symptomatic convergence insufficiency in children,” Optom. Vis. Sci. 96(1), 3–16 (2019).
[Crossref]

M. Scheiman, M. Gallaway, R. Coulter, F. Reinstein, E. Ciner, C. Herzberg, and M. Parisi, “Prevalence of vision and ocular disease conditions in a clinical pediatric population,” J. Am. Optom. Assoc. 67(4), 193–202 (1996).

M. Scheiman and B. T. E. B. Wick, Clinical Management of Binocular Vision: Heterophoric, Accommodative, and Eye Movement Disorders (Wolters Kluwer, 2013).

Shepherd, A. J.

J. Veszeli and A. J. Shepherd, “A comparison of the effects of the colour and size of coloured overlays on young children’s reading,” Vision Res. 156, 73–83 (2019).
[Crossref]

Song, W.

Sousa, S. J. D. F. E.

L. Ventura, S. J. D. F. E. Sousa, and J. C. de Castro, “Detection system for ocular refractive error measurement,” Phys. Med. Biol. 43(5), 1303–1316 (1998).
[Crossref]

Stein, J. F.

J. F. Stein, P. M. Riddell, and S. Fowler, “Disordered vergence control in dyslexic children,” Br. J. Ophthalmol. 72(3), 162–166 (1988).
[Crossref]

Suzuki, N.

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

Takai, Y.

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

Takeda, T.

Talasan, H.

M. Scheiman, H. Talasan, and T. L. Alvarez, “Objective assessment of disparity vergence after treatment of symptomatic convergence insufficiency in children,” Optom. Vis. Sci. 96(1), 3–16 (2019).
[Crossref]

Thorn, F.

Y. Wang, J. Bao, L. Ou, F. Thorn, and F. Lu, “Reading behavior of emmetropic schoolchildren in China,” Vision Res. 86, 43–51 (2013).
[Crossref]

Tokuyama, K.

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

Tsukuda, D.

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

Ventura, L.

L. Ventura, S. J. D. F. E. Sousa, and J. C. de Castro, “Detection system for ocular refractive error measurement,” Phys. Med. Biol. 43(5), 1303–1316 (1998).
[Crossref]

Veszeli, J.

J. Veszeli and A. J. Shepherd, “A comparison of the effects of the colour and size of coloured overlays on young children’s reading,” Vision Res. 156, 73–83 (2019).
[Crossref]

Von Noorden, G. K.

G. K. Von Noorden, D. J. Brown, and M. Parks, “Associated convergence and accommodative insufficiency,” Doc. Ophthalmol. 34(1), 393–403 (1973).
[Crossref]

Wang, W.

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, W. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” presented at the International Symposium on Photoelectronic Detection and Imaging 2013: Optical Storage and Display Technology 2013.

Wang, X.

Wang, Y.

Wick, B. T. E. B.

M. Scheiman and B. T. E. B. Wick, Clinical Management of Binocular Vision: Heterophoric, Accommodative, and Eye Movement Disorders (Wolters Kluwer, 2013).

Williams, R.

R. Williams, S. Bakshi, E. J. Ostrin, and L. A. Ostrin, “Continuous Objective Assessment of Near Work,” Sci. Rep. 9(1), 6901 (2019).
[Crossref]

Win-Hall, D. M.

D. M. Win-Hall, L. A. Ostrin, S. Kasthurirangan, and A. Glasser, “Objective accommodation measurement with the Grand Seiko and Hartinger coincidence refractometer,” Optom. Vis. Sci. 84(9), 879–887 (2007).
[Crossref]

Wu, Z.

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, W. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” presented at the International Symposium on Photoelectronic Detection and Imaging 2013: Optical Storage and Display Technology 2013.

Xia, L.

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, W. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” presented at the International Symposium on Photoelectronic Detection and Imaging 2013: Optical Storage and Display Technology 2013.

Xiong, S.

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

Xu, C.

Xu, K.

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, W. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” presented at the International Symposium on Photoelectronic Detection and Imaging 2013: Optical Storage and Display Technology 2013.

Xu, X.

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

Yang, F.

Yanoff, M.

M. Yanoff, J. S. Duker, and J. J. Augsburger, Ophthalmology (Mosby Elsevier, 2009).

Yao, C.

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

Yao, X.

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracking device,” J. Mod. Opt. 66(12), 1311–1317 (2019).
[Crossref]

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracker,” Proc. SPIE Int. Soc. Opt. Eng. 10474, 104741T (2018).
[Crossref]

Yoshida, T.

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

Yoshikaie, A.

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

Zhang, B.

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

Zhang, N.

Zhu, J.

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

Zou, H.

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

Appl. Opt. (2)

Arch. Ophthalmol. (1)

D. M. Robertson, J. W. McLaren, D. R. Salomao, and T. P. Link, “Retinopathy from a green laser pointer: a clinicopathologic study,” Arch. Ophthalmol. 123(5), 629–633 (2005).
[Crossref]

Biomed. Opt. Express (1)

BMJ Open Ophth. (1)

N. J. Durr, S. R. Dave, D. Lim, S. Joseph, T. D. Ravilla, and E. Lage, “Quality of eyeglass prescriptions from a low-cost wavefront autorefractor evaluated in rural India: results of a 708-participant field study,” BMJ Open Ophth. 4(1), e000225 (2019).
[Crossref]

Br. J. Ophthalmol. (1)

J. F. Stein, P. M. Riddell, and S. Fowler, “Disordered vergence control in dyslexic children,” Br. J. Ophthalmol. 72(3), 162–166 (1988).
[Crossref]

Doc. Ophthalmol. (1)

G. K. Von Noorden, D. J. Brown, and M. Parks, “Associated convergence and accommodative insufficiency,” Doc. Ophthalmol. 34(1), 393–403 (1973).
[Crossref]

IEEE Trans. on Image Process. (1)

H. C. V. Assen, M. Egmont-Petersen, and J. H. C. Reiber, “Accurate object localization in gray level images using the center of gravity measure: accuracy versus precision,” IEEE Trans. on Image Process. 11(12), 1379–1384 (2002).
[Crossref]

J. Am. Optom. Assoc. (1)

M. Scheiman, M. Gallaway, R. Coulter, F. Reinstein, E. Ciner, C. Herzberg, and M. Parisi, “Prevalence of vision and ocular disease conditions in a clinical pediatric population,” J. Am. Optom. Assoc. 67(4), 193–202 (1996).

J. Biomed. Opt. (1)

D. Christaras, A. Pennos, H. Ginis, and P. Artal, “Effect of intraocular scattering in macular pigment optical density measurements,” J. Biomed. Opt. 23(05), 1–7 (2018).
[Crossref]

J. Cogn. (1)

S. Mathot, “Pupillometry: Psychology, Physiology, and Function,” J. Cogn. 1(1), 16 (2018).
[Crossref]

J. Mod. Opt. (1)

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracking device,” J. Mod. Opt. 66(12), 1311–1317 (2019).
[Crossref]

J. Refract. Surg. (1)

S. A. Burns, “The spatially resolved refractometer,” J. Refract. Surg. 16(5), S566–S569 (2000).
[Crossref]

J. Soc. Inf. Disp. (1)

T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, N. Suzuki, T. Anzai, A. Yoshikaie, K. Akutsu, and A. Machida, “A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses,” J. Soc. Inf. Disp. 26(5), 280–286 (2018).
[Crossref]

Opt. Express (2)

Optom. Vis. Sci. (5)

D. M. Win-Hall, L. A. Ostrin, S. Kasthurirangan, and A. Glasser, “Objective accommodation measurement with the Grand Seiko and Hartinger coincidence refractometer,” Optom. Vis. Sci. 84(9), 879–887 (2007).
[Crossref]

S. Xiong, M. Lv, H. Zou, J. Zhu, L. Lu, B. Zhang, J. Deng, C. Yao, X. He, and X. Xu, “Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents,” Optom. Vis. Sci. 94(9), 894–902 (2017).
[Crossref]

J. V. Lovasik, “A simple continuously recording infrared optometer,” Optom. Vis. Sci. 60(1), 80–87 (1983).
[Crossref]

A. R. Buzzelli, “Stereopsis, accommodative and vergence facility: do they relate to dyslexia?” Optom. Vis. Sci. 68(11), 842–846 (1991).
[Crossref]

M. Scheiman, H. Talasan, and T. L. Alvarez, “Objective assessment of disparity vergence after treatment of symptomatic convergence insufficiency in children,” Optom. Vis. Sci. 96(1), 3–16 (2019).
[Crossref]

Phys. Med. Biol. (1)

L. Ventura, S. J. D. F. E. Sousa, and J. C. de Castro, “Detection system for ocular refractive error measurement,” Phys. Med. Biol. 43(5), 1303–1316 (1998).
[Crossref]

PLoS One (1)

A. Agarwal, D. E. Bloom, V. P. deLuise, A. Lubet, K. Murali, and S. M. Sastry, “Comparing low-cost handheld autorefractors: A practical approach to measuring refraction in low-resource settings,” PLoS One 14(10), e0219501 (2019).
[Crossref]

Proc. SPIE Int. Soc. Opt. Eng. (1)

C. Liu, B. Pazzucconi, J. Liu, L. Liu, and X. Yao, “A holographic waveguide based eye tracker,” Proc. SPIE Int. Soc. Opt. Eng. 10474, 104741T (2018).
[Crossref]

Sci. Rep. (1)

R. Williams, S. Bakshi, E. J. Ostrin, and L. A. Ostrin, “Continuous Objective Assessment of Near Work,” Sci. Rep. 9(1), 6901 (2019).
[Crossref]

Signal Image Video Process. (1)

Y. Mishchenko, “A fast algorithm for computation of discrete Euclidean distance transform in three or more dimensions on vector processing architectures,” Signal Image Video Process. 9(1), 19–27 (2015).
[Crossref]

Vision Res. (2)

Y. Wang, J. Bao, L. Ou, F. Thorn, and F. Lu, “Reading behavior of emmetropic schoolchildren in China,” Vision Res. 86, 43–51 (2013).
[Crossref]

J. Veszeli and A. J. Shepherd, “A comparison of the effects of the colour and size of coloured overlays on young children’s reading,” Vision Res. 156, 73–83 (2019).
[Crossref]

Other (10)

M. Kaschke, K. H. Donnerhacke, and M. S. Rill, “Optical Visualization, Imaging, and Structural Analysis,” in Optical Devices in Ophthalmology and Optometry, pp. 147–276.

J. Gonzalez-Sanchez, M. Baydogan, M. E. Chavez-Echeagaray, R. K. Atkinson, and W. Burleson, “Chapter 11 - Affect Measurement: A Roadmap Through Approaches, Technologies, and Data Analysis,” in Emotions and Affect in Human Factors and Human-Computer Interaction, M. Jeon, ed. (Academic Press, 2017), pp. 255–288.

J. P. Barral and A. Croibier, “Chapter 12 - Oculomotor nerve,” in Manual Therapy for the Cranial Nerves, A. C. Jean-Pierre Barral, ed. (Churchill Livingstone, 2009).

A. H. Ropper, M. A. Samuels, and J. P. Klein, “Chapter 14. Disorders of Ocular Movement and Pupillary Function,” in Adams and Victor's Principles of Neurology, 10e (The McGraw-Hill Companies, 2014).

M. Scheiman and B. T. E. B. Wick, Clinical Management of Binocular Vision: Heterophoric, Accommodative, and Eye Movement Disorders (Wolters Kluwer, 2013).

D. B. Elliott and J. Flanagan, “3 - Assessment of visual function,” in Clinical Procedures in Primary Eye Care (Third Edition), D. B. Elliott, ed. (Butterworth-Heinemann, 2007), pp. 29–81.

“American National Standard for Safe Use of Lasers,” in ANSI A136.1-2000 (Laser Institute of America, 2000).

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, W. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” presented at the International Symposium on Photoelectronic Detection and Imaging 2013: Optical Storage and Display Technology 2013.

M. Yanoff, J. S. Duker, and J. J. Augsburger, Ophthalmology (Mosby Elsevier, 2009).

A. Keirl and C. Christie, Clinical Optics and Refraction: A Guide for Optometrists, Contact Lens Opticians and Dispensing Opticians (Elsevier Health Sciences, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic diagram (a) and photograph (b) of experimental setup, i.e., a HW-based Scheiner optometer.
Fig. 2.
Fig. 2. Pinhole images acquired from retinal plane of the model eye using the HW-based optometer. The number in the upper left corner of each panel is the trial lens power in diopters. The two light spots are the images of the two pinholes. They superimpose on each other at 0D (no refractive error). The separation between the pinhole images increases with increasing amount of refractive error introduced by the trial lens.
Fig. 3.
Fig. 3. Light path difference and pinhole image separation introduced by –5D and +5D trial lenses. The separation of the pinhole images is roughly the same (a2 and b2), but their relative positions are opposite. When a negative lens is in front of the model eye, the pinhole images are on the opposite sides as the pinholes (a3 and a4). When a positive lens is in front of the model eye, the pinhole images are on the same sides of the pinholes (b3 and b4). The upper and lower pinhole was blocked in (a3 and b3) and (a4 and b4) to show the relative positions of the pinhole images.
Fig. 4.
Fig. 4. Calibration and optometer reading by different trial lens powers. (a) Calibration curve for the pinhole image separation and refractive errors introduced by different trial lens powers. (b) Mean optometer errors of (a). (c) Standard deviation of (a). Gray circles and error bars are the mean and standard deviation of three measurements at each trial lens power. Red line is polynomial fitting of the gray circles, where x axis is the trial lens power in diopters.
Fig. 5.
Fig. 5. Optometer reading using different illumination light intensities at –18D and +18D refractive errors. Mean optometer errors (a) and standard deviations (b) increase with decreasing amount of illumination light.

Tables (1)

Tables Icon

Table 1. Validation of calibration curve with trial lenses which were not used in calibration procedure.

Metrics