Abstract

A voltage tunable filter based on a combined metal-insulator-metal nano-cavity waveguide of organic electro-optical material DAST is proposed by using the side-coupled method. The structure of this kind of filter consists of two Y-type cavities and a rectangular waveguide. The transmission spectra, the resonance wavelength, and the magnetic field distribution of the asymmetric Y-type cavity waveguide metal-insulator-metal structure filter has been calculated and analyzed by the finite element numerical simulation method. The results show that this filter has the features of a smooth transmission spectra, a flat passband with the maximum transmission of 0.97, a stopband with the minimum transmission of 0.001, and a wide bandwidth (full width at half maxima achieved 970 nm). The characteristics of the structure filter can be adjusted not only by changing the structural parameters, but also by applying a control voltage. Thus, the adjustability of the filter is increased, and the filter can realize the filtering function of channel selection of the three optical communication windows at the telecommunication regime. There will be great application prospect for this filter structure in high-density integrated circuits and nano-optics.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study on the sensing characteristics of Fano resonance based on a coupled streamlined resonance cavity

Yaping Zhao, Guanmao Zhang, Panpan Ren, and Zhihao Guo
OSA Continuum 3(2) 153-162 (2020)

Linewidth reduction effect of a cavity-coupled dual-passband plasmonic filter

Jinbo Gao, Jinsong Gao, Zizheng Li, Haigui Yang, Hai Liu, Xiaoyi Wang, Tongtong Wang, Ke Wang, Qiang Li, Xiaoyi Liu, Yanchao Wang, Ruoqian Gao, and Yuanhang Zhao
Opt. Express 28(6) 8753-8763 (2020)

Bandpass filter based on comb shaped graphene nanoribbons

Guangsheng Deng, Tianxiang Zhao, Zhiping Yin, and Jun Yang
OSA Continuum 2(9) 2614-2622 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref]
  2. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
    [Crossref]
  3. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25(9), 2511–2521 (2007).
    [Crossref]
  4. B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D: Appl. Phys. 43(38), 385102 (2010).
    [Crossref]
  5. X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide,” Plasmonics 6(4), 613–618 (2011).
    [Crossref]
  6. J. H. Zhu, X. G. Huang, and X. Mei, “Plasmonic electro-optical switches operating at telecom wavelengths,” Plasmonics 6(3), 605–612 (2011).
    [Crossref]
  7. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics 8(2), 167–171 (2013).
    [Crossref]
  8. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19(14), 12885–12890 (2011).
    [Crossref]
  9. F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525–526 (2011).
    [Crossref]
  10. X. Zhu, W. Yan, N. A. Mortensen, and S. Xiao, “Bends and splitters in graphene nanoribbon waveguides,” Opt. Express 21(3), 3486–3491 (2013).
    [Crossref]
  11. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
    [Crossref]
  12. J. Y. Laluet and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [Crossref]
  13. H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phys. E 40(10), 3025–3029 (2008).
    [Crossref]
  14. S. J. Im, Y. H. Han, and K. S. Ho, “Nanoscale optical directional coupler,” Plasmonics 12(6), 1741–1747 (2017).
    [Crossref]
  15. Z. Han and E. Forsberg, “Surface plasmon bragg gratings formed in metal-insulator-metal wave-guides,” IEEE Photonics Technol. Lett. 19(2), 91–93 (2007).
    [Crossref]
  16. Z. Li, K. Wen, L. Chen, and L. Lei, “Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system,” IEEE Access 7, 59369–59375 (2019).
    [Crossref]
  17. Y. Fang, K. Wen, Z. Li, B. Wu, L. Chen, J. Zhou, and D. Zhou, “Multiple Fano resonances based on end-coupled semi-ring rectangular resonator,” IEEE Photonics J. 11(4), 1–8 (2019).
    [Crossref]
  18. B. Yun, G. Hu, and Y. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
    [Crossref]
  19. C. P. Yin and H. Z. Wang, “The transmission characteristics of surface plas-mon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
    [Crossref]
  20. Q. Zhang and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7533–7539 (2009).
    [Crossref]
  21. J. Tao and X. G. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics 6(4), 753–759 (2011).
    [Crossref]
  22. I. Zand, A. Mahigir, T. Pakizeh, and M. S. Abrishamian, “Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators,” Opt. Express 20(7), 7516–7525 (2012).
    [Crossref]
  23. Z. Han, V. Van and W, and N. Herman, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17(15), 12678–12684 (2009).
    [Crossref]
  24. X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
    [Crossref]
  25. H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284(10-11), 2613–2616 (2011).
    [Crossref]
  26. C. Y. Xue and S. B. Yan, “Electro-magnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12(4), 1007–1013 (2017).
    [Crossref]
  27. D. R. Calawa and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84(19), 3729–3731 (2004).
    [Crossref]
  28. Y. J. Zhu, X. G. Huang, and X. Mei, “A surface plasmon polariton electro-optic switch based on a metal-insulator-metal structure with a strip waveguide and two side-coupled cavities,” Chin. Phys. Lett. 29(6), 064214 (2012).
    [Crossref]
  29. N. Hu, G. Zhang, H. An, Y. Shi, and M. Gu, “Design and optimization of the multifunctional rectangular cavity band-pass filter based on the surface plasmon polariton,” Plasmonics 12(5), 1457–1462 (2017).
    [Crossref]
  30. K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
    [Crossref]
  31. J. Chen, C. Sun, and Q. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).
    [Crossref]
  32. B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
    [Crossref]
  33. G. Zheng, W. Su, Y. Chen, C. Zhang, M. Lai, and Y. Liu, “Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material,” J. Opt. 14(5), 055001 (2012).
    [Crossref]
  34. V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rec-tangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
    [Crossref]

2019 (2)

Z. Li, K. Wen, L. Chen, and L. Lei, “Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system,” IEEE Access 7, 59369–59375 (2019).
[Crossref]

Y. Fang, K. Wen, Z. Li, B. Wu, L. Chen, J. Zhou, and D. Zhou, “Multiple Fano resonances based on end-coupled semi-ring rectangular resonator,” IEEE Photonics J. 11(4), 1–8 (2019).
[Crossref]

2017 (3)

S. J. Im, Y. H. Han, and K. S. Ho, “Nanoscale optical directional coupler,” Plasmonics 12(6), 1741–1747 (2017).
[Crossref]

C. Y. Xue and S. B. Yan, “Electro-magnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12(4), 1007–1013 (2017).
[Crossref]

N. Hu, G. Zhang, H. An, Y. Shi, and M. Gu, “Design and optimization of the multifunctional rectangular cavity band-pass filter based on the surface plasmon polariton,” Plasmonics 12(5), 1457–1462 (2017).
[Crossref]

2016 (1)

K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

2014 (1)

2013 (5)

B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
[Crossref]

V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rec-tangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
[Crossref]

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

X. Zhu, W. Yan, N. A. Mortensen, and S. Xiao, “Bends and splitters in graphene nanoribbon waveguides,” Opt. Express 21(3), 3486–3491 (2013).
[Crossref]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics 8(2), 167–171 (2013).
[Crossref]

2012 (3)

I. Zand, A. Mahigir, T. Pakizeh, and M. S. Abrishamian, “Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators,” Opt. Express 20(7), 7516–7525 (2012).
[Crossref]

Y. J. Zhu, X. G. Huang, and X. Mei, “A surface plasmon polariton electro-optic switch based on a metal-insulator-metal structure with a strip waveguide and two side-coupled cavities,” Chin. Phys. Lett. 29(6), 064214 (2012).
[Crossref]

G. Zheng, W. Su, Y. Chen, C. Zhang, M. Lai, and Y. Liu, “Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material,” J. Opt. 14(5), 055001 (2012).
[Crossref]

2011 (7)

J. Tao and X. G. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics 6(4), 753–759 (2011).
[Crossref]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284(10-11), 2613–2616 (2011).
[Crossref]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19(14), 12885–12890 (2011).
[Crossref]

F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525–526 (2011).
[Crossref]

X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide,” Plasmonics 6(4), 613–618 (2011).
[Crossref]

J. H. Zhu, X. G. Huang, and X. Mei, “Plasmonic electro-optical switches operating at telecom wavelengths,” Plasmonics 6(3), 605–612 (2011).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
[Crossref]

2010 (1)

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D: Appl. Phys. 43(38), 385102 (2010).
[Crossref]

2009 (3)

2008 (1)

H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phys. E 40(10), 3025–3029 (2008).
[Crossref]

2007 (2)

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25(9), 2511–2521 (2007).
[Crossref]

Z. Han and E. Forsberg, “Surface plasmon bragg gratings formed in metal-insulator-metal wave-guides,” IEEE Photonics Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

2006 (1)

J. Y. Laluet and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

2005 (2)

2004 (1)

D. R. Calawa and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84(19), 3729–3731 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Abaslou, S.

V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rec-tangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
[Crossref]

Abrishamian, M. S.

V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rec-tangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
[Crossref]

I. Zand, A. Mahigir, T. Pakizeh, and M. S. Abrishamian, “Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators,” Opt. Express 20(7), 7516–7525 (2012).
[Crossref]

Afshinmanesh, F.

F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525–526 (2011).
[Crossref]

An, H.

N. Hu, G. Zhang, H. An, Y. Shi, and M. Gu, “Design and optimization of the multifunctional rectangular cavity band-pass filter based on the surface plasmon polariton,” Plasmonics 12(5), 1457–1462 (2017).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Brongersma, M. L.

F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525–526 (2011).
[Crossref]

Cai, W.

F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525–526 (2011).
[Crossref]

Calawa, D. R.

D. R. Calawa and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84(19), 3729–3731 (2004).
[Crossref]

Cao, G.

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Chen, J.

Chen, L.

Z. Li, K. Wen, L. Chen, and L. Lei, “Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system,” IEEE Access 7, 59369–59375 (2019).
[Crossref]

Y. Fang, K. Wen, Z. Li, B. Wu, L. Chen, J. Zhou, and D. Zhou, “Multiple Fano resonances based on end-coupled semi-ring rectangular resonator,” IEEE Photonics J. 11(4), 1–8 (2019).
[Crossref]

K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Chen, Y.

G. Zheng, W. Su, Y. Chen, C. Zhang, M. Lai, and Y. Liu, “Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material,” J. Opt. 14(5), 055001 (2012).
[Crossref]

Cui, Y.

B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D: Appl. Phys. 43(38), 385102 (2010).
[Crossref]

Deng, Q.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Du, C.

Ebbesen, T. W.

J. Y. Laluet and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Fan, S.

Fang, Y.

Y. Fang, K. Wen, Z. Li, B. Wu, L. Chen, J. Zhou, and D. Zhou, “Multiple Fano resonances based on end-coupled semi-ring rectangular resonator,” IEEE Photonics J. 11(4), 1–8 (2019).
[Crossref]

Forsberg, E.

Z. Han and E. Forsberg, “Surface plasmon bragg gratings formed in metal-insulator-metal wave-guides,” IEEE Photonics Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

Gao, H.

Gong, Q.

Gong, Y.

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284(10-11), 2613–2616 (2011).
[Crossref]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19(14), 12885–12890 (2011).
[Crossref]

Gu, M.

N. Hu, G. Zhang, H. An, Y. Shi, and M. Gu, “Design and optimization of the multifunctional rectangular cavity band-pass filter based on the surface plasmon polariton,” Plasmonics 12(5), 1457–1462 (2017).
[Crossref]

Guang, X. G.

H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phys. E 40(10), 3025–3029 (2008).
[Crossref]

Guo, Y.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics 8(2), 167–171 (2013).
[Crossref]

Guo, Z.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics 8(2), 167–171 (2013).
[Crossref]

Han, Y. H.

S. J. Im, Y. H. Han, and K. S. Ho, “Nanoscale optical directional coupler,” Plasmonics 12(6), 1741–1747 (2017).
[Crossref]

Han, Z.

He, S.

Herman, N.

Ho, K. S.

S. J. Im, Y. H. Han, and K. S. Ho, “Nanoscale optical directional coupler,” Plasmonics 12(6), 1741–1747 (2017).
[Crossref]

Hu, G.

B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D: Appl. Phys. 43(38), 385102 (2010).
[Crossref]

Hu, N.

N. Hu, G. Zhang, H. An, Y. Shi, and M. Gu, “Design and optimization of the multifunctional rectangular cavity band-pass filter based on the surface plasmon polariton,” Plasmonics 12(5), 1457–1462 (2017).
[Crossref]

Hu, Y.

K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Huang, J.

H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phys. E 40(10), 3025–3029 (2008).
[Crossref]

Huang, X. G.

Y. J. Zhu, X. G. Huang, and X. Mei, “A surface plasmon polariton electro-optic switch based on a metal-insulator-metal structure with a strip waveguide and two side-coupled cavities,” Chin. Phys. Lett. 29(6), 064214 (2012).
[Crossref]

J. Tao and X. G. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics 6(4), 753–759 (2011).
[Crossref]

J. H. Zhu, X. G. Huang, and X. Mei, “Plasmonic electro-optical switches operating at telecom wavelengths,” Plasmonics 6(3), 605–612 (2011).
[Crossref]

X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide,” Plasmonics 6(4), 613–618 (2011).
[Crossref]

Im, S. J.

S. J. Im, Y. H. Han, and K. S. Ho, “Nanoscale optical directional coupler,” Plasmonics 12(6), 1741–1747 (2017).
[Crossref]

Jin, T.

X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide,” Plasmonics 6(4), 613–618 (2011).
[Crossref]

Jin, X. P.

Lai, M.

G. Zheng, W. Su, Y. Chen, C. Zhang, M. Lai, and Y. Liu, “Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material,” J. Opt. 14(5), 055001 (2012).
[Crossref]

Laluet, J. Y.

J. Y. Laluet and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Lei, L.

Z. Li, K. Wen, L. Chen, and L. Lei, “Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system,” IEEE Access 7, 59369–59375 (2019).
[Crossref]

K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Li, H.

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Li, Z.

Z. Li, K. Wen, L. Chen, and L. Lei, “Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system,” IEEE Access 7, 59369–59375 (2019).
[Crossref]

Y. Fang, K. Wen, Z. Li, B. Wu, L. Chen, J. Zhou, and D. Zhou, “Multiple Fano resonances based on end-coupled semi-ring rectangular resonator,” IEEE Photonics J. 11(4), 1–8 (2019).
[Crossref]

Lin, X.

Liu, L.

Liu, X.

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19(14), 12885–12890 (2011).
[Crossref]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284(10-11), 2613–2616 (2011).
[Crossref]

Liu, Y.

G. Zheng, W. Su, Y. Chen, C. Zhang, M. Lai, and Y. Liu, “Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material,” J. Opt. 14(5), 055001 (2012).
[Crossref]

Liu, Z.

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Lu, H.

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284(10-11), 2613–2616 (2011).
[Crossref]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19(14), 12885–12890 (2011).
[Crossref]

Luo, B.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics 8(2), 167–171 (2013).
[Crossref]

Luo, X.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics 8(2), 167–171 (2013).
[Crossref]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
[Crossref]

Lv, Y.

Lyszczarz, T. M.

D. R. Calawa and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84(19), 3729–3731 (2004).
[Crossref]

Mahigir, A.

Mao, D.

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284(10-11), 2613–2616 (2011).
[Crossref]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19(14), 12885–12890 (2011).
[Crossref]

Mei, X.

Y. J. Zhu, X. G. Huang, and X. Mei, “A surface plasmon polariton electro-optic switch based on a metal-insulator-metal structure with a strip waveguide and two side-coupled cavities,” Chin. Phys. Lett. 29(6), 064214 (2012).
[Crossref]

X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide,” Plasmonics 6(4), 613–618 (2011).
[Crossref]

J. H. Zhu, X. G. Huang, and X. Mei, “Plasmonic electro-optical switches operating at telecom wavelengths,” Plasmonics 6(3), 605–612 (2011).
[Crossref]

Meng, Z.

K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Mortensen, N. A.

Nezhad, V. F.

V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rec-tangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
[Crossref]

Pakizeh, T.

Pan, W.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics 8(2), 167–171 (2013).
[Crossref]

Peng, X.

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Shi, H.

Shi, Y.

N. Hu, G. Zhang, H. An, Y. Shi, and M. Gu, “Design and optimization of the multifunctional rectangular cavity band-pass filter based on the surface plasmon polariton,” Plasmonics 12(5), 1457–1462 (2017).
[Crossref]

Su, W.

G. Zheng, W. Su, Y. Chen, C. Zhang, M. Lai, and Y. Liu, “Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material,” J. Opt. 14(5), 055001 (2012).
[Crossref]

Sun, C.

Tao, J.

J. Tao and X. G. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics 6(4), 753–759 (2011).
[Crossref]

Van and W, V.

Veronis, G.

Wang, C.

Wang, H. Z.

Wang, L.

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284(10-11), 2613–2616 (2011).
[Crossref]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19(14), 12885–12890 (2011).
[Crossref]

Wen, K.

Y. Fang, K. Wen, Z. Li, B. Wu, L. Chen, J. Zhou, and D. Zhou, “Multiple Fano resonances based on end-coupled semi-ring rectangular resonator,” IEEE Photonics J. 11(4), 1–8 (2019).
[Crossref]

Z. Li, K. Wen, L. Chen, and L. Lei, “Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system,” IEEE Access 7, 59369–59375 (2019).
[Crossref]

K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics 8(2), 167–171 (2013).
[Crossref]

Wu, B.

Y. Fang, K. Wen, Z. Li, B. Wu, L. Chen, J. Zhou, and D. Zhou, “Multiple Fano resonances based on end-coupled semi-ring rectangular resonator,” IEEE Photonics J. 11(4), 1–8 (2019).
[Crossref]

Wu, C.

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Xiao, S.

Xue, C. Y.

C. Y. Xue and S. B. Yan, “Electro-magnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12(4), 1007–1013 (2017).
[Crossref]

Yan, L.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics 8(2), 167–171 (2013).
[Crossref]

Yan, S. B.

C. Y. Xue and S. B. Yan, “Electro-magnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12(4), 1007–1013 (2017).
[Crossref]

Yan, W.

Yao, H.

Yin, C. P.

Yun, B.

B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D: Appl. Phys. 43(38), 385102 (2010).
[Crossref]

Zand, I.

Zhang, C.

G. Zheng, W. Su, Y. Chen, C. Zhang, M. Lai, and Y. Liu, “Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material,” J. Opt. 14(5), 055001 (2012).
[Crossref]

Zhang, G.

N. Hu, G. Zhang, H. An, Y. Shi, and M. Gu, “Design and optimization of the multifunctional rectangular cavity band-pass filter based on the surface plasmon polariton,” Plasmonics 12(5), 1457–1462 (2017).
[Crossref]

Zhang, Q.

Zhao, H.

H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phys. E 40(10), 3025–3029 (2008).
[Crossref]

Zheng, G.

G. Zheng, W. Su, Y. Chen, C. Zhang, M. Lai, and Y. Liu, “Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material,” J. Opt. 14(5), 055001 (2012).
[Crossref]

Zhou, D.

Y. Fang, K. Wen, Z. Li, B. Wu, L. Chen, J. Zhou, and D. Zhou, “Multiple Fano resonances based on end-coupled semi-ring rectangular resonator,” IEEE Photonics J. 11(4), 1–8 (2019).
[Crossref]

Zhou, J.

Y. Fang, K. Wen, Z. Li, B. Wu, L. Chen, J. Zhou, and D. Zhou, “Multiple Fano resonances based on end-coupled semi-ring rectangular resonator,” IEEE Photonics J. 11(4), 1–8 (2019).
[Crossref]

K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Zhu, J. H.

J. H. Zhu, X. G. Huang, and X. Mei, “Plasmonic electro-optical switches operating at telecom wavelengths,” Plasmonics 6(3), 605–612 (2011).
[Crossref]

Zhu, X.

Zhu, Y. J.

Y. J. Zhu, X. G. Huang, and X. Mei, “A surface plasmon polariton electro-optic switch based on a metal-insulator-metal structure with a strip waveguide and two side-coupled cavities,” Chin. Phys. Lett. 29(6), 064214 (2012).
[Crossref]

Appl. Phys. Lett. (1)

D. R. Calawa and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84(19), 3729–3731 (2004).
[Crossref]

Chin. Phys. Lett. (1)

Y. J. Zhu, X. G. Huang, and X. Mei, “A surface plasmon polariton electro-optic switch based on a metal-insulator-metal structure with a strip waveguide and two side-coupled cavities,” Chin. Phys. Lett. 29(6), 064214 (2012).
[Crossref]

IEEE Access (1)

Z. Li, K. Wen, L. Chen, and L. Lei, “Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system,” IEEE Access 7, 59369–59375 (2019).
[Crossref]

IEEE Photonics J. (1)

Y. Fang, K. Wen, Z. Li, B. Wu, L. Chen, J. Zhou, and D. Zhou, “Multiple Fano resonances based on end-coupled semi-ring rectangular resonator,” IEEE Photonics J. 11(4), 1–8 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Han and E. Forsberg, “Surface plasmon bragg gratings formed in metal-insulator-metal wave-guides,” IEEE Photonics Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (2)

G. Zheng, W. Su, Y. Chen, C. Zhang, M. Lai, and Y. Liu, “Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material,” J. Opt. 14(5), 055001 (2012).
[Crossref]

V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rec-tangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
[Crossref]

J. Phys. D: Appl. Phys. (1)

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D: Appl. Phys. 43(38), 385102 (2010).
[Crossref]

Nat. Commun. (1)

F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2(1), 525–526 (2011).
[Crossref]

Nature (2)

J. Y. Laluet and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Opt. Commun. (3)

B. Yun, G. Hu, and Y. Cui, “A nanometric plasmonic waveguide filter based on Fabry-Perot resonator,” Opt. Commun. 284(1), 485–489 (2011).
[Crossref]

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284(10-11), 2613–2616 (2011).
[Crossref]

Opt. Express (8)

Opt. Lett. (1)

Phys. E (1)

H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phys. E 40(10), 3025–3029 (2008).
[Crossref]

Plasmonics (9)

S. J. Im, Y. H. Han, and K. S. Ho, “Nanoscale optical directional coupler,” Plasmonics 12(6), 1741–1747 (2017).
[Crossref]

X. Mei, X. G. Huang, and T. Jin, “A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide,” Plasmonics 6(4), 613–618 (2011).
[Crossref]

J. H. Zhu, X. G. Huang, and X. Mei, “Plasmonic electro-optical switches operating at telecom wavelengths,” Plasmonics 6(3), 605–612 (2011).
[Crossref]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics 8(2), 167–171 (2013).
[Crossref]

C. Y. Xue and S. B. Yan, “Electro-magnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12(4), 1007–1013 (2017).
[Crossref]

N. Hu, G. Zhang, H. An, Y. Shi, and M. Gu, “Design and optimization of the multifunctional rectangular cavity band-pass filter based on the surface plasmon polariton,” Plasmonics 12(5), 1457–1462 (2017).
[Crossref]

K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

J. Tao and X. G. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics 6(4), 753–759 (2011).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic diagram of the asymmetric Y-type cavities MIM filter with structural parameters of ${h_1} = 100\;\textrm{nm}$, ${h_2} = 85\;\textrm{nm}$, $D = 135$ nm, $d = 390\;\textrm{nm}$, g $= 90$ nm, $t = 35$ nm, $w = 50$ nm, $L = 150$ nm.
Fig. 2.
Fig. 2. 3D schematic diagram of the asymmetric Y-type cavities MIM filter with the electric circuit
Fig. 3.
Fig. 3. Comparison of transmission spectrum of the three different MIM structures: red line, blue line, black line represent a single Y-type cavity structure, a symmetric Y-type cavities structure and an asymmetric Y-type cavities structure, respectively.
Fig. 4.
Fig. 4. Magnetic field distribution of the single Y-type cavity structure (a-c) and the symmetrical Y-type cavities structure (d-f) at different wavelengths: (a) $\lambda = 886\;\textrm{nm}$ (b) $\lambda = 1136\;\textrm{nm}$ (c) $\lambda = 2190\;\textrm{nm}$ (d) $\lambda = 892\;\textrm{nm}$ (e) $\lambda = 1144\;\textrm{nm}$ (f) $\lambda = 2190\;\textrm{nm}$.
Fig. 5.
Fig. 5. Magnetic field distributions of the asymmetrical Y-type cavities structure at different wavelengths: (a) $\lambda = 876\;\textrm{nm}$ (b) $\lambda = 1138\;\textrm{nm}$ (c) $\lambda = 2190\;\textrm{nm}$ (d) $\lambda = 1354\;\textrm{nm}$.
Fig. 6.
Fig. 6. Transmission characteristics of the asymmetrical Y-type cavities filter at different structural parameter ${h_1}$: (a) transmission spectrum, (b) resonance wavelength.
Fig. 7.
Fig. 7. Transmission characteristics of the asymmetrical Y-type cavities filter at different structural parameter ${h_2}$: (a) transmission spectrum, (b) resonance wavelength.
Fig. 8.
Fig. 8. Transmission characteristics of the asymmetrical Y-type cavities filter at different structural parameter D: (a) transmission spectrum, (b) resonance wavelength.
Fig. 9.
Fig. 9. Transmission characteristics of the asymmetrical Y-type cavities filter at different structural parameter d: (a) transmission spectrum, (b) resonance wavelength.
Fig. 10.
Fig. 10. Transmission characteristics of the asymmetrical Y-type cavities filter by changing applied voltage U: (a) transmission spectrum, (b) resonance wavelength.
Fig. 11.
Fig. 11. Transmission spectra of the optimized asymmetrical Y-type cavities filters: red line (${h_1} = 60\;\textrm{nm}$, ${h_2} = 55\;\textrm{nm}$, $D = 80\;\textrm{nm}$, $U = 2.7\;\textrm{V}$), blue line (${h_1} = 50\;\textrm{nm}$, ${h_2} = 55\;\textrm{nm}$, $D = 80\;\textrm{nm}$, $U = 0\;\textrm{V}$), purple line (${h_1} = 60\;\textrm{nm}$, ${h_2} = 55\;\textrm{nm}$, $D = 80\;\textrm{nm}$, $U = 2\;\textrm{V}$).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n eo ( U ) = n eo ( 0 ) + κ U / S
ε m = ε ω p 2 ω 2 + i ω γ
λ = 2 n eff L eff m φ / π

Metrics