Abstract

Q-switched lasers operating at wavelengths around 2 µm have many applications including materials processing and LIDAR. However, the low gain of the quasi-three-level gain media available at 2 µm can lead to problems with pulse-to-pulse fluctuations in their output, known as jitter. Here we present a methodology for characterising the level of jitter in a Q-switched laser and apply it to a Tm:YAP system. We also look at the causes of jitter and evaluate some methods of reducing it. The methodology developed here will aid in the development and characterisation of Q-switched lasers at any wavelength.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
LGS electro-optically Q-switched Er,Pr:YAP crystal laser operated at 2.7 µm

Cong Quan, Dunlu Sun, Jianqiao Luo, Huili Zhang, Xuyao Zhao, Lunzhen Hu, Zhiyuan Han, Kunpeng Dong, and Maojie Cheng
OSA Continuum 3(3) 552-559 (2020)

Layered WSe2 Q-Switched Tm/Ho composite laser in a resonance-enhanced hybrid cavity

Haizhou Huang, Yan Ge, Jinhui Li, Huawen Hu, Jianhong Huang, Hui Zhen, Huagang Liu, and Wenxiong Lin
OSA Continuum 3(3) 542-551 (2020)

High efficiency nanosecond passively Q-switched 2.3 µm Tm:YLF laser using a ReSe2-based saturable output coupler

Shiqiang Wang, Haitao Huang, Haiwei Chen, Xuan Liu, Shande Liu, Jinlong Xu, and Deyuan Shen
OSA Continuum 2(5) 1676-1682 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
    [Crossref]
  2. R. C. Stoneman and L. Esterowitz, “Efficient 1.94 µm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
    [Crossref]
  3. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
    [Crossref]
  4. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
    [Crossref]
  5. N. Fried, “Recent advances in infrared laser lithotripsy,” Biomed. Opt. Express 9(9), 4552–4568 (2018).
    [Crossref]
  6. S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, D. Epp, G. J. Quarles, and K. J. Riley, “High-average-power operation of a Q-switched diode-pumped holmium laser,” Opt. Lett. 18(20), 1724–1726 (1993).
    [Crossref]
  7. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
    [Crossref]
  8. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31(1), 4–15 (1993).
    [Crossref]
  9. Q. Wang, J. Geng, and S. Jiang, “2 µm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2013).
    [Crossref]
  10. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9 µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
    [Crossref]
  11. P. Černý and D. Burns, “Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b-cut crystal orientations,” IEEE J. Sel. Top. Quantum Electron. 11(3), 674–681 (2005).
    [Crossref]
  12. K. Mizutani, T. Itabe, S. Ishii, M. Aoki, K. Asai, A. Sato, H. Fukuoka, T. Ishikawa, and K. Noda, “Diode-pumped 2 µm pulse laser with noncomposite Tm,Ho:YLF rod conduction-cooled down to −80 °C,” Appl. Opt. 54(26), 7865–7869 (2015).
    [Crossref]
  13. J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
    [Crossref]
  14. Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
    [Crossref]
  15. H. Lee, K. Kim, and H. Kim, “Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror,” Opt. Commun. 160(1-3), 51–56 (1999).
    [Crossref]
  16. G. Martin, T. J. Siemers, and J. R. Thompson, “Modeling structural features of pulse timing jitter in a single-mode, Q-switched, Nd:YAG laser,” Laser Phys. 27(8), 085005 (2017).
    [Crossref]
  17. D. C. Hanna, B. Luther-Davies, H. N. Rutt, and R. C. Smith, “A two-step Q-switching technique for producing high power in a single longitudinal mode,” Opt. Quantum Electron. 3(4), 163–169 (1971).
    [Crossref]
  18. D. C. Hanna, B. Luther-Davies, and R. C. Smith, “Active Q-switching technique for producing high laser power in a single longitudinal mode,” Electron. Lett. 8(15), 369–370 (1972).
    [Crossref]
  19. D. C. Hanna and Y.-W. J. Koo, “Stable single-mode operation of a Q-switched laser by a simple resonator length control technique,” Opt. Commun. 43(6), 414–418 (1982).
    [Crossref]
  20. O. Svelto, Principles of Lasers (Springer, 2010), 5th ed.
  21. Y. Sato and T. Taira, “Spectroscopic properties of neodymium-doped yttrium orthovanadate single crystals with high-resolution measurement,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 5999–6002 (2002).
    [Crossref]
  22. O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+:YAP and Tm3+:YAG microlasers,” Appl. Phys. B 88(3), 433–442 (2007).
    [Crossref]
  23. W. Koechner, Solid-State Laser Engineering (Springer, 2006), sixth ed.
  24. I. F. Elder and J. Payne, “Diode-pumped, room-temperature Tm:YAP laser,” Appl. Opt. 36(33), 8606–8610 (1997).
    [Crossref]
  25. H. Kalaycioglu, A. Sennaroglu, and A. Kurt, “Influence of doping concentration on the power performance of diode-pumped continuous-wave Tm3+:YAlO3 lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 667–673 (2005).
    [Crossref]
  26. J. Dong and K. Ueda, “Longitudinal-mode competition induced instabilities of Cr4+,Nd3+: Y3Al5O12 self-Q-switched two-mode laser,” Appl. Phys. Lett. 87(15), 151102 (2005).
    [Crossref]
  27. C. Bollig, W. A. Clarkson, and D. C. Hanna, “Stable high-repetition-rate single-frequency Q-switched operation by feedback suppression of relaxation oscillation,” Opt. Lett. 20(12), 1383–1385 (1995).
    [Crossref]

2018 (2)

N. Fried, “Recent advances in infrared laser lithotripsy,” Biomed. Opt. Express 9(9), 4552–4568 (2018).
[Crossref]

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

2017 (1)

G. Martin, T. J. Siemers, and J. R. Thompson, “Modeling structural features of pulse timing jitter in a single-mode, Q-switched, Nd:YAG laser,” Laser Phys. 27(8), 085005 (2017).
[Crossref]

2016 (1)

Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
[Crossref]

2015 (1)

2013 (1)

Q. Wang, J. Geng, and S. Jiang, “2 µm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2013).
[Crossref]

2009 (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

2008 (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

2007 (1)

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+:YAP and Tm3+:YAG microlasers,” Appl. Phys. B 88(3), 433–442 (2007).
[Crossref]

2005 (3)

H. Kalaycioglu, A. Sennaroglu, and A. Kurt, “Influence of doping concentration on the power performance of diode-pumped continuous-wave Tm3+:YAlO3 lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 667–673 (2005).
[Crossref]

J. Dong and K. Ueda, “Longitudinal-mode competition induced instabilities of Cr4+,Nd3+: Y3Al5O12 self-Q-switched two-mode laser,” Appl. Phys. Lett. 87(15), 151102 (2005).
[Crossref]

P. Černý and D. Burns, “Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b-cut crystal orientations,” IEEE J. Sel. Top. Quantum Electron. 11(3), 674–681 (2005).
[Crossref]

2002 (1)

Y. Sato and T. Taira, “Spectroscopic properties of neodymium-doped yttrium orthovanadate single crystals with high-resolution measurement,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 5999–6002 (2002).
[Crossref]

2000 (1)

1999 (1)

H. Lee, K. Kim, and H. Kim, “Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror,” Opt. Commun. 160(1-3), 51–56 (1999).
[Crossref]

1997 (2)

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

I. F. Elder and J. Payne, “Diode-pumped, room-temperature Tm:YAP laser,” Appl. Opt. 36(33), 8606–8610 (1997).
[Crossref]

1995 (2)

1993 (2)

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, D. Epp, G. J. Quarles, and K. J. Riley, “High-average-power operation of a Q-switched diode-pumped holmium laser,” Opt. Lett. 18(20), 1724–1726 (1993).
[Crossref]

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31(1), 4–15 (1993).
[Crossref]

1990 (1)

1982 (1)

D. C. Hanna and Y.-W. J. Koo, “Stable single-mode operation of a Q-switched laser by a simple resonator length control technique,” Opt. Commun. 43(6), 414–418 (1982).
[Crossref]

1972 (1)

D. C. Hanna, B. Luther-Davies, and R. C. Smith, “Active Q-switching technique for producing high laser power in a single longitudinal mode,” Electron. Lett. 8(15), 369–370 (1972).
[Crossref]

1971 (1)

D. C. Hanna, B. Luther-Davies, H. N. Rutt, and R. C. Smith, “A two-step Q-switching technique for producing high power in a single longitudinal mode,” Opt. Quantum Electron. 3(4), 163–169 (1971).
[Crossref]

Aoki, M.

Asai, K.

Beach, R. J.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Bollig, C.

Bowman, S. R.

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31(1), 4–15 (1993).
[Crossref]

Budni, P. A.

Burns, D.

P. Černý and D. Burns, “Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b-cut crystal orientations,” IEEE J. Sel. Top. Quantum Electron. 11(3), 674–681 (2005).
[Crossref]

Buryy, O. A.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+:YAP and Tm3+:YAG microlasers,” Appl. Phys. B 88(3), 433–442 (2007).
[Crossref]

Cerný, P.

P. Černý and D. Burns, “Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b-cut crystal orientations,” IEEE J. Sel. Top. Quantum Electron. 11(3), 674–681 (2005).
[Crossref]

Chicklis, E. P.

Chou, C.

Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
[Crossref]

Chou, M.

Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
[Crossref]

Clarkson, W. A.

Dong, J.

J. Dong and K. Ueda, “Longitudinal-mode competition induced instabilities of Cr4+,Nd3+: Y3Al5O12 self-Q-switched two-mode laser,” Appl. Phys. Lett. 87(15), 151102 (2005).
[Crossref]

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

Elder, I. F.

Emanuel, M. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Epp, D.

Esterowitz, L.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94 µm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
[Crossref]

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
[Crossref]

Feldman, B. J.

Fried, N.

Fukuoka, H.

Geng, J.

Q. Wang, J. Geng, and S. Jiang, “2 µm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2013).
[Crossref]

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31(1), 4–15 (1993).
[Crossref]

Hanna, D. C.

C. Bollig, W. A. Clarkson, and D. C. Hanna, “Stable high-repetition-rate single-frequency Q-switched operation by feedback suppression of relaxation oscillation,” Opt. Lett. 20(12), 1383–1385 (1995).
[Crossref]

D. C. Hanna and Y.-W. J. Koo, “Stable single-mode operation of a Q-switched laser by a simple resonator length control technique,” Opt. Commun. 43(6), 414–418 (1982).
[Crossref]

D. C. Hanna, B. Luther-Davies, and R. C. Smith, “Active Q-switching technique for producing high laser power in a single longitudinal mode,” Electron. Lett. 8(15), 369–370 (1972).
[Crossref]

D. C. Hanna, B. Luther-Davies, H. N. Rutt, and R. C. Smith, “A two-step Q-switching technique for producing high power in a single longitudinal mode,” Opt. Quantum Electron. 3(4), 163–169 (1971).
[Crossref]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31(1), 4–15 (1993).
[Crossref]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31(1), 4–15 (1993).
[Crossref]

Honea, E. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Ishii, S.

Ishikawa, T.

Itabe, T.

Izhnin, I. I.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+:YAP and Tm3+:YAG microlasers,” Appl. Phys. B 88(3), 433–442 (2007).
[Crossref]

Jiang, S.

Q. Wang, J. Geng, and S. Jiang, “2 µm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2013).
[Crossref]

Kalaycioglu, H.

H. Kalaycioglu, A. Sennaroglu, and A. Kurt, “Influence of doping concentration on the power performance of diode-pumped continuous-wave Tm3+:YAlO3 lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 667–673 (2005).
[Crossref]

Kim, H.

H. Lee, K. Kim, and H. Kim, “Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror,” Opt. Commun. 160(1-3), 51–56 (1999).
[Crossref]

Kim, K.

H. Lee, K. Kim, and H. Kim, “Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror,” Opt. Commun. 160(1-3), 51–56 (1999).
[Crossref]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 2006), sixth ed.

Koo, Y.-W. J.

D. C. Hanna and Y.-W. J. Koo, “Stable single-mode operation of a Q-switched laser by a simple resonator length control technique,” Opt. Commun. 43(6), 414–418 (1982).
[Crossref]

Kurt, A.

H. Kalaycioglu, A. Sennaroglu, and A. Kurt, “Influence of doping concentration on the power performance of diode-pumped continuous-wave Tm3+:YAlO3 lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 667–673 (2005).
[Crossref]

Lee, C.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
[Crossref]

Lee, H.

H. Lee, K. Kim, and H. Kim, “Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror,” Opt. Commun. 160(1-3), 51–56 (1999).
[Crossref]

Lee, P.

Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
[Crossref]

Lemons, M. L.

Li, D.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Li, G.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Li, T.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Lin, Y.

Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
[Crossref]

Liu, H.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Luther-Davies, B.

D. C. Hanna, B. Luther-Davies, and R. C. Smith, “Active Q-switching technique for producing high laser power in a single longitudinal mode,” Electron. Lett. 8(15), 369–370 (1972).
[Crossref]

D. C. Hanna, B. Luther-Davies, H. N. Rutt, and R. C. Smith, “A two-step Q-switching technique for producing high power in a single longitudinal mode,” Opt. Quantum Electron. 3(4), 163–169 (1971).
[Crossref]

Lynn, J. G.

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31(1), 4–15 (1993).
[Crossref]

Martin, G.

G. Martin, T. J. Siemers, and J. R. Thompson, “Modeling structural features of pulse timing jitter in a single-mode, Q-switched, Nd:YAG laser,” Laser Phys. 27(8), 085005 (2017).
[Crossref]

McMahon, J.

Miller, C. A.

Mitchell, S. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Mizutani, K.

Mosto, J. R.

Noda, K.

Payne, J.

Payne, S. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Pomeranz, L. A.

Qiao, J.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Qiao, W.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Quarles, G. J.

Riley, K. J.

Rutt, H. N.

D. C. Hanna, B. Luther-Davies, H. N. Rutt, and R. C. Smith, “A two-step Q-switching technique for producing high power in a single longitudinal mode,” Opt. Quantum Electron. 3(4), 163–169 (1971).
[Crossref]

Sato, A.

Sato, Y.

Y. Sato and T. Taira, “Spectroscopic properties of neodymium-doped yttrium orthovanadate single crystals with high-resolution measurement,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 5999–6002 (2002).
[Crossref]

Searles, S. K.

Sennaroglu, A.

H. Kalaycioglu, A. Sennaroglu, and A. Kurt, “Influence of doping concentration on the power performance of diode-pumped continuous-wave Tm3+:YAlO3 lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 667–673 (2005).
[Crossref]

Siemers, T. J.

G. Martin, T. J. Siemers, and J. R. Thompson, “Modeling structural features of pulse timing jitter in a single-mode, Q-switched, Nd:YAG laser,” Laser Phys. 27(8), 085005 (2017).
[Crossref]

Skidmore, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Smith, R. C.

D. C. Hanna, B. Luther-Davies, and R. C. Smith, “Active Q-switching technique for producing high laser power in a single longitudinal mode,” Electron. Lett. 8(15), 369–370 (1972).
[Crossref]

D. C. Hanna, B. Luther-Davies, H. N. Rutt, and R. C. Smith, “A two-step Q-switching technique for producing high power in a single longitudinal mode,” Opt. Quantum Electron. 3(4), 163–169 (1971).
[Crossref]

Solskii, I. M.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+:YAP and Tm3+:YAG microlasers,” Appl. Phys. B 88(3), 433–442 (2007).
[Crossref]

Song, W.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Speth, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Stoneman, R. C.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94 µm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
[Crossref]

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
[Crossref]

Sugak, D. Y.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+:YAP and Tm3+:YAG microlasers,” Appl. Phys. B 88(3), 433–442 (2007).
[Crossref]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31(1), 4–15 (1993).
[Crossref]

Sutton, S. B.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

Svelto, O.

O. Svelto, Principles of Lasers (Springer, 2010), 5th ed.

Taira, T.

Y. Sato and T. Taira, “Spectroscopic properties of neodymium-doped yttrium orthovanadate single crystals with high-resolution measurement,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 5999–6002 (2002).
[Crossref]

Thompson, J. R.

G. Martin, T. J. Siemers, and J. R. Thompson, “Modeling structural features of pulse timing jitter in a single-mode, Q-switched, Nd:YAG laser,” Laser Phys. 27(8), 085005 (2017).
[Crossref]

Tu, C.

Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
[Crossref]

Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
[Crossref]

Ubizskii, S. B.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+:YAP and Tm3+:YAG microlasers,” Appl. Phys. B 88(3), 433–442 (2007).
[Crossref]

Ueda, K.

J. Dong and K. Ueda, “Longitudinal-mode competition induced instabilities of Cr4+,Nd3+: Y3Al5O12 self-Q-switched two-mode laser,” Appl. Phys. Lett. 87(15), 151102 (2005).
[Crossref]

Vakiv, M. M.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+:YAP and Tm3+:YAG microlasers,” Appl. Phys. B 88(3), 433–442 (2007).
[Crossref]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Wang, Q.

Q. Wang, J. Geng, and S. Jiang, “2 µm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2013).
[Crossref]

Whitney, W.

Wu, C.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
[Crossref]

Xu, J.

Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
[Crossref]

Yang, K.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31(1), 4–15 (1993).
[Crossref]

Zhao, J.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Zhao, S.

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (2)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+:YAP and Tm3+:YAG microlasers,” Appl. Phys. B 88(3), 433–442 (2007).
[Crossref]

Appl. Phys. Lett. (1)

J. Dong and K. Ueda, “Longitudinal-mode competition induced instabilities of Cr4+,Nd3+: Y3Al5O12 self-Q-switched two-mode laser,” Appl. Phys. Lett. 87(15), 151102 (2005).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

D. C. Hanna, B. Luther-Davies, and R. C. Smith, “Active Q-switching technique for producing high laser power in a single longitudinal mode,” Electron. Lett. 8(15), 369–370 (1972).
[Crossref]

IEEE J. Quantum Electron. (1)

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

R. C. Stoneman and L. Esterowitz, “Efficient 1.94 µm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
[Crossref]

P. Černý and D. Burns, “Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b-cut crystal orientations,” IEEE J. Sel. Top. Quantum Electron. 11(3), 674–681 (2005).
[Crossref]

H. Kalaycioglu, A. Sennaroglu, and A. Kurt, “Influence of doping concentration on the power performance of diode-pumped continuous-wave Tm3+:YAlO3 lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 667–673 (2005).
[Crossref]

IEEE Photonics J. (1)

Y. Lin, P. Lee, J. Xu, C. Wu, C. Chou, C. Tu, C. Tu, M. Chou, and C. Lee, “High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser,” IEEE Photonics J. 8(4), 1–10 (2016).
[Crossref]

IEEE Trans. Geosci. Remote Sensing (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31(1), 4–15 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Sato and T. Taira, “Spectroscopic properties of neodymium-doped yttrium orthovanadate single crystals with high-resolution measurement,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 5999–6002 (2002).
[Crossref]

Laser Phys. (2)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

G. Martin, T. J. Siemers, and J. R. Thompson, “Modeling structural features of pulse timing jitter in a single-mode, Q-switched, Nd:YAG laser,” Laser Phys. 27(8), 085005 (2017).
[Crossref]

Opt. Commun. (2)

H. Lee, K. Kim, and H. Kim, “Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror,” Opt. Commun. 160(1-3), 51–56 (1999).
[Crossref]

D. C. Hanna and Y.-W. J. Koo, “Stable single-mode operation of a Q-switched laser by a simple resonator length control technique,” Opt. Commun. 43(6), 414–418 (1982).
[Crossref]

Opt. Eng. (1)

Q. Wang, J. Geng, and S. Jiang, “2 µm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2013).
[Crossref]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

D. C. Hanna, B. Luther-Davies, H. N. Rutt, and R. C. Smith, “A two-step Q-switching technique for producing high power in a single longitudinal mode,” Opt. Quantum Electron. 3(4), 163–169 (1971).
[Crossref]

Photonics Res. (1)

J. Qiao, S. Zhao, K. Yang, W. Song, W. Qiao, C. Wu, J. Zhao, G. Li, D. Li, T. Li, H. Liu, and C. Lee, “High-quality 2 µm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators,” Photonics Res. 6(4), 314–320 (2018).
[Crossref]

Other (2)

O. Svelto, Principles of Lasers (Springer, 2010), 5th ed.

W. Koechner, Solid-State Laser Engineering (Springer, 2006), sixth ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Over-pumping ratio dependency of the build-up time and pulse duration for the Tm:YAP laser.
Fig. 2.
Fig. 2. Diagram of cavity and diagnostics used throughout this work. PBS = polarising beamsplitter, NPBS = non-polarising beamsplitter, HWP = half-wave plate, TFP = thin-film polariser, PCs = Pockels cells, QWP = quarter-wave plate. Optic spacings in mm are shown in blue. There is a 3 mm gap between the crystals that make up each Pockels cell.
Fig. 3.
Fig. 3. Example pulse showing definitions of pulse parameters discussed in this paper. The build-up time is the time between the peak of the high-voltage noise and the peak of the pulse. The pulse duration is the FWHM of the pulse. The peak power is the height of the peak and the pulse energy is the area under the peak (both of these require conversion from oscilloscope units).
Fig. 4.
Fig. 4. (a) Build-up time of each pulse and (b) histogram of the build-up times with the 5 % output coupler, operating at 250 Hz repetition rate and 4:9 W incident pump power in order showing no pattern in the jitter.
Fig. 5.
Fig. 5. (a) Effect of pump power on the percentage jitter in the pulse parameters for 250 Hz repetition rate and 5 % output coupler. (b) Effect of repetition rate on the percentage jitter in the pulse parameters for 4.9 W incident pump power and 5 % output coupler. The insets show a zoom in on the lower jitter values.
Fig. 6.
Fig. 6. Photo of ruggedised system.

Tables (3)

Tables Icon

Table 1. Parameters used to generate Fig. 1 and calculate the over-pumping ratios of the Tm:YAP laser used in this work and a Nd:YVO 4 under similar conditions. Unreferenced values are either calculated (equation given) or describe the modelled cavity.

Tables Icon

Table 2. Jitter in all pulse parameters as the output coupler is changed with the same pump power of 4.9 W and repetition rate of 250 Hz.

Tables Icon

Table 3. Summary of results of jitter analysis for the cases described in sections 4.2 and 4.3 with the laser operating with 4.9 W pump power, 250 Hz repetition rate and with the 5 % output coupler.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ b = τ c N i / N p 1 ln [ V a N p 1 + f ( N i N p ln ( N i N p ) 1 ) ]
P p = γ 2 2 h ν τ c A b σ e 1 1 + f ( N i N p ln ( N i N p ) 1 )
E p = γ 2 2 A b σ e h ν 1 + f η E N i N p
τ p = E p P p = τ c ( N i / N p ) η E ( N i / N p ) ln ( N i / N p ) 1
N i N p = ( R p τ ( 1 + f ) f N t ) ( 1 e 1 ) γ σ e l

Metrics